Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 環境與職業健康科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95118
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳志傑zh_TW
dc.contributor.advisorChih-Chieh Chenen
dc.contributor.author許兆鈞zh_TW
dc.contributor.authorChao-Chun Hsuen
dc.date.accessioned2024-08-29T16:09:23Z-
dc.date.available2024-08-30-
dc.date.copyright2024-08-29-
dc.date.issued2024-
dc.date.submitted2024-08-06-
dc.identifier.citation參考文獻
Abdel-Salam, M. (2018). Electrical Breakdown of Gases. High-Voltage Engineering: 115-148.
Alemani, M., Nosko, O., Metinoz, I. and Olofsson, U. (2016). A Study on Emission of Airborne Wear Particles from Car Brake Friction Pairs. SAE International Journal of Materials and Manufacturing 9: 147-157.
Ali, M.U., Liu, G., Yousaf, B., Abbas, Q., Ullah, H., Munir, M.A.M. and Zhang, H. (2018). Compositional Characteristics of Black-Carbon and Nanoparticles in Air-Conditioner Dust from an Inhabitable Industrial Metropolis. Journal of Cleaner Production 180: 34-42.
Aoyagi, M. (2008). Fabrication of Carbon Nanotubes and Byproducts by Arc Discharge in Dc Motors. IEEJ transactions on electrical and electronic engineering 3: 664-668.
Casstevens, J., Rylander, H. and Eliezer, Z. (1978). Influence of High Velocities and High Current Densities on the Friction and Wear Behavior of Copper-Graphite Brushes. Wear 48: 121-130.
Condit, R. (2004). Brushed Dc Motor Fundamentals. Microchip Application Note AN905, Microchip Technology Inc.
Ding, Z. (2015). Motor Comparison & Selection for Electric Jet Ski.
Heitbrink, W.A. and Collingwood, S. (2005). Aerosol Generation by Blower Motors as a Bias in Assessing Aerosol Penetration into Cabin Filtration Systems. Journal of occupational and environmental hygiene 2: 45-53.
Helsper, C., Mölter, W., Löffler, F., Wadenpohl, C., Kaufmann, S. and Wenninger, G. (1993). Investigations of a New Aerosol Generator for the Production of Carbon Aggregate Particles. Atmospheric Environment. Part A. General Topics 27: 1271-1275.
Holm, R. (2013). Electric Contacts: Theory and Application. Springer Science & Business Media.
Hu, Z., Chen, Z. and Xia, J. (2008). Study on Surface Film in the Wear of Electrographite Brushes against Copper Commutators for Variable Current and Humidity. Wear 264: 11-17.
IEEE (2020). Ieee Guide for Test Procedures for Synchronous Machines Including Acceptance and Performance Testing and Parameter Determination for Dynamic Analysis, In IEEE Std 115-2019 (Revision of IEEE Std 115-2009), pp. 1-246.
Kamalakannan, D., Mariappan, V., Narayanan, V. and Ramanathan, N.S. In (Ed.)^(Eds.) 2016 First International Conference on Sustainable Green Buildings and Communities (SGBC), 2016, pp. 1-6.
Kim, J.-T. and Chang, J.-S. (2005). Generation of Metal Oxide Aerosol Particles by a Pulsed Spark Discharge Technique. Journal of Electrostatics 63: 911-916.
King, R.B. and Toma, J. (1975). Copper Emissions from a High Volume Air Sampler.
Knibbs, L.D., He, C., Duchaine, C. and Morawska, L. (2012). Vacuum Cleaner Emissions as a Source of Indoor Exposure to Airborne Particles and Bacteria. Environmental science & technology 46: 534-542.
Kohut, A., Ludvigsson, L., Meuller, B.O., Deppert, K., Messing, M.E., Galbács, G. and Geretovszky, Z. (2017). From Plasma to Nanoparticles: Optical and Particle Emission of a Spark Discharge Generator. Nanotechnology 28: 475603.
Krishnan, R. (2017). Permanent Magnet Synchronous and Brushless Dc Motor Drives. CRC press.
Kulkarni, P., Baron, P.A. and Willeke, K. (2011). Aerosol Measurement: Principles, Techniques, and Applications. John Wiley & Sons.
Kumar, P., Skouloudis, A.N., Bell, M., Viana, M., Carotta, M.C., Biskos, G. and Morawska, L. (2016). Real-Time Sensors for Indoor Air Monitoring and Challenges Ahead in Deploying Them to Urban Buildings. Science of the Total Environment 560: 150-159.
Lategan, K., Fowler, J., Bayati, M., Fidalgo de Cortalezzi, M. and Pool, E. (2018). The Effects of Carbon Dots on Immune System Biomarkers, Using the Murine Macrophage Cell Line Raw 264.7 and Human Whole Blood Cell Cultures. Nanomaterials 8: 388.
Lioy, P.J., Wainman, T., Zhang, J. and Goldsmith, S. (1999). Typical Household Vacuum Cleaners: The Collection Efficiency and Emissions Characteristics for Fine Particles. Journal of the Air & Waste Management Association 49: 200-206.
Liu, B., Badcock, R., Shu, H., Tan, L. and Fang, J. (2018). Electromagnetic Characteristic Analysis and Optimization Design of a Novel Hts Coreless Induction Motor for High-Speed Operation. IEEE Transactions on Applied Superconductivity 28: 1-5.
Manigrasso, M., Protano, C., Astolfi, M.L., Massimi, L., Avino, P., Vitali, M. and Canepari, S. (2019). Evidences of Copper Nanoparticle Exposure in Indoor Environments: Long-Term Assessment, High-Resolution Field Emission Scanning Electron Microscopy Evaluation, in Silico Respiratory Dosimetry Study and Possible Health Implications. Science of the Total Environment 653: 1192-1203.
Manigrasso, M., Stabile, L., Avino, P. and Buonanno, G. (2013). Influence of Measurement Frequency on the Evaluation of Short-Term Dose of Sub-Micrometric Particles During Indoor and Outdoor Generation Events. Atmospheric Environment 67: 130-142.
Manigrasso, M., Vitali, M., Protano, C. and Avino, P. (2017). Temporal Evolution of Ultrafine Particles and of Alveolar Deposited Surface Area from Main Indoor Combustion and Non-Combustion Sources in a Model Room. Science of the Total Environment 598: 1015-1026.
Meng, Q.Y., Turpin, B.J., Korn, L., Weisel, C.P., Morandi, M., Colome, S., Zhang, J., Stock, T., Spektor, D. and Winer, A. (2005). Influence of Ambient (Outdoor) Sources on Residential Indoor and Personal Pm2. 5 Concentrations: Analyses of Riopa Data. Journal of Exposure Science & Environmental Epidemiology 15: 17-28.
Meuller, B.O., Messing, M.E., Engberg, D.L., Jansson, A.M., Johansson, L.I., Norlén, S.M., Tureson, N. and Deppert, K. (2012a). Review of Spark Discharge Generators for Production of Nanoparticle Aerosols. Aerosol Science and Technology 46: 1256-1270.
Meuller, B.O., Messing, M.E., Engberg, D.L.J., Jansson, A.M., Johansson, L.I.M., Norlén, S.M., Tureson, N. and Deppert, K. (2012b). Review of Spark Discharge Generators for Production of Nanoparticle Aerosols. Aerosol Science and Technology 46: 1256-1270.
Namgung, H.-G., Kim, J.-B., Woo, S.-H., Park, S., Kim, M., Kim, M.-S., Bae, G.-N., Park, D. and Kwon, S.-B. (2016). Generation of Nanoparticles from Friction between Railway Brake Disks and Pads. Environmental Science & Technology 50: 3453-3461.
Peng, H., Sun, R., Yang, D., Huang, G., Zhuo, L. and Shi, D. In (Ed.)^(Eds.) 2023 26th International Conference on Electrical Machines and Systems (ICEMS), 2023, pp. 3580-3586.
Rabha, S. and Saikia, B.K. (2020). An Environmental Evaluation of Carbonaceous Aerosols in Pm10 at Micro-and Nano-Scale Levels Reveals the Formation of Carbon Nanodots. Chemosphere 244: 125519.
Roberge, R. In (Ed.)^(Eds.) Conference Record of 2001 Annual Pulp and Paper Industry Technical Conference (Cat. No. 01CH37209), 2001, IEEE, pp. 184-191.
Rogueda, P.G. and Traini, D. (2007). The Nanoscale in Pulmonary Delivery. Part 1: Deposition, Fate, Toxicology and Effects. Expert opinion on drug delivery 4: 595-606.
Saidur, R. (2010). A Review on Electrical Motors Energy Use and Energy Savings. Renewable and sustainable energy reviews 14: 877-898.
Sawa, K., Isato, M., Ueno, T., Nakano, K. and Kondo, K. In (Ed.)^(Eds.) 2017 IEEE Holm Conference on Electrical Contacts, 2017, pp. 176-181.
Sawa, K., Ueno, T. and Nakano, K. In (Ed.)^(Eds.) 2020 IEEE 66th Holm Conference on Electrical Contacts and Intensive Course (HLM), 2020, IEEE, pp. 170-175.
Schripp, T., Kirsch, I. and Salthammer, T. (2011). Characterization of Particle Emission from Household Electrical Appliances. Science of The Total Environment 409: 2534-2540.
Senouci, A., Frene, J. and Zaidi, H. (1999). Wear Mechanism in Graphite–Copper Electrical Sliding Contact. Wear 225: 949-953.
Szymczak, W., Menzel, N. and Keck, L. (2007). Emission of Ultrafine Copper Particles by Universal Motors Controlled by Phase Angle Modulation. Journal of aerosol science 38: 520-531.
Tabner, B.J., Mayes, J. and Allsop, D. (2011). Hypothesis: Soluble Aβ Oligomers in Association with Redox-Active Metal Ions Are the Optimal Generators of Reactive Oxygen Species in Alzheimer's Disease. International Journal of Alzheimer’s Disease 2011.
Tabrizi, N.S., Ullmann, M., Vons, V., Lafont, U. and Schmidt-Ott, A. (2009). Generation of Nanoparticles by Spark Discharge. Journal of Nanoparticle Research 11: 315-332.
Ullmann, M., Friedlander, S.K. and Schmidt-Ott, A. (2002). Nanoparticle Formation by Laser Ablation. Journal of Nanoparticle Research 4: 499-509.
Vicente, E.D., Vicente, A.M., Evtyugina, M., Calvo, A.I., Oduber, F., Blanco Alegre, C., Castro, A., Fraile, R., Nunes, T., Lucarelli, F., Calzolai, G., Nava, S. and Alves, C.A. (2020). Impact of Vacuum Cleaning on Indoor Air Quality. Building and Environment 180: 107059.
Wang, D., Sun, J., He, Q., Si, J., Shi, T., Li, F., Yang, J., Xie, K., Li, W. and Ge, F. (2022). Failure Analysis and Improvement Measures for Crankshaft Connecting Rod of Refrigerator Compressor. Engineering Failure Analysis 141: 106585.
Wang, X., Williams, B.J. and Biswas, P. (2015). Characteristics of Particulate Matter Emissions from Toy Cars with Electric Motors. Journal of the Air & Waste Management Association 65: 492-499.
Wang, Y., Xiong, L. and Tang, M. (2017). Toxicity of Inhaled Particulate Matter on the Central Nervous System: Neuroinflammation, Neuropsychological Effects and Neurodegenerative Disease. Journal of Applied Toxicology 37: 644-667.
Wu, C., Chao, C.Y., Sze-To, G., Wan, M. and Chan, T. (2012). Ultrafine Particle Emissions from Cigarette Smouldering, Incense Burning, Vacuum Cleaner Motor Operation and Cooking. Indoor and Built Environment 21: 782-796.
Yang, L., Zhang, L. and Webster, T.J. (2011). Carbon Nanostructures for Orthopedic Medical Applications. Nanomedicine 6: 1231-1244.
Yu, K.-P., Yang, K.R., Chen, Y.C., Gong, J.Y., Chen, Y.P., Shih, H.-C. and Candice Lung, S.-C. (2015). Indoor Air Pollution from Gas Cooking in Five Taiwanese Families. Building and Environment 93: 258-266.
Zhao, Y. and Zhao, B. (2018). Emissions of Air Pollutants from Chinese Cooking: A Literature Review. Building Simulation 11: 977-995.
衛生福利部. 111年國人死因統計結果, https://www.mohw.gov.tw/cp-5017-61533-1.html, Last Access:
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95118-
dc.description.abstract家用電器內的馬達是生活中最常見的驅動器之一,其功能是將電力轉為機械力,藉此驅動風扇或是特定的設備,然近年來越來越多研究顯示,安裝於室內電器的微型馬達,能觀察到微粒的產生,這些細小微粒容易被人體吸入,並且沉積在支氣管或是肺部等區域,對於人體的健康有很大的疑慮。而家用電器運作時距離人體很近,容易造成更高的暴露危害,因此需要對馬達產生的微粒進行評估,而過去的研究報告所提供之資訊僅能凸顯馬達確實是重要的微粒產生源,卻未有量測馬達產生微粒的標準方法,因此本研究會先建立方法以評估馬達在不同參數下的微粒的產生特性,並探討馬達微粒產生的機制,提出解決馬達微粒排放問題的策略。
本研究首先會先建置一實驗系統,使用數顆同一廠牌的直流有刷馬達以及直流無刷馬達進行實驗,並以實驗確認微粒量測的準確度且能完整的量測馬達所產生的微粒數目,再藉由改變各項參數了解對馬達微粒排放的影響。微粒產生機制的確認則是使用相同型號的馬達(Motor2)來帶動待測馬達(Motor1),希望透過主動運轉(供電給Motor1)及被動運轉(供電給Motor2)來區分火花放電以及機械磨損這兩種馬達產生微粒的主要機制,並以電子顯微鏡觀察馬達所產生的形狀及成分。最後量測市售電動刮鬍刀所產生的微粒特性。
為了解系統所需的稀釋流量,測試了在不同轉速下稀釋流量對馬達產生微粒濃度的影響,再計算馬達每秒的微粒產生率來評估是否能量測到所有馬達產生的微粒。結果表明,直流有刷馬達產生的微粒排放率會隨著稀釋流量提高而提升,當稀釋流率大於10 L/min後趨於穩定,並將系統的稀釋流率訂為12 L/min。針對直流有刷馬達產生微粒兩種可能機制分別是火花放電以及機械摩擦進行探討,研究結果指出火花放電是馬達產生微粒的主要原因,經由火花放電產生的微粒數目每秒約為2.1*107顆約為機械摩擦產生的250倍,粒徑落在40 nm,同時量測了直流無刷馬達的微粒產生率與粒徑,結果表明直流無刷馬達每秒依舊會產生2.2*104顆微粒,約為直流有刷馬達產生的微粒的千分之一,粒徑約為120 nm,且直流有刷馬達以及直流無刷馬達的微粒產生率皆會因為轉速提高而上升,在電動刮鬍刀的實驗中也驗證了轉速提高會影響產生的微粒數目濃度,此外亦發現防水的外殼可以有效的減少馬達產生的微粒逸散。
zh_TW
dc.description.abstractMotors in household appliances are among the most common actuators in daily life, converting electrical energy into mechanical force to drive fans or specific devices. However, recent studies have shown that miniature motors installed in indoor appliances can generate particles. These fine particles are easily inhaled and can deposit in the bronchi or lungs, raising significant health concerns. Since household appliances operate close to the human body, the risk of exposure is higher, necessitating an evaluation of the particles generated by these motors. Previous research has highlighted that motors are indeed significant sources of particle emissions but has not provided a standard method for measuring these emissions. Therefore, this study aims to establish a method to evaluate the particle generation characteristics of motors under different parameters, investigate the mechanisms of motor particle generation, and propose strategies to mitigate particle emissions from motors.
This study will first establish an experimental system using several DC brushed motors and DC brushless motors from the same manufacturer. The experiments will verify the accuracy of particle measurements and ensure a comprehensive assessment of the number of particles generated by the motors. By varying different parameters, we aim to understand their impact on motor particle emissions. To confirm the particle generation mechanisms, we will use an identical model motor (Motor2) to drive the test motor (Motor1). By comparing active operation (powering Motor1) and passive operation (powering Motor2), we hope to distinguish between spark discharge and mechanical wear as the primary mechanisms of particle generation. An electron microscope will be used to observe the shape and composition of the particles generated by the motors. Finally, we will measure the particle characteristics produced by commercially available electric shavers to validate the experimental results.
To determine the necessary dilution flow rate for the system, we tested the impact of dilution flow rates on particle concentrations generated by the motor at different speeds. We then calculated the particle generation rate per second to evaluate whether all particles produced by the motor could be measured. The results showed that the particle emission rate of the DC brushed motor increases with higher dilution flow rates and stabilizes when the flow rate exceeds 10 L/min. Consequently, we set the system's dilution flow rate to 12 L/min. We explored the two potential mechanisms of particle generation in DC brushed motors: spark discharge and mechanical friction. The study results indicated that spark discharge is the primary cause of particle generation. Particles generated by spark discharge amount to approximately 2.1 x 107 particles per second, about 250 times the number produced by mechanical friction, with a particle size of around 40 nm. We also measured the particle generation rate and size for DC brushless motors. The results show that DC brushless motors still produce particles, generating about 2.2 x 104 particles per second, which is roughly one-thousandth of the particle count generated by DC brushed motors, with a particle size of around 120 nm. The particle generation rates for both DC brushed and brushless motors increase with higher speeds. In experiments with electric shavers, we confirmed that increasing the speed affects the particle concentration. Additionally, we found that a waterproof casing can effectively reduce the dispersion of particles generated by the motor.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-29T16:09:23Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-29T16:09:23Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents目次
口試委員會審定書 i
謝辭 ii
摘要 iii
Abstract v
目次 vii
圖次 ix
表次 x
(一)研究計畫之動機、目的與背景 1
1.1 背景 1
1.2 目的 2
1.3 研究架構 2
(二)文獻回顧 4
2.1室內空氣粒狀物污染來源 4
2.2 家用馬達型式與原理 5
2.3 馬達測試方法與特性曲線 6
2.4 馬達微粒產生之機制 8
2.5馬達產生微粒特性 9
(三)研究方法、進行步驟 12
3.1系統建置 12
3.2 馬達參數監測 13
3.3 微粒產生機制確認方式 13
3.4 馬達負載實驗 14
3.5 微粒成分分析 14
3.6 實際產品量測 15
(四)研究結果與討論 16
4.1 系統流量實驗 16
4.2 微粒機制探討 16
4.3 相關參數影響 17
4.4 微粒成分探討 19
4.5 直流無刷馬達測試 19
4.6 電動刮鬍刀之評估 20
4.7 馬達使用策略與改良方向 21
4.8 研究限制 22
(五)結論 23
參考文獻 24
-
dc.language.isozh_TW-
dc.subject直流有刷馬達zh_TW
dc.subject機械摩擦zh_TW
dc.subject火花放電zh_TW
dc.subject奈米微粒zh_TW
dc.subject直流無刷馬達zh_TW
dc.subjectDC brushless motoren
dc.subjectspark dischargeen
dc.subjectDC brushed motoren
dc.subjectmechanical frictionen
dc.subjectnanoparticlesen
dc.title馬達產生之微粒排放特性zh_TW
dc.titleThe Characteristic of Aerosol Emission from Motorsen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee黃盛修;林志威;楊禮豪;王琳麒zh_TW
dc.contributor.oralexamcommitteeSheng-Hsiu Huang;Chih-Wei Lin;Li-Hao Yang;Ling-Chi Wangen
dc.subject.keyword直流有刷馬達,直流無刷馬達,奈米微粒,火花放電,機械摩擦,zh_TW
dc.subject.keywordDC brushed motor,DC brushless motor,nanoparticles,spark discharge,mechanical friction,en
dc.relation.page54-
dc.identifier.doi10.6342/NTU202403607-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-07-
dc.contributor.author-college公共衛生學院-
dc.contributor.author-dept環境與職業健康科學研究所-
dc.date.embargo-lift2026-09-01-
顯示於系所單位:環境與職業健康科學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  此日期後於網路公開 2026-09-01
1.63 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved