Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 微生物學科所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95113
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor陳培哲zh_TW
dc.contributor.advisorPei-Jer Chenen
dc.contributor.author顏唯哲zh_TW
dc.contributor.authorWei-Che Yenen
dc.date.accessioned2024-08-28T16:19:50Z-
dc.date.available2024-08-29-
dc.date.copyright2024-08-28-
dc.date.issued2024-
dc.date.submitted2024-08-08-
dc.identifier.citation1. Ferrari, C., et al., Immunopathogenesis of hepatitis B. Journal of hepatology, 2003. 39: p. 36-42.
2. Bs, B., A" new" antigen in leukemia sera. JAMA, 1965. 191: p. 541-546.
3. Dane, D., C. Cameron, and M. Briggs, Virus-like particles in serum of patients with Australia-antigen-associated hepatitis. The lancet, 1970. 295(7649): p. 695-698.
4. Liaw, Y.F. and C.M. Chu, Hepatitis B virus infection. Lancet, 2009. 373(9663): p. 582-92.
5. Chen, C.J., L.Y. Wang, and M.W. Yu, Epidemiology of hepatitis B virus infection in the Asia-Pacific region. J Gastroenterol Hepatol, 2000. 15 Suppl: p. E3-6.
6. Chu, C.M., Natural history of chronic hepatitis B virus infection in adults with emphasis on the occurrence of cirrhosis and hepatocellular carcinoma. Journal of gastroenterology and hepatology, 2000. 15: p. E25-E30.
7. Chisari, F.V. and C. Ferrari, Hepatitis B virus immunopathogenesis. Annu Rev Immunol, 1995. 13: p. 29-60.
8. World Health Organization. Hepatitis B. 2024 April 9.
9. Feld, J.J., A.S. Lok, and F. Zoulim, New perspectives on development of curative strategies for chronic hepatitis B. Clinical Gastroenterology and Hepatology, 2023. 21(8): p. 2040-2050.
10. Seeger, C. and W.S. Mason, Hepatitis B virus biology. Microbiology and molecular biology reviews, 2000. 64(1): p. 51-68.
11. Niklasch, M., P. Zimmermann, and M. Nassal, The hepatitis B virus nucleocapsid—dynamic compartment for infectious virus production and new antiviral target. Biomedicines, 2021. 9(11): p. 1577.
12. Tsukuda, S. and K. Watashi, Hepatitis B virus biology and life cycle. Antiviral research, 2020. 182: p. 104925.
13. Vaillant, A., HBsAg, Subviral Particles, and Their Clearance in Establishing a Functional Cure of Chronic Hepatitis B Virus Infection. ACS Infect Dis, 2021. 7(6): p. 1351-1368.
14. Chai, N., et al., Properties of subviral particles of hepatitis B virus. Journal of virology, 2008. 82(16): p. 7812-7817.
15. Huang, H.-C., et al., Entry of hepatitis B virus into immortalized human primary hepatocytes by clathrin-dependent endocytosis. Journal of virology, 2012. 86(17): p. 9443-9453.
16. Barrera, A., et al., Mapping of the hepatitis B virus pre-S1 domain involved in receptor recognition. Journal of virology, 2005. 79(15): p. 9786-9798.
17. Rabe, B., et al., Nuclear import of hepatitis B virus capsids and release of the viral genome. Proceedings of the National Academy of Sciences, 2003. 100(17): p. 9849-9854.
18. Wei, L. and A. Ploss, Hepatitis B virus cccDNA is formed through distinct repair processes of each strand. Nature communications, 2021. 12(1): p. 1591.
19. Murphy, C.M., et al., Hepatitis B virus X protein promotes degradation of SMC5/6 to enhance HBV replication. Cell reports, 2016. 16(11): p. 2846-2854.
20. Beck, J. and M. Nassal, Hepatitis B virus replication. World journal of gastroenterology: WJG, 2007. 13(1): p. 48.
21. Watanabe, T., et al., Involvement of host cellular multivesicular body functions in hepatitis B virus budding. Proceedings of the National Academy of Sciences, 2007. 104(24): p. 10205-10210.
22. Tuttleman, J.S., C. Pourcel, and J. Summers, Formation of the pool of covalently closed circular viral DNA in hepadnavirus-infected cells. Cell, 1986. 47(3): p. 451-460.
23. Wu, T.-T., et al., In hepatocytes infected with duck hepatitis B virus, the template for viral RNA synthesis is amplified by an intracellular pathway. Virology, 1990. 175(1): p. 255-261.
24. Li, D. and M. Wu, Pattern recognition receptors in health and diseases. Signal transduction and targeted therapy, 2021. 6(1): p. 291.
25. Turvey, S.E. and D.H. Broide, Innate immunity. Journal of Allergy and Clinical Immunology, 2010. 125(2): p. S24-S32.
26. Zindel, J. and P. Kubes, DAMPs, PAMPs, and LAMPs in immunity and sterile inflammation. Annual Review of Pathology: Mechanisms of Disease, 2020. 15(1): p. 493-518.
27. Herwald, H. and A. Egesten, On PAMPs and DAMPs. Journal of Innate Immunity, 2016. 8(5): p. 427-428.
28. Rehwinkel, J. and M.U. Gack, RIG-I-like receptors: their regulation and roles in RNA sensing. Nature Reviews Immunology, 2020. 20(9): p. 537-551.
29. Iannacone, M. and L.G. Guidotti, Immunobiology and pathogenesis of hepatitis B virus infection. Nat Rev Immunol, 2022. 22(1): p. 19-32.
30. Guidotti, L.G. and F.V. Chisari, Immunobiology and pathogenesis of viral hepatitis. Annu. Rev. Pathol. Mech. Dis., 2006. 1(1): p. 23-61.
31. Asabe, S., et al., The size of the viral inoculum contributes to the outcome of hepatitis B virus infection. J Virol, 2009. 83(19): p. 9652-62.
32. Webster, G.J., et al., Incubation phase of acute hepatitis B in man: dynamic of cellular immune mechanisms. Hepatology, 2000. 32(5): p. 1117-1124.
33. Wieland, S., et al., Genomic analysis of the host response to hepatitis B virus infection. Proc Natl Acad Sci U S A, 2004. 101(17): p. 6669-74.
34. Fletcher, S.P., et al., Identification of an intrahepatic transcriptional signature associated with self‐limiting infection in the woodchuck model of hepatitis B. Hepatology, 2013. 57(1): p. 13-22.
35. Dunn, C., et al., Temporal analysis of early immune responses in patients with acute hepatitis B virus infection. Gastroenterology, 2009. 137(4): p. 1289-300.
36. Su, A.I., et al., Genomic analysis of the host response to hepatitis C virus infection. Proc Natl Acad Sci U S A, 2002. 99(24): p. 15669-74.
37. Mutz, P., et al., HBV bypasses the innate immune response and does not protect HCV from antiviral activity of interferon. Gastroenterology, 2018. 154(6): p. 1791-1804. e22.
38. Cheng, X., et al., Hepatitis B virus evades innate immunity of hepatocytes but activates cytokine production by macrophages. Hepatology, 2017. 66(6): p. 1779-1793.
39. Ouaguia, L., et al., Circulating and hepatic BDCA1+, BDCA2+, and BDCA3+ dendritic cells are differentially subverted in patients with chronic HBV infection. Frontiers in immunology, 2019. 10: p. 112.
40. Suslov, A., et al., Hepatitis B virus does not interfere with innate immune responses in the human liver. Gastroenterology, 2018. 154(6): p. 1778-1790.
41. Yang, G., et al., Innate immunity, inflammation, and intervention in HBV infection. Viruses, 2022. 14(10): p. 2275.
42. Luangsay, S., et al., Early inhibition of hepatocyte innate responses by hepatitis B virus. Journal of hepatology, 2015. 63(6): p. 1314-1322.
43. Lütgehetmann, M., et al., Hepatitis B virus limits response of human hepatocytes to interferon-α in chimeric mice. Gastroenterology, 2011. 140(7): p. 2074-2083. e2.
44. Hosel, M., et al., Not interferon, but interleukin-6 controls early gene expression in hepatitis B virus infection. Hepatology, 2009. 50(6): p. 1773-82.
45. Zhang, Z., et al., Hepatitis B Virus Particles Activate Toll-Like Receptor 2 Signaling Initially Upon Infection of Primary Human Hepatocytes. Hepatology, 2020. 72(3): p. 829-844.
46. Sato, S., et al., The RNA sensor RIG-I dually functions as an innate sensor and direct antiviral factor for hepatitis B virus. Immunity, 2015. 42(1): p. 123-132.
47. Lucifora, J., et al., Control of hepatitis B virus replication by innate response of HepaRG cells. Hepatology, 2010. 51(1): p. 63-72.
48. Cheng, J., et al., Recombinant HBsAg inhibits LPS-induced COX-2 expression and IL-18 production by interfering with the NFκB pathway in a human monocytic cell line, THP-1. Journal of hepatology, 2005. 43(3): p. 465-471.
49. Müller, C. and C.C. Zielinski, Impaired lipopolysaccharide-inducible tumor necrosis factor productionin vitroby peripheral blood monocytes of patients with viral hepatitis. Hepatology, 1990. 12(5): p. 1118-1124.
50. Wang, S., et al., Hepatitis B virus surface antigen selectively inhibits TLR2 ligand–induced IL-12 production in monocytes/macrophages by interfering with JNK activation. The Journal of Immunology, 2013. 190(10): p. 5142-5151.
51. Jochum, C., et al., Immunosuppressive function of hepatitis B antigens in vitro: role of endoribonuclease V as one potential trans inactivator for cytokines in macrophages and human hepatoma cells. Journal of virology, 1990. 64(5): p. 1956-1963.
52. Vanlandschoot, P., et al., Hepatitis B virus surface antigen suppresses the activation of monocytes through interaction with a serum protein and a monocyte-specific receptor. Journal of General Virology, 2002. 83(6): p. 1281-1289.
53. Wu, J., et al., Hepatitis B virus suppresses toll‐like receptor–mediated innate immune responses in murine parenchymal and nonparenchymal liver cells. Hepatology, 2009. 49(4): p. 1132-1140.
54. Chen, Z., et al., Expression profiles and function of Toll-like receptors 2 and 4 in peripheral blood mononuclear cells of chronic hepatitis B patients. Clinical Immunology, 2008. 128(3): p. 400-408.
55. Op den Brouw, M.L., et al., Hepatitis B virus surface antigen impairs myeloid dendritic cell function: a possible immune escape mechanism of hepatitis B virus. Immunology, 2009. 126(2): p. 280-289.
56. Deng, F., et al., Hepatitis B surface antigen suppresses the activation of nuclear factor kappa B pathway via interaction with the TAK1-TAB2 complex. Frontiers in immunology, 2021. 12: p. 618196.
57. Chen, Y., et al., Impaired function of hepatic natural killer cells from murine chronic HBsAg carriers. International immunopharmacology, 2005. 5(13-14): p. 1839-1852.
58. Boltjes, A., et al., Monocytes from chronic HBV patients react in vitro to HBsAg and TLR by producing cytokines irrespective of stage of disease. PLoS One, 2014. 9(5): p. e97006.
59. van Montfoort, N., et al., Hepatitis B virus surface antigen activates myeloid dendritic cells via a soluble CD14-dependent mechanism. Journal of Virology, 2016. 90(14): p. 6187-6199.
60. Visvanathan, K., et al., Regulation of Toll‐like receptor‐2 expression in chronic hepatitis B by the precore protein. Hepatology, 2007. 45(1): p. 102-110.
61. Lang, T., et al., The hepatitis B e antigen (HBeAg) targets and suppresses activation of the toll-like receptor signaling pathway. Journal of hepatology, 2011. 55(4): p. 762-769.
62. Wang, Y., et al., Hepatitis B e antigen inhibits NF-κB activity by interrupting K63-linked ubiquitination of NEMO. Journal of virology, 2019. 93(2): p. 10.1128/jvi. 00667-18.
63. Yu, X., et al., HBV inhibits LPS-induced NLRP3 inflammasome activation and IL-1β production via suppressing the NF-κB pathway and ROS production. Journal of hepatology, 2017. 66(4): p. 693-702.
64. Liu, S., et al., Human hepatitis B virus surface and e antigens inhibit major vault protein signaling in interferon induction pathways. Journal of hepatology, 2015. 62(5): p. 1015-1023.
65. Milich, D.R., et al., Comparative immunogenicity of hepatitis B virus core and E antigens. Journal of immunology (Baltimore, Md.: 1950), 1988. 141(10): p. 3617-3624.
66. Hoofnagle, J., R. Gerety, and L. Barker, Antibody to hepatitis-B-virus core in man. The Lancet, 1973. 302(7834): p. 869-873.
67. Lin, Y.-J., et al., Hepatitis B virus core antigen determines viral persistence in a C57BL/6 mouse model. Proceedings of the National Academy of Sciences, 2010. 107(20): p. 9340-9345.
68. Lin, Y.-J., et al., Hepatitis B virus nucleocapsid but not free core antigen controls viral clearance in mice. Journal of virology, 2012. 86(17): p. 9266-9273.
69. Ferrari, C., et al., Cellular immune response to hepatitis B virus-encoded antigens in acute and chronic hepatitis B virus infection. Journal of immunology (Baltimore, Md.: 1950), 1990. 145(10): p. 3442-3449.
70. Cooper, A., et al., Cytokine induction by the hepatitis B virus capsid in macrophages is facilitated by membrane heparan sulfate and involves TLR2. The Journal of Immunology, 2005. 175(5): p. 3165-3176.
71. Yi, H., et al., Hepatitis B core antigen impairs the polarization while promoting the production of inflammatory cytokines of M2 macrophages via the TLR2 pathway. Frontiers in Immunology, 2020. 11: p. 535.
72. Milich, D.R. and A. McLachlan, The nucleocapsid of hepatitis B virus is both a T-cell-independent and a T-cell-dependent antigen. Science, 1986. 234(4782): p. 1398-1401.
73. Milich, D.R., et al., Role of B cells in antigen presentation of the hepatitis B core. Proceedings of the National Academy of Sciences, 1997. 94(26): p. 14648-14653.
74. Lee, B.O., et al., Interaction of the hepatitis B core antigen and the innate immune system. The Journal of Immunology, 2009. 182(11): p. 6670-6681.
75. Wang, H. and W.-S. Ryu, Hepatitis B virus polymerase blocks pattern recognition receptor signaling via interaction with DDX3: implications for immune evasion. PLoS pathogens, 2010. 6(7): p. e1000986.
76. Liu, D., et al., Hepatitis B virus polymerase suppresses NF-κB signaling by inhibiting the activity of IKKs via interaction with Hsp90β. PLoS One, 2014. 9(3): p. e91658.
77. Liu, Y., et al., Hepatitis B virus polymerase disrupts K63-linked ubiquitination of STING to block innate cytosolic DNA-sensing pathways. Journal of virology, 2015. 89(4): p. 2287-2300.
78. Lei, Q., et al., HBV‐Pol is crucial for HBV‐mediated inhibition of inflammasome activation and IL‐1β production. Liver International, 2019. 39(12): p. 2273-2284.
79. Bouchard, M.J. and R.J. Schneider, The enigmatic X gene of hepatitis B virus. Journal of virology, 2004. 78(23): p. 12725-12734.
80. Xu, L.-G., et al., VISA is an adapter protein required for virus-triggered IFN-β signaling. Molecular cell, 2005. 19(6): p. 727-740.
81. Sengupta, I., et al., Host transcription factor Speckled 110 kDa (Sp110), a nuclear body protein, is hijacked by hepatitis B virus protein X for viral persistence. Journal of Biological Chemistry, 2017. 292(50): p. 20379-20393.
82. Wei, C., et al., The hepatitis B virus X protein disrupts innate immunity by downregulating mitochondrial antiviral signaling protein. The Journal of Immunology, 2010. 185(2): p. 1158-1168.
83. Wang, X., et al., Hepatitis B virus X protein suppresses virus-triggered IRF3 activation and IFN-β induction by disrupting the VISA-associated complex. Cellular & molecular immunology, 2010. 7(5): p. 341-348.
84. Khan, M., et al., Hepatitis B virus-induced parkin-dependent recruitment of linear ubiquitin assembly complex (LUBAC) to mitochondria and attenuation of innate immunity. PLoS Pathogens, 2016. 12(6): p. e1005693.
85. Wang, L., et al., Hepatitis B virus evades immune recognition via RNA adenosine deaminase ADAR1-mediated viral RNA editing in hepatocytes. Cellular & molecular immunology, 2021. 18(8): p. 1871-1882.
86. Kim, G.-W., et al., N6-Methyladenosine modification of hepatitis B and C viral RNAs attenuates host innate immunity via RIG-I signaling. Journal of Biological Chemistry, 2020. 295(37): p. 13123-13133.
87. Lu, H.-L. and F. Liao, Melanoma differentiation–associated gene 5 senses hepatitis B virus and activates innate immune signaling to suppress virus replication. The Journal of Immunology, 2013. 191(6): p. 3264-3276.
88. Guan, Y., et al., Multiple functions of stress granules in viral infection at a glance. Frontiers in Microbiology, 2023. 14: p. 1138864.
89. Aulas, A., et al., G3BP1 promotes stress-induced RNA granule interactions to preserve polyadenylated mRNA. Journal of Cell Biology, 2015. 209(1): p. 73-84.
90. Wek, R., H.-Y. Jiang, and T. Anthony, Coping with stress: eIF2 kinases and translational control. Biochemical Society Transactions, 2006. 34(1): p. 7-11.
91. Marcelo, A., et al., Stress granules, RNA-binding proteins and polyglutamine diseases: too much aggregation? Cell death & disease, 2021. 12(6): p. 592.
92. Wolozin, B. and P. Ivanov, Stress granules and neurodegeneration. Nature Reviews Neuroscience, 2019. 20(11): p. 649-666.
93. Alberti, S., et al., Granulostasis: protein quality control of RNP granules. Frontiers in molecular neuroscience, 2017. 10: p. 84.
94. Wheeler, J.R., et al., Distinct stages in stress granule assembly and disassembly. elife, 2016. 5: p. e18413.
95. Mazroui, R., et al., Inhibition of ribosome recruitment induces stress granule formation independently of eukaryotic initiation factor 2α phosphorylation. Molecular biology of the cell, 2006. 17(10): p. 4212-4219.
96. Wang, B., et al., Liquid–liquid phase separation in human health and diseases. Signal Transduction and Targeted Therapy, 2021. 6(1): p. 290.
97. Shin, Y. and C.P. Brangwynne, Liquid phase condensation in cell physiology and disease. Science, 2017. 357(6357): p. eaaf4382.
98. Banani, S.F., et al., Biomolecular condensates: organizers of cellular biochemistry. Nature reviews Molecular cell biology, 2017. 18(5): p. 285-298.
99. Brangwynne, C.P., et al., Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science, 2009. 324(5935): p. 1729-1732.
100. Li, P., et al., Phase transitions in the assembly of multivalent signalling proteins. Nature, 2012. 483(7389): p. 336-340.
101. Holehouse, A.S. and B.B. Kragelund, The molecular basis for cellular function of intrinsically disordered protein regions. Nature Reviews Molecular Cell Biology, 2024. 25(3): p. 187-211.
102. Holehouse, A.S. and R.V. Pappu, Functional implications of intracellular phase transitions. Biochemistry, 2018. 57(17): p. 2415-2423.
103. Alberti, S., A. Gladfelter, and T. Mittag, Considerations and Challenges in Studying Liquid-Liquid Phase Separation and Biomolecular Condensates. Cell, 2019. 176(3): p. 419-434.
104. Sabari, B.R., et al., Coactivator condensation at super-enhancers links phase separation and gene control. Science, 2018. 361(6400): p. eaar3958.
105. Nozawa, R.S., et al., Nuclear microenvironment in cancer: Control through liquid‐liquid phase separation. Cancer science, 2020. 111(9): p. 3155-3163.
106. Zbinden, A., et al., Phase separation and neurodegenerative diseases: a disturbance in the force. Developmental cell, 2020. 55(1): p. 45-68.
107. Ma, H., et al., Phase separation in innate immune response and inflammation-related diseases. Frontiers in Immunology, 2023. 14: p. 1086192.
108. Hnisz, D., et al., A phase separation model for transcriptional control. Cell, 2017. 169(1): p. 13-23.
109. Noda, N.N., Z. Wang, and H. Zhang, Liquid–liquid phase separation in autophagy. Journal of Cell Biology, 2020. 219(8).
110. Protter, D.S. and R. Parker, Principles and properties of stress granules. Trends in cell biology, 2016. 26(9): p. 668-679.
111. Du, M. and Z.J. Chen, DNA-induced liquid phase condensation of cGAS activates innate immune signaling. Science, 2018. 361(6403): p. 704-709.
112. Yoo, J.-S., et al., DHX36 enhances RIG-I signaling by facilitating PKR-mediated antiviral stress granule formation. PLoS pathogens, 2014. 10(3): p. e1004012.
113. Kim, S.S.-Y., L. Sze, and K.-P. Lam, The stress granule protein G3BP1 binds viral dsRNA and RIG-I to enhance interferon-β response. Journal of Biological Chemistry, 2019. 294(16): p. 6430-6438.
114. Reineke, L.C. and R.E. Lloyd, The stress granule protein G3BP1 recruits protein kinase R to promote multiple innate immune antiviral responses. Journal of virology, 2015. 89(5): p. 2575-2589.
115. Yang, W., et al., G3BP1 inhibits RNA virus replication by positively regulating RIG-I-mediated cellular antiviral response. Cell death & disease, 2019. 10(12): p. 946.
116. Eiermann, N., et al., Dance with the devil: stress granules and signaling in antiviral responses. Viruses, 2020. 12(9): p. 984.
117. Paget, M., et al., Stress granules are shock absorbers that prevent excessive innate immune responses to dsRNA. Molecular cell, 2023. 83(7): p. 1180-1196. e8.
118. Onomoto, K., et al., Critical role of an antiviral stress granule containing RIG-I and PKR in viral detection and innate immunity. PLoS One, 2012. 7(8): p. e43031.
119. Rozelle, D.K., et al., Activation of stress response pathways promotes formation of antiviral granules and restricts virus replication. Molecular and cellular biology, 2014. 34(11): p. 2003-2016.
120. Nikolic, J., et al., Rabies virus infection induces the formation of stress granules closely connected to the viral factories. PLoS Pathogens, 2016. 12(10): p. e1005942.
121. Shang, Z., et al., TRIM25 predominately associates with anti-viral stress granules. Nature Communications, 2024. 15(1): p. 4127.
122. Nakagawa, K., et al., Inhibition of stress granule formation by Middle East respiratory syndrome coronavirus 4a accessory protein facilitates viral translation, leading to efficient virus replication. Journal of virology, 2018. 92(20): p. 10.1128/jvi. 00902-18.
123. Abrahamyan, L.G., et al., Novel Staufen1 ribonucleoproteins prevent formation of stress granules but favour encapsidation of HIV-1 genomic RNA. Journal of cell science, 2010. 123(3): p. 369-383.
124. Zheng, Z.-Q., et al., SARS-CoV-2 nucleocapsid protein impairs stress granule formation to promote viral replication. Cell Discovery, 2021. 7(1): p. 38.
125. Zheng, Y., et al., SARS-CoV-2 NSP5 and N protein counteract the RIG-I signaling pathway by suppressing the formation of stress granules. Signal transduction and targeted therapy, 2022. 7(1): p. 22.
126. Finnen, R.L., et al., The herpes simplex virus 2 virion-associated ribonuclease vhs interferes with stress granule formation. Journal of virology, 2014. 88(21): p. 12727-12739.
127. Finnen, R.L., et al., Herpes simplex virus 2 virion host shutoff endoribonuclease activity is required to disrupt stress granule formation. Journal of virology, 2016. 90(17): p. 7943-7955.
128. Fros, J.J., et al., Chikungunya virus nsP3 blocks stress granule assembly by recruitment of G3BP into cytoplasmic foci. Journal of virology, 2012. 86(19): p. 10873-10879.
129. Hou, S., et al., Zika virus hijacks stress granule proteins and modulates the host stress response. Journal of virology, 2017. 91(16): p. 10.1128/jvi. 00474-17.
130. Parker, F., et al., A Ras-GTPase-activating protein SH3-domain-binding protein. Molecular and cellular biology, 1996.
131. Tourrière, H., et al., Retract and Replace: The RasGAP-associated endoribonuclease G3BP assembles stress granules. Journal of Cell Biology, 2023. 222(11).
132. Sidibé, H., A. Dubinski, and C. Vande Velde, The multi‐functional RNA‐binding protein G3BP1 and its potential implication in neurodegenerative disease. Journal of Neurochemistry, 2021. 157(4): p. 944-962.
133. Yang, P., et al., G3BP1 is a tunable switch that triggers phase separation to assemble stress granules. Cell, 2020. 181(2): p. 325-345. e28.
134. Kedersha, N., et al., G3BP–Caprin1–USP10 complexes mediate stress granule condensation and associate with 40S subunits. Journal of Cell Biology, 2016. 212(7).
135. Ariumi, Y., et al., Hepatitis C virus hijacks P-body and stress granule components around lipid droplets. Journal of virology, 2011. 85(14): p. 6882-6892.
136. White, J.P., et al., Inhibition of cytoplasmic mRNA stress granule formation by a viral proteinase. Cell host & microbe, 2007. 2(5): p. 295-305.
137. Luo, L., et al., SARS-CoV-2 nucleocapsid protein phase separates with G3BPs to disassemble stress granules and facilitate viral production. Science bulletin, 2021. 66(12): p. 1194-1204.
138. Feng, H., et al., Proteomics based identification of cell migration related proteins in HBV expressing HepG2 cells. Plos one, 2014. 9(4): p. e95621.
139. Tsai, K.-N., et al., Doubly spliced RNA of hepatitis B virus suppresses viral transcription via TATA-binding protein and induces stress granule assembly. Journal of virology, 2015. 89(22): p. 11406-11419.
140. Zhang, T., et al., RNA binding protein TIAR modulates HBV replication by tipping the balance of pgRNA translation. Signal Transduction and Targeted Therapy, 2023. 8(1): p. 346.
141. Guseva, S., et al., Measles virus nucleo- and phosphoproteins form liquid-like phase-separated compartments that promote nucleocapsid assembly. Sci Adv, 2020. 6(14): p. eaaz7095.
142. Wang, S., et al., Targeting liquid-liquid phase separation of SARS-CoV-2 nucleocapsid protein promotes innate antiviral immunity by elevating MAVS activity. Nat Cell Biol, 2021. 23(7): p. 718-732.
143. Wei, W., et al., When liquid-liquid phase separation meets viral infections. Front Immunol, 2022. 13: p. 985622.
144. Diab, A., et al., Polo-like-kinase 1 is a proviral host factor for hepatitis B virus replication. Hepatology, 2017. 66(6): p. 1750-1765.
145. Chabrolles, H., et al., Hepatitis B virus Core protein nuclear interactome identifies SRSF10 as a host RNA-binding protein restricting HBV RNA production. PLoS Pathog, 2020. 16(11): p. e1008593.
146. Wu, G., et al., Preclinical characterization of GLS4, an inhibitor of hepatitis B virus core particle assembly. Antimicrob Agents Chemother, 2013. 57(11): p. 5344-54.
147. Burke, J.M., et al., RNase L promotes the formation of unique ribonucleoprotein granules distinct from stress granules. J Biol Chem, 2020. 295(6): p. 1426-1438.
148. Burke, J.M., et al., G3BP1-dependent condensation of translationally inactive viral RNAs antagonizes infection. Sci Adv, 2024. 10(5): p. eadk8152.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95113-
dc.description.abstract先天性免疫系統對於啟動適應性免疫反應以及病毒的清除至關重要。然而,B型肝炎病毒(Hepatitis B virus; HBV)長久以來一直被認為不能夠誘導有效的先天性免疫反應,因此被認為是一種「隱形病毒」。在被B型肝炎病毒感染的成年患者之中,大部分患者體內都能夠檢測到適應性免疫反應,並能有效地在6個月內將病毒清除,這表示作為連接適應性免疫反應橋樑的先天性免疫反應仍應有被病毒感染所誘導。近年來,越來越多病毒被證明能夠在宿主體內誘發壓力顆粒(Stress granule)的形成,許多病毒蛋白或核酸也被發現會與壓力顆粒中的分子交互作用,而壓力顆粒的產生與某些病毒誘導的先天性免疫反應具有一定關係。雖然目前有一些間接證據顯示B型肝炎病毒可能具有誘發壓力顆粒產生的能力,但對於B型肝炎病毒與壓力顆粒之間相關性的研究仍較為缺乏,因此本研究的目的在於探討B型肝炎病毒與壓力顆粒形成以及先天性免疫反應之間的關聯性,我們假設在B型肝炎病毒存在的情況下,宿主細胞會形成壓力顆粒並介導B型肝炎病毒誘發的先天性免疫反應,我們亦假設具有高度免疫原性的HBV核心蛋白(HBV core protein)會參與在HBV誘發壓力顆粒生成的機制當中。
在本研究中,我們利用可穩定表達HBV genotype D的HepAD38細胞株以及轉染 HBV genotype A質體的人類肝炎細胞株Huh7作為我們實驗的細胞株;同時也利用對細胞中壓力顆粒的標記蛋白G3BP1進行染色來確立壓力顆粒的生成。我們首先透過施加不同濃度以及時間的偏亞砷酸鈉(Sodium arsenite; NaAsO2)給予細胞氧化壓力,以建立可於細胞中穩定形成壓力顆粒的positive control,並篩選了適合對細胞中HBV抗原進行染色的抗體。接著我們觀察了在不同誘導天數的HepAD38中壓力顆粒的形成情形。我們觀察到在大多數細胞中,壓力顆粒並不會隨著HBV誘導天數的增加而產生,我們僅在誘導後第4、6、8天的少量細胞中觀察到些許壓力顆粒的產生,此外我們欲透過在誘導HBV產生的HepAD38細胞中添加偏亞砷酸鈉來觀察HBV核心蛋白以及壓力顆粒的共定位。然而,我們所使用的S162NP rabbit anti-HBc抗體並無法在誘導的天數中有效地對HBV核心蛋白進行染色,因此無法觀察到其在細胞中的分布及定位;有趣的是,利用偏亞砷酸鈉所誘導的壓力顆粒並沒有因為HBV的產生而受到影響,這可能表明genotype D的HBV無法穩定地誘導細胞中壓力顆粒的產生,並且也不會抑制由氧化壓力所造成的壓力顆粒形成。我們接下來透過轉染pAAV/HBV1.2 genotye A質體後不同天數的Huh7觀察不同基因型的HBV是否在誘導壓力顆粒上具有差異,結果顯示不論是在轉染pAAV質體或是在轉染pAAV/HBV1.2 genotype A質體的Huh7細胞中皆沒有觀察到壓力顆粒的產生,表明Genotype A的HBV在轉染的模式上並不會誘導壓力顆粒的生成。最後我們假設HBV可能含有潛在的機制去抑制壓力顆粒形成,因此我們透過轉染帶有不同突變的pAAV/HBV1.2 genotye A質體來觀察特定的HBV蛋白(HBc、HBe和HBx)的缺失和結構改變或是spliced RNAs的缺失是否會誘導壓力顆粒的生成,或是利用給予細胞core protein allosteric modulators(CpAM)檢視nucleocapsid的完整性對於壓力顆粒的形成是否具有影響,結果顯示特定HBV蛋白及spliced RNAs或是nucleocapsid的完整性皆與壓力顆粒的抑制或形成無關聯。總結以上,我們發現HBV可能無法於細胞模式中普遍地誘導壓力顆粒,但特定HBV蛋白(HBc、HBe和HBx)或是spliced RNAs也不具有抑制細胞中的壓力顆粒生成的機制,表示HBV所誘導的免疫反應可能是獨立於壓力顆粒的,因此HBV與先天性免疫反應之間的關係仍須要進一步探討及釐清。
zh_TW
dc.description.abstractInnate immune system are crucial for initiating adaptive immune responses and the subsequent clearance of viruses. Hepatitis B virus (HBV) has long been considered an "invisible virus" as it is thought to be incapable of inducing effective innate immune responses. However, most adult patients infected with HBV exhibit adaptive immune responses that effectively clear the virus within six months, suggesting that the innate immune response, which bridges to adaptive immunity, must still be induced during HBV infection. Recent studies have shown that many viruses can induce the formation of stress granules in host cells, with various viral proteins or nucleic acids interacting with molecules within these membraneless organelles. The formation of stress granules is associated with certain virus-induced innate immune responses. Although some indirect evidence suggests that HBV may induce stress granule formation, research on the relationship between HBV and stress granules remains limited. Therefore, the aim of this study is to investigate the association between HBV, stress granule formation, and innate immune responses. We hypothesize that in the presence of HBV, host cells will form stress granules that mediate HBV-induced innate immune responses. We also propose that the highly immunogenic HBV core protein involves in the mechanism of stress granule formation.
In this study, we used the HepAD38 cell line, which stably expresses HBV genotype D, and the Huh7 human hepatoma cell line transfected with HBV genotype A plasmids as our experimental cell models. We also utilized staining for the stress granule marker protein G3BP1 to investigate stress granule formation. First, we applied sodium arsenite (NaAsO2) at various concentrations and durations to induce oxidative stress in cells, establishing a positive control for stable stress granule formation. We then screened for antibodies suitable for staining HBV antigens within the cells. Subsequently, we observed the formation of stress granules in HepAD38 cells at various induction days. We found that stress granules did not form with increasing HBV induction days in most cells; only a few cells showed stress granule formation on days 4, 6, and 8 post-induction. Additionally, we aimed to observe the co-localization of the HBV core protein and stress granules by adding sodium arsenite to HepAD38 cells producing HBV. However, the S162NP antibody we used did not effectively stain the HBV core protein during the induction days, making it impossible to observe its distribution and localization within the cells. Interestingly, the stress granules induced by sodium arsenite were not affected by the presence of HBV, suggesting that HBV genotype D does not stably induce stress granule formation and does not inhibit stress granules formed by oxidative stress.
Next, we observed whether different HBV genotypes differ in inducing stress granules by transfecting Huh7 cells with the pAAV/HBV1.2 genotype A plasmid. The results showed that stress granules did not form in Huh7 cells transfected with either pAAV vectors or pAAV/HBV1.2 genotype A plasmids, indicating that genotype A HBV does not induce stress granule formation in the transfection model. Finally, we hypothesized that HBV might have mechanisms to inhibit stress granule formation. To test this, we transfected cells with pAAV/HBV1.2 genotype A plasmids containing various mutations to examine whether the deletion or structural alteration of specific HBV proteins (HBc, HBe, and HBx) or the absence of spliced RNAs would induce stress granule formation. Additionally, we assessed the impact of nucleocapsid integrity on stress granule formation by treating the cells with core protein allosteric modulators (CpAM). Our results indicated that neither specific HBV proteins, spliced RNAs, nor nucleocapsid integrity were associated with the suppression or formation of stress granules. In summary, we found that HBV may not generally induce stress granules in cellular models. However, specific HBV proteins (HBc, HBe, and HBx) or spliced RNAs also do not appear to possess mechanisms that inhibit the formation of stress granules in cells. This suggests that the immune response induced by HBV may be independent of stress granules, indicating that the relationship between HBV and the innate immune response requires further investigation and clarification.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-28T16:19:50Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-28T16:19:50Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract iv
Table of contents vii
LIST OF FIGURES x
CHAPTER I: Introduction 1
1.1 Hepatitis B virus (HBV) 1
1.1.1 Introduction of HBV 1
1.2.1 The structure and genome of HBV 2
1.3.1 HBV lifecycle (Fig 1A) 3
1.2 HBV and Innate immune response 4
1.2.1 Innate immune response 4
1.2.2 Innate immune response of HBV 6
1.2.3 HBV surface antigen and innate immune response 8
1.2.5 HBV core antigen and innate immune response 10
1.2.6 HBV polymerase and innate immune response 11
1.2.7 HBV x antigen and immune response 12
1.2.8 HBV nucleic acids and immune response 14
1.3 Stress granules (SGs) 15
1.3.1 Introduction of stress granule 15
1.3.2 Liquid-liquid phase separation (LLPS) 16
1.3.3 The interaction between stress granule and virus 18
1.3.4 Ras GTPase-activating protein-binding protein 1 (G3BP1) 21
1.4 HBV and stress granule 22
1.5 Hypothesis and Aim 23
CHAPTER II: Materials and methods 25
2.1 Cell culture 25
2.2 Measurement of HBeAg and HBsAg in culture supernatant 25
2.3 Protein analysis 25
2.3.1 Protein extraction 25
2.3.2 Protein quantitative 26
2.3.3 Protein samples preparation 26
2.3.4 Electrophoresis 27
2.5 Plasmid extraction (Mini) 28
2.6 Plasmid extraction (Maxi) 29
2.7 Virus DNA extraction 30
2.8 Quantitative PCR (qPCR) detect HBV DNA detection 31
2.9 Transfection 32
2.10 Fluorescence microscope 33
CHAPTER III: Results 35
3.1 The C-terminal domain (CTD) of HBc exhibits characteristics of intrinsically disordered regions (IDRs) 35
3.2 Establishment of a positive control for stress granule formation in HepAD38 and Huh7 cell lines 36
3.3 HBV genotype D does not generally induce or affect stress granule formation in HepAD38 cells 37
3.4 HBV genotype A does not generally induce stress granule formation in Huh7 cells 40
3.5 HBV proteins and splice RNA are not related to stress granules 41
3.6 The capsid structure is not related to stress granules 42
CHAPTER IV: Conclusion and Discussion 44
References 86
-
dc.language.isoen-
dc.titleB型肝炎病毒核心蛋白與壓力顆粒形成和先天性免疫反應之關聯性zh_TW
dc.titleHepatitis B virus core protein in stress granules formation and innate immune responsesen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee葉秀慧;黃麗蓉zh_TW
dc.contributor.oralexamcommitteeShiou-Hwei Yeh;Li-Rung Huangen
dc.subject.keyword先天性免疫反應,B型肝炎病毒,壓力顆粒,HBV核心蛋白,zh_TW
dc.subject.keywordInnate immune response,Hepatitis B virus (HBV),Stress granule (SG),HBV core protein (HBc),en
dc.relation.page95-
dc.identifier.doi10.6342/NTU202403971-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-08-
dc.contributor.author-college醫學院-
dc.contributor.author-dept微生物學研究所-
dc.date.embargo-lift2026-08-01-
Appears in Collections:微生物學科所

Files in This Item:
File SizeFormat 
ntu-112-2.pdf
  Until 2026-08-01
5.62 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved