Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95112
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊雅倩zh_TW
dc.contributor.advisorYa-Chien Yangen
dc.contributor.author湯于萱zh_TW
dc.contributor.authorYu-Hsuan Tangen
dc.date.accessioned2024-08-28T16:19:32Z-
dc.date.available2024-08-29-
dc.date.copyright2024-08-28-
dc.date.issued2024-
dc.date.submitted2024-08-05-
dc.identifier.citation1. Dalal, N., et al., Omics technologies for improved diagnosis and treatment of colorectal cancer: Technical advancement and major perspectives. Biomed Pharmacother, 2020. 131: p. 110648.
2. Carethers, J.M. and B.H. Jung, Genetics and Genetic Biomarkers in Sporadic Colorectal Cancer. Gastroenterology, 2015. 149(5): p. 1177-1190 e3.
3. De Rosa, M., et al., Genetics, diagnosis and management of colorectal cancer (Review). Oncol Rep, 2015. 34(3): p. 1087-96.
4. ML, D.E.M., et al., Desmoid Tumors in Familial Adenomatous Polyposis. Anticancer Res, 2017. 37(7): p. 3357-3366.
5. Steinke, V., et al., Hereditary nonpolyposis colorectal cancer (HNPCC)/Lynch syndrome. Dtsch Arztebl Int, 2013. 110(3): p. 32-8.
6. Sinicrope, F.A., Lynch Syndrome-Associated Colorectal Cancer. N Engl J Med, 2018. 379(8): p. 764-773.
7. Stidham, R.W. and P.D.R. Higgins, Colorectal Cancer in Inflammatory Bowel Disease. Clin Colon Rectal Surg, 2018. 31(3): p. 168-178.
8. Smit, W.L., et al., Driver mutations of the adenoma-carcinoma sequence govern the intestinal epithelial global translational capacity. Proc Natl Acad Sci U S A, 2020. 117(41): p. 25560-25570.
9. Kuipers, E.J., et al., Colorectal cancer. Nat Rev Dis Primers, 2015. 1: p. 15065.
10. Pino, M.S. and D.C. Chung, The chromosomal instability pathway in colon cancer. Gastroenterology, 2010. 138(6): p. 2059-72.
11. Nguyen, H.T. and H.Q. Duong, The molecular characteristics of colorectal cancer: Implications for diagnosis and therapy. Oncol Lett, 2018. 16(1): p. 9-18.
12. Garrido-Ramos, M.A., Satellite DNA: An Evolving Topic. Genes (Basel), 2017. 8(9).
13. Boland, C.R. and A. Goel, Microsatellite instability in colorectal cancer. Gastroenterology, 2010. 138(6): p. 2073-2087 e3.
14. Nojadeh, J.N., S. Behrouz Sharif, and E. Sakhinia, Microsatellite instability in colorectal cancer. EXCLI J, 2018. 17: p. 159-168.
15. Kang, S., et al., The significance of microsatellite instability in colorectal cancer after controlling for clinicopathological factors. Medicine (Baltimore), 2018. 97(9): p. e0019.
16. Toyota, M., et al., CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci U S A, 1999. 96(15): p. 8681-6.
17. Jia, M., et al., Different definitions of CpG island methylator phenotype and outcomes of colorectal cancer: a systematic review. Clin Epigenetics, 2016. 8: p. 25.
18. Nazemalhosseini Mojarad, E., et al., The CpG island methylator phenotype (CIMP) in colorectal cancer. Gastroenterol Hepatol Bed Bench, 2013. 6(3): p. 120-8.
19. Weiser, M.R., AJCC 8th Edition: Colorectal Cancer. Ann Surg Oncol, 2018. 25(6): p. 1454-1455.
20. Guinney, J., et al., The consensus molecular subtypes of colorectal cancer. Nat Med, 2015. 21(11): p. 1350-6.
21. Shimoda, Y. and K. Watanabe, Contactins: emerging key roles in the development and function of the nervous system. Cell Adh Migr, 2009. 3(1): p. 64-70.
22. Zuko, A., et al., Contactins: structural aspects in relation to developmental functions in brain disease. Adv Protein Chem Struct Biol, 2011. 84: p. 143-80.
23. Bizzoca, A., P. Corsi, and G. Gennarini, The mouse F3/contactin glycoprotein: structural features, functional properties and developmental significance of its regulated expression. Cell Adh Migr, 2009. 3(1): p. 53-63.
24. Falk, J., et al., F3/contactin, a neuronal cell adhesion molecule implicated in axogenesis and myelination. Biol Cell, 2002. 94(6): p. 327-34.
25. Yoshihara, Y., et al., Overlapping and differential expression of BIG-2, BIG-1, TAG-1, and F3: four members of an axon-associated cell adhesion molecule subgroup of the immunoglobulin superfamily. J Neurobiol, 1995. 28(1): p. 51-69.
26. Oguro-Ando, A., et al., Cntn4, a risk gene for neuropsychiatric disorders, modulates hippocampal synaptic plasticity and behavior. Transl Psychiatry, 2021. 11(1): p. 106.
27. Kamei, Y., et al., Human NB-2 of the contactin subgroup molecules: chromosomal localization of the gene (CNTN5) and distinct expression pattern from other subgroup members. Genomics, 2000. 69(1): p. 113-9.
28. Mimmack, M.L., et al., A novel splice variant of the cell adhesion molecule BIG-2 is expressed in the olfactory and vomeronasal neuroepithelia. Brain Res Mol Brain Res, 1997. 47(1-2): p. 345-50.
29. Mayor, S. and H. Riezman, Sorting GPI-anchored proteins. Nat Rev Mol Cell Biol, 2004. 5(2): p. 110-20.
30. Fernandez, T., et al., Disruption of contactin 4 (CNTN4) results in developmental delay and other features of 3p deletion syndrome. Am J Hum Genet, 2004. 74(6): p. 1286-93.
31. Kirov, G., CNVs in neuropsychiatric disorders. Hum Mol Genet, 2015. 24(R1): p. R45-9.
32. Torres, F., M. Barbosa, and P. Maciel, Recurrent copy number variations as risk factors for neurodevelopmental disorders: critical overview and analysis of clinical implications. J Med Genet, 2016. 53(2): p. 73-90.
33. Hansford, L.M., et al., Cloning and characterization of the human neural cell adhesion molecule, CNTN4 (alias BIG-2). Cytogenet Genome Res, 2003. 101(1): p. 17-23.
34. Manderson, E.N., et al., Molecular genetic analysis of a cell adhesion molecule with homology to L1CAM, contactin 6, and contactin 4 candidate chromosome 3p26pter tumor suppressor genes in ovarian cancer. Int J Gynecol Cancer, 2009. 19(4): p. 513-25.
35. Yete, S., S. Pradhan, and D. Saranath, Single nucleotide polymorphisms in an Indian cohort and association of CNTN4, MMP2 and SNTB1 variants with oral cancer. Cancer Genet, 2017. 214-215: p. 16-25.
36. Evenepoel, L., et al., Expression of Contactin 4 Is Associated With Malignant Behavior in Pheochromocytomas and Paragangliomas. J Clin Endocrinol Metab, 2018. 103(1): p. 46-55.
37. Sjoblom, T., et al., The consensus coding sequences of human breast and colorectal cancers. Science, 2006. 314(5797): p. 268-74.
38. Masson, A.L., et al., Copy number variation in hereditary non-polyposis colorectal cancer. Genes (Basel), 2013. 4(4): p. 536-55.
39. Tsai, M.H., et al., Mapping of genetic deletions on chromosome 3 in colorectal cancer: loss of 3p25-pter is associated with distant metastasis and poor survival. Ann Surg Oncol, 2011. 18(9): p. 2662-70.
40. Lee, J.-X., Search for colorectal cancer-associated tumor suppressor genes at chromosome 3p25.1-p26.3., in Search for colorectal cancer-associated tumor suppressor genes at chromosome 3p25.1-p26.3. 2013, 國立臺灣大學醫學檢驗暨生物技術學研究所.
41. Chiang, S.-Y., Study of tumor suppressor functions of contactin 4 in colorectal cancer., in Study of tumor suppressor functions of contactin 4 in colorectal cancer. 2015, 國立臺灣大學醫學檢驗暨生物技術學研究所.
42. Hsu, Y.-H., Study of tumor suppressor functions of soluble Contactin 4 in colorectal cancer, in Study of tumor suppressor functions of soluble Contactin 4 in colorectal cancer. 2018, 國立臺灣大學醫學檢驗暨生物技術學研究所.
43. Xiao, Y.-X., Study of Contactin 4-modulated pro-angiogenic factor uPA expression in colorectal cancer and expression of secretory Contactin 4 protein., in Study of Contactin 4-modulated pro-angiogenic factor uPA expression in colorectal cancer and expression of secretory Contactin 4 protein. 2017, 國立臺灣大學醫學檢驗暨生物技術學研究所.
44. Chen, P.-L., Study of Contactin 4 – mediated changes in cellular energy metabolism in colorectal cancer, in Study of Contactin 4 – mediated changes in cellular energy metabolism in colorectal cancer. 2019, 國立臺灣大學醫學檢驗暨生物技術學研究所.
45. Lin, I.-C., Study of contactin 4-mediated molecular mechanism in colorectal cancer, in Study of contactin 4-mediated molecular mechanism in colorectal cancer. 2020, 國立臺灣大學醫學檢驗暨生物技術學研究所.
46. Bretones, G., M.D. Delgado, and J. Leon, Myc and cell cycle control. Biochim Biophys Acta, 2015. 1849(5): p. 506-16.
47. Lee, H.-T., Study of the molecular mechanisms underlying Contactin 4-mediated tumor suppression in colorectal cancer, in Study of the molecular mechanisms underlying Contactin 4-mediated tumor suppression in colorectal cancer. 2022, 國立臺灣大學醫學檢驗暨生物技術學研究所.
48. Boni, C., C. Laudanna, and C. Sorio, A Comprehensive Review of Receptor-Type Tyrosine-Protein Phosphatase Gamma (PTPRG) Role in Health and Non-Neoplastic Disease. Biomolecules, 2022. 12(1).
49. Boni, C. and C. Sorio, The Role of the Tumor Suppressor Gene Protein Tyrosine Phosphatase Gamma in Cancer. Front Cell Dev Biol, 2021. 9: p. 768969.
50. Kastury, K., et al., Structure of the human receptor tyrosine phosphatase gamma gene (PTPRG) and relation to the familial RCC t(3;8) chromosome translocation. Genomics, 1996. 32(2): p. 225-35.
51. Shu, S.T., et al., Function and regulatory mechanisms of the candidate tumor suppressor receptor protein tyrosine phosphatase gamma (PTPRG) in breast cancer cells. Anticancer Res, 2010. 30(6): p. 1937-46.
52. Cheung, A.K., et al., PTPRG suppresses tumor growth and invasion via inhibition of Akt signaling in nasopharyngeal carcinoma. Oncotarget, 2015. 6(15): p. 13434-47.
53. Wang, Z., et al., Mutational analysis of the tyrosine phosphatome in colorectal cancers. Science, 2004. 304(5674): p. 1164-6.
54. van Roon, E.H., et al., Tumour-specific methylation of PTPRG intron 1 locus in sporadic and Lynch syndrome colorectal cancer. Eur J Hum Genet, 2011. 19(3): p. 307-12.
55. Bouyain, S. and D.J. Watkins, The protein tyrosine phosphatases PTPRZ and PTPRG bind to distinct members of the contactin family of neural recognition molecules. Proc Natl Acad Sci U S A, 2010. 107(6): p. 2443-8.
56. Barr, A.J., et al., Large-scale structural analysis of the classical human protein tyrosine phosphatome. Cell, 2009. 136(2): p. 352-63.
57. Nikolaienko, R.M., et al., Structural Basis for Interactions Between Contactin Family Members and Protein-tyrosine Phosphatase Receptor Type G in Neural Tissues. J Biol Chem, 2016. 291(41): p. 21335-21349.
58. Murphrey, M.B., L. Quaim, and M. Varacallo, Biochemistry, Epidermal Growth Factor Receptor, in StatPearls. 2022: Treasure Island (FL).
59. Ferguson, K.M., Structure-based view of epidermal growth factor receptor regulation. Annu Rev Biophys, 2008. 37: p. 353-73.
60. Seshacharyulu, P., et al., Targeting the EGFR signaling pathway in cancer therapy. Expert Opin Ther Targets, 2012. 16(1): p. 15-31.
61. Schlessinger, J., Cell signaling by receptor tyrosine kinases. Cell, 2000. 103(2): p. 211-25.
62. Tan, X., et al., Stress-Induced EGFR Trafficking: Mechanisms, Functions, and Therapeutic Implications. Trends Cell Biol, 2016. 26(5): p. 352-366.
63. Sigismund, S., D. Avanzato, and L. Lanzetti, Emerging functions of the EGFR in cancer. Mol Oncol, 2018. 12(1): p. 3-20.
64. Talukdar, S., et al., EGFR: An essential receptor tyrosine kinase-regulator of cancer stem cells. Adv Cancer Res, 2020. 147: p. 161-188.
65. Wee, P. and Z. Wang, Epidermal Growth Factor Receptor Cell Proliferation Signaling Pathways. Cancers (Basel), 2017. 9(5).
66. Scaltriti, M. and J. Baselga, The epidermal growth factor receptor pathway: a model for targeted therapy. Clin Cancer Res, 2006. 12(18): p. 5268-72.
67. Koveitypour, Z., et al., Signaling pathways involved in colorectal cancer progression. Cell Biosci, 2019. 9: p. 97.
68. Bonamy, C., et al., Expression of the human antimicrobial peptide beta-defensin-1 is repressed by the EGFR-ERK-MYC axis in colonic epithelial cells. Sci Rep, 2018. 8(1): p. 18043.
69. He, W.L., et al., Association Between c-Myc and Colorectal Cancer Prognosis: A Meta-Analysis. Front Physiol, 2018. 9: p. 1549.
70. Hu, T. and C. Li, Convergence between Wnt-beta-catenin and EGFR signaling in cancer. Mol Cancer, 2010. 9: p. 236.
71. Jeong, W.J., E.J. Ro, and K.Y. Choi, Interaction between Wnt/beta-catenin and RAS-ERK pathways and an anti-cancer strategy via degradations of beta-catenin and RAS by targeting the Wnt/beta-catenin pathway. NPJ Precis Oncol, 2018. 2(1): p. 5.
72. Shang, S., F. Hua, and Z.W. Hu, The regulation of beta-catenin activity and function in cancer: therapeutic opportunities. Oncotarget, 2017. 8(20): p. 33972-33989.
73. Rennoll, S. and G. Yochum, Regulation of MYC gene expression by aberrant Wnt/beta-catenin signaling in colorectal cancer. World J Biol Chem, 2015. 6(4): p. 290-300.
74. Napolitano, S., et al., Targeting the EGFR signalling pathway in metastatic colorectal cancer. Lancet Gastroenterol Hepatol, 2024. 9(7): p. 664-676.
75. Ciardiello, F. and G. Tortora, EGFR antagonists in cancer treatment. N Engl J Med, 2008. 358(11): p. 1160-74.
76. Chen, J., et al., Expression and Function of the Epidermal Growth Factor Receptor in Physiology and Disease. Physiol Rev, 2016. 96(3): p. 1025-1069.
77. Cheng, W.L., et al., The Role of EREG/EGFR Pathway in Tumor Progression. Int J Mol Sci, 2021. 22(23).
78. Normanno, N., et al., Implications for KRAS status and EGFR-targeted therapies in metastatic CRC. Nat Rev Clin Oncol, 2009. 6(9): p. 519-27.
79. Grothey, A., M. Fakih, and J. Tabernero, Management of BRAF-mutant metastatic colorectal cancer: a review of treatment options and evidence-based guidelines. Ann Oncol, 2021. 32(8): p. 959-967.
80. Barras, D., et al., BRAF V600E Mutant Colorectal Cancer Subtypes Based on Gene Expression. Clin Cancer Res, 2017. 23(1): p. 104-115.
81. Whitman, M., et al., Association of phosphatidylinositol kinase activity with polyoma middle-T competent for transformation. Nature, 1985. 315(6016): p. 239-42.
82. Thorpe, L.M., H. Yuzugullu, and J.J. Zhao, PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Nat Rev Cancer, 2015. 15(1): p. 7-24.
83. Duncan, L., C. Shay, and Y. Teng, PI3K Isoform-Selective Inhibitors in Cancer. Adv Exp Med Biol, 2020. 1255: p. 165-173.
84. Fry, M.J., Structure, regulation and function of phosphoinositide 3-kinases. Biochim Biophys Acta, 1994. 1226(3): p. 237-68.
85. Escobedo, J.A., et al., cDNA cloning of a novel 85 kd protein that has SH2 domains and regulates binding of PI3-kinase to the PDGF beta-receptor. Cell, 1991. 65(1): p. 75-82.
86. Kapeller, R. and L.C. Cantley, Phosphatidylinositol 3-kinase. Bioessays, 1994. 16(8): p. 565-76.
87. Samuels, Y. and T. Waldman, Oncogenic mutations of PIK3CA in human cancers. Curr Top Microbiol Immunol, 2010. 347: p. 21-41.
88. Cantley, L.C., The phosphoinositide 3-kinase pathway. Science, 2002. 296(5573): p. 1655-7.
89. Maehama, T. and J.E. Dixon, The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem, 1998. 273(22): p. 13375-8.
90. Engelman, J.A., J. Luo, and L.C. Cantley, The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet, 2006. 7(8): p. 606-19.
91. Samuels, Y., et al., High frequency of mutations of the PIK3CA gene in human cancers. Science, 2004. 304(5670): p. 554.
92. Sarbassov, D.D., et al., Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science, 2005. 307(5712): p. 1098-101.
93. Manning, B.D. and A. Toker, AKT/PKB Signaling: Navigating the Network. Cell, 2017. 169(3): p. 381-405.
94. Weigelt, B. and J. Downward, Genomic Determinants of PI3K Pathway Inhibitor Response in Cancer. Front Oncol, 2012. 2: p. 109.
95. Fruman, D.A., et al., The PI3K Pathway in Human Disease. Cell, 2017. 170(4): p. 605-635.
96. Erdogan, F., et al., JAK-STAT core cancer pathway: An integrative cancer interactome analysis. J Cell Mol Med, 2022. 26(7): p. 2049-2062.
97. Schindler, C. and J.E. Darnell, Jr., Transcriptional responses to polypeptide ligands: the JAK-STAT pathway. Annu Rev Biochem, 1995. 64: p. 621-51.
98. Shuai, K., et al., Interferon activation of the transcription factor Stat91 involves dimerization through SH2-phosphotyrosyl peptide interactions. Cell, 1994. 76(5): p. 821-8.
99. Darnell, J.E., Jr., I.M. Kerr, and G.R. Stark, Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science, 1994. 264(5164): p. 1415-21.
100. Yu, H., D. Pardoll, and R. Jove, STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer, 2009. 9(11): p. 798-809.
101. Xue, C., et al., Evolving cognition of the JAK-STAT signaling pathway: autoimmune disorders and cancer. Signal Transduct Target Ther, 2023. 8(1): p. 204.
102. Zhong, Z., Z. Wen, and J.E. Darnell, Jr., Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science, 1994. 264(5155): p. 95-8.
103. Pandey, R., M. Bakay, and H. Hakonarson, SOCS-JAK-STAT inhibitors and SOCS mimetics as treatment options for autoimmune uveitis, psoriasis, lupus, and autoimmune encephalitis. Front Immunol, 2023. 14: p. 1271102.
104. Yu, H., M. Kortylewski, and D. Pardoll, Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat Rev Immunol, 2007. 7(1): p. 41-51.
105. Luu, H.H., et al., Wnt/beta-catenin signaling pathway as a novel cancer drug target. Curr Cancer Drug Targets, 2004. 4(8): p. 653-71.
106. Bian, J., et al., Transcriptional Regulation of Wnt/beta-Catenin Pathway in Colorectal Cancer. Cells, 2020. 9(9).
107. Kobayashi, M., et al., Nuclear translocation of beta-catenin in colorectal cancer. Br J Cancer, 2000. 82(10): p. 1689-93.
108. Nusse, R. and H. Clevers, Wnt/beta-Catenin Signaling, Disease, and Emerging Therapeutic Modalities. Cell, 2017. 169(6): p. 985-999.
109. Valenta, T., G. Hausmann, and K. Basler, The many faces and functions of beta-catenin. EMBO J, 2012. 31(12): p. 2714-36.
110. Chae, W.J. and A.L.M. Bothwell, Canonical and Non-Canonical Wnt Signaling in Immune Cells. Trends Immunol, 2018. 39(10): p. 830-847.
111. Katoh, M., Canonical and non-canonical WNT signaling in cancer stem cells and their niches: Cellular heterogeneity, omics reprogramming, targeted therapy and tumor plasticity (Review). Int J Oncol, 2017. 51(5): p. 1357-1369.
112. Kaidi, A., A.C. Williams, and C. Paraskeva, Interaction between beta-catenin and HIF-1 promotes cellular adaptation to hypoxia. Nat Cell Biol, 2007. 9(2): p. 210-7.
113. Manolagas, S.C. and M. Almeida, Gone with the Wnts: beta-catenin, T-cell factor, forkhead box O, and oxidative stress in age-dependent diseases of bone, lipid, and glucose metabolism. Mol Endocrinol, 2007. 21(11): p. 2605-14.
114. Leppa, S., et al., Differential regulation of c-Jun by ERK and JNK during PC12 cell differentiation. EMBO J, 1998. 17(15): p. 4404-13.
115. Wu, G.Y., K. Deisseroth, and R.W. Tsien, Activity-dependent CREB phosphorylation: convergence of a fast, sensitive calmodulin kinase pathway and a slow, less sensitive mitogen-activated protein kinase pathway. Proc Natl Acad Sci U S A, 2001. 98(5): p. 2808-13.
116. Saxton, R.A. and D.M. Sabatini, mTOR Signaling in Growth, Metabolism, and Disease. Cell, 2017. 168(6): p. 960-976.
117. Nave, B.T., et al., Mammalian target of rapamycin is a direct target for protein kinase B: identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation. Biochem J, 1999. 344 Pt 2(Pt 2): p. 427-31.
118. Holz, M.K., et al., mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. Cell, 2005. 123(4): p. 569-80.
119. Gingras, A.C., et al., Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism. Genes Dev, 1999. 13(11): p. 1422-37.
120. Musa, J., et al., Eukaryotic initiation factor 4E-binding protein 1 (4E-BP1): a master regulator of mRNA translation involved in tumorigenesis. Oncogene, 2016. 35(36): p. 4675-88.
121. Krejci, P., et al., Receptor tyrosine kinases activate canonical WNT/beta-catenin signaling via MAP kinase/LRP6 pathway and direct beta-catenin phosphorylation. PLoS One, 2012. 7(4): p. e35826.
122. Lee, S.K., J.H. Hwang, and K.Y. Choi, Interaction of the Wnt/beta-catenin and RAS-ERK pathways involving co-stabilization of both beta-catenin and RAS plays important roles in the colorectal tumorigenesis. Adv Biol Regul, 2018. 68: p. 46-54.
123. Wang, W., et al., Action and function of Wnt/beta-catenin signaling in the progression from chronic hepatitis C to hepatocellular carcinoma. J Gastroenterol, 2017. 52(4): p. 419-431.
124. Kim, B.K., et al., PI3K/AKT/beta-Catenin Signaling Regulates Vestigial-Like 1 Which Predicts Poor Prognosis and Enhances Malignant Phenotype in Gastric Cancer. Cancers (Basel), 2019. 11(12).
125. Wang, K., et al., MiR-148a-3p attenuates apoptosis and inflammation by targeting CNTN4 in atherosclerosis. Ann Transl Med, 2022. 10(22): p. 1201.
126. Drosten, M. and M. Barbacid, Targeting the MAPK Pathway in KRAS-Driven Tumors. Cancer Cell, 2020. 37(4): p. 543-550.
127. Romagnoli, A., et al., Control of the eIF4E activity: structural insights and pharmacological implications. Cell Mol Life Sci, 2021. 78(21-22): p. 6869-6885.
128. Braunstein, S., et al., A hypoxia-controlled cap-dependent to cap-independent translation switch in breast cancer. Mol Cell, 2007. 28(3): p. 501-12.
129. Tameire, F., et al., ATF4 couples MYC-dependent translational activity to bioenergetic demands during tumour progression. Nat Cell Biol, 2019. 21(7): p. 889-899.
130. Hamilton, T.L., et al., TOPs and their regulation. Biochem Soc Trans, 2006. 34(Pt 1): p. 12-6.
131. Faivre, S., G. Kroemer, and E. Raymond, Current development of mTOR inhibitors as anticancer agents. Nat Rev Drug Discov, 2006. 5(8): p. 671-88.
132. Populo, H., J.M. Lopes, and P. Soares, The mTOR signalling pathway in human cancer. Int J Mol Sci, 2012. 13(2): p. 1886-1918.
133. Waldner, M.J., S. Foersch, and M.F. Neurath, Interleukin-6--a key regulator of colorectal cancer development. Int J Biol Sci, 2012. 8(9): p. 1248-53.
134. Lee, Y.S., et al., Interleukin-8 and its receptor CXCR2 in the tumour microenvironment promote colon cancer growth, progression and metastasis. Br J Cancer, 2012. 106(11): p. 1833-41.
135. Karuppan, S.J., et al., Members of the vertebrate contactin and amyloid precursor protein families interact through a conserved interface. J Biol Chem, 2022. 298(2): p. 101541.
136. Bamford, R.A., et al., CNTN4 modulates neural elongation through interplay with APP. Open Biol, 2024. 14(5): p. 240018.
137. Milosch, N., et al., Holo-APP and G-protein-mediated signaling are required for sAPPalpha-induced activation of the Akt survival pathway. Cell Death Dis, 2014. 5(8): p. e1391.
138. Copenhaver, P.F. and D. Kogel, Role of APP Interactions with Heterotrimeric G Proteins: Physiological Functions and Pathological Consequences. Front Mol Neurosci, 2017. 10: p. 3.
139. Coronel, R., et al., Physiological effects of amyloid precursor protein and its derivatives on neural stem cell biology and signaling pathways involved. Neural Regen Res, 2019. 14(10): p. 1661-1671.
140. Fillmore, C.M., et al., EZH2 inhibition sensitizes BRG1 and EGFR mutant lung tumours to TopoII inhibitors. Nature, 2015. 520(7546): p. 239-42.
141. Yan, L.X., et al., PIK3R1 targeting by miR-21 suppresses tumor cell migration and invasion by reducing PI3K/AKT signaling and reversing EMT, and predicts clinical outcome of breast cancer. Int J Oncol, 2016. 48(2): p. 471-84.
142. Pizzini, S., et al., Impact of microRNAs on regulatory networks and pathways in human colorectal carcinogenesis and development of metastasis. BMC Genomics, 2013. 14: p. 589.
143. Khamas, A., et al., Screening for epigenetically masked genes in colorectal cancer Using 5-Aza-2'-deoxycytidine, microarray and gene expression profile. Cancer Genomics Proteomics, 2012. 9(2): p. 67-75.
144. Tsukamoto, S., et al., Clinical significance of osteoprotegerin expression in human colorectal cancer. Clin Cancer Res, 2011. 17(8): p. 2444-50.
145. Hinoue, T., et al., Genome-scale analysis of aberrant DNA methylation in colorectal cancer. Genome Res, 2012. 22(2): p. 271-82.
146. Gaedcke, J., et al., Mutated KRAS results in overexpression of DUSP4, a MAP-kinase phosphatase, and SMYD3, a histone methyltransferase, in rectal carcinomas. Genes Chromosomes Cancer, 2010. 49(11): p. 1024-34.
147. Sole, X., et al., Discovery and validation of new potential biomarkers for early detection of colon cancer. PLoS One, 2014. 9(9): p. e106748.
148. Malik, S.A., et al., Impact of preoperative antibiotics and other variables on integrated microbiome-host transcriptomic data generated from colorectal cancer resections. World J Gastroenterol, 2021. 27(14): p. 1465-1482.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95112-
dc.description.abstract長年以來,我國之大腸直腸癌發生率與死亡率在皆位居於前三位,大腸直腸癌主要起因於致癌基因或抑癌基因之基因變異,進而導致腸黏膜上皮細胞的過度增生,最終形成具侵襲性之癌症。本實驗室先前於人類第三號染色體3p26.3發現Contactin 4 (CNTN4) 在大腸直腸癌可能為抑癌基因功能。當HCT116細胞表現CNTN4可抑制細胞增生、固著與非固著依賴性胞落形成,且表現CNTN4可抑制裸鼠皮下腫瘤生長並減少血管新生。根據先前文獻研究,我們假設CNTN4透過與Protein tyrosine phosphatase receptor type gamma (PTPRG) 相互作用,進而抑制Epidermal growth factor receptor (EGFR) 之下游路徑Erk/CREB/c-Jun之磷酸化、WNT/β-catenin路徑以及NOTCH之活化;同時,CNTN4可使p21表現量上升及減少Rb磷酸化,使細胞週期停滯於G0/G1時期。本論文首先證實CNTN4可表現於細胞膜上,接續利用Proximity Ligation Assay (PLA) 驗證CNTN4與PTPRG之間具有交互作用。接續,利用RNA-seq的Gene Set Enrichment Analysis (GSEA) 分析,進而探討CNTN4於大腸直腸癌介導EGFR分子訊號傳遞路徑之影響。利用大腸直腸癌穩定表現CNTN4之細胞株,經由EGF誘導後,CNTN4可以降低EGFR表現及EGFR之磷酸化,根據GSEA結果顯示:CNTN4表現與PI3K/AKT/mTOR路徑呈現顯著負相關 (NES= -1.574, p<0.05)。於是利用即時定量聚合酶連鎖反應與西方墨點法,驗證大腸癌細胞株表現CNTN4後,PI3K之mRNA與蛋白質表現量皆有所下降,並且可降低PI3K之下游AKT、mTOR以及其活化態的蛋白質表現。藉由RNA-seq及公開資料庫之數據發現:CNTN4的表現與mTOR下游之4EBP1呈現顯著負相關,於是偵測4EBP1以及其活化態的蛋白質表現量,結果發現CNTN4確實明顯抑制4EBP1的活性,而對於mTOR另一下游分子p70S6K的活性則沒有顯著影響。另外, GSEA結果也顯示JAK/STAT相關路徑與CNTN4呈現顯著負相關 (NES= -1.328, p<0.05),利用西方墨點法亦支持表現CNTN4之HCT116細胞株,活化態STAT3確實有下降趨勢。根據RNA-seq分析結果及先前文獻,得知EGFR下游也會調控 β-catenin活性,利用免疫螢光染色證實表現CNTN4後可降低β-catenin進入細胞核,進而降低其下游基因的轉錄。綜合而論,本論文揭露CNTN4會藉由與PTPRG交互作用,降低EGFR以及其下游相關訊號路徑之活化,以達抑制大腸直腸癌發展之功能。zh_TW
dc.description.abstractThe incidence and mortality rates of colorectal cancer (CRC) in Taiwan have consistently ranked among the top three over the years. In our previous study, we proposed Contactin 4 (CNTN4), a cell adhesion molecule, as a candidate tumor suppressor gene associated with CRC. CNTN4-expressing HCT116 single stable clones established in CRC cell lines exhibited attenuated malignant phenotypes, including cell proliferation, anchorage-dependent and -independent colony formation, as well as reduced xenograft tumorigenicity in nude mice. According to the literature review, we proposed that CNTN4 may interact with protein tyrosine phosphatase receptor type gamma (PTPRG), thereupon mediate the tumor suppression via decreasing the phosphorylation of different components of EGFR signaling pathways such as ERK/CREB/c-Jun, WNT/β-catenin and NOTCH signaling pathway. In addition, CNTN4 expression could retard cell cycle into G0/G1 phase by mediating p21 expression and Rb phosphorylation level. In the study, we first demonstrated that CNTN4 can be expressed on the cell membrane, and subsequently verified the interaction between CNTN4 and PTPRG by proximity ligation assay. Then, followed by a full exploration of CNTN4-modulated molecular mechanisms in CRC cells by using gene set enrichment analysis (GSEA) of RNA-sequencing data. We demonstrated CNTN4 expression decreased EGFR phosphorylation in CRC cells after EGF treatment. Based on GSEA, CNTN4 expression is negatively correlated to PI3K signaling pathway related genes. Correspondingly, the expression of PI3K, AKT, mTOR and 4EBP1 was down-regulated in CNTN4-expressing CRC cells, indicating that CNTN4 could inhibit the PI3K/AKT/mTOR signaling pathway, resulting in the modulation of gene transcription related to cancer aggressiveness, such as 4EBP1. However, there is no significant effect on the activity of another downstream molecule of mTOR, p70S6K. Then we also observed the down-regulation between CNTN4 and JAK/STAT signaling pathway according to GSEA. Subsequent Western blot analysis revealed a definite decreasing trend in the expression level of activated STAT3 in CNTN4 expressing HCT116 cells. Futhermore, CNTN4 could inhibit β-catenin translocation into nucleus to reduce its activity. Taken together, CNTN4 is a novel tumor suppressor through modulating EGFR-associated signaling pathways to reduce downstream molecules phosphorylation, and further decreasing the related tumor-promoting factors expression in CRC.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-28T16:19:32Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-28T16:19:32Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
摘要 iii
Abstract v
縮寫對照表 vii
目次 x
圖次 xiii
表次 xv
一、 研究背景 1
1 大腸直腸癌 1
1.1 簡介 1
1.2 腫瘤生成機制 2
1.3 AJCC癌症分期 3
1.4 Consensus Molecular Subtypes, CMS分型 6
2 Contactin 4 (CNTN4) 8
2.1 Contactin family 8
2.2 CNTN4之功能 8
2.3 CNTN4相關研究 9
3 實驗室先前CNTN4 相關研究 10
3.1 第三號染色體失異合性檢測 10
3.2 CNTN4抑癌功能之研究 10
3.3 CNTN4抑癌分子機制之研究 11
4 Protein Tyrosine Phosphatase Receptor gamma (PTPRG) 12
4.1 PTPRG簡介 12
4.2 PTPRG於癌症相關研究 12
4.3 PTPRG與Contactin之關聯 13
5 Epidermal Growth Factor Receptor (EGFR) 13
5.1 EGFR 簡介 13
5.2 EGFR之相關機制與研究 14
5.3 EGFR於大腸直腸癌之影響 15
6 Phosphoinositide 3-kinase (PI3K) 16
6.1 PI3K簡介 16
6.2 PI3K相關調控路徑 16
7 Signal transducer and activator of transcription (STAT) 17
7.1 STAT簡介 17
7.2 STAT3相關調控路徑 18
8 β-catenin 18
8.1 β-catenin簡介 18
8.2 β-catenin相關調控路徑 19
二、 研究目標 20
三、 材料與方法 21
1 生物資訊公開資料庫分析 21
2 生物資訊分析 21
3 細胞培養 21
3.1 細胞株 21
3.2 細胞培養 22
4 利用siRNA抑制CNTN4及PTPRG表現 23
5 RNA萃取 23
6 即時定量聚合酶連鎖反應 24
7 蛋白質萃取與定量 24
8 西方墨點法 25
8.1 蛋白質檢測 25
8.2 抗體清單 25
9 免疫共沉澱法 27
10 免疫螢光染色 28
11 Proximity Ligation Assay (PLA) 29
12 統計方式 30
13 假設模型 30
四、 研究結果 31
1. 利用公開資料庫比較大腸直腸癌腫瘤與成對正常組織之CNTN4表現量 31
2. 利用免疫螢光染色觀察CNTN4於細胞表現位置 32
3. 利用Proximity Ligation Assay (PLA)驗證CNTN4與PTPRG蛋白質於細胞膜之交互作用 32
4. 在不同大腸癌細胞株表現CNTN4可透過PTPRG降低磷酸化EGFR表現量 33
5. 探討PTPRG表現量在大腸直腸癌之影響 34
6. 探討PI3K與CNTN4之關聯性 35
7. 探討PI3K調控之下游訊號傳遞路徑與CNTN4之關聯性 36
8. 探討CNTN4與 β-catenin之關聯性 38
9. 探討JAK/STAT訊號傳遞路徑與CNTN4之關聯性 39
10. 利用siRNA下調CNTN4以及PTPRG以觀察對EGFR訊號傳遞路徑之影響 39
五、 討論 41
圖 46
表 77
參考文獻 81
附錄 92
-
dc.language.isozh_TW-
dc.subject大腸直腸癌zh_TW
dc.subjectContactin 4zh_TW
dc.subjectPTPRGzh_TW
dc.subjectEGFRzh_TW
dc.subjectPI3Kzh_TW
dc.subjectAKTzh_TW
dc.subjectmTORzh_TW
dc.subject4EBP1zh_TW
dc.subjectSTAT3zh_TW
dc.subjectβ-cateninzh_TW
dc.subjectmTORen
dc.subjectAKTen
dc.subjectColorectal canceren
dc.subjectContactin 4en
dc.subjectPTPRGen
dc.subjectEGFRen
dc.subjectPI3Ken
dc.subjectβ-cateninen
dc.subjectSTAT3en
dc.subject4EBP1en
dc.title分析Contactin 4於大腸直腸癌介導EGFR分子訊號傳遞路徑之抑癌分子機制zh_TW
dc.titleStudy of Contactin 4-mediated tumor suppression through EGFR signaling pathway in colorectal canceren
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee饒梓明;蘇剛毅;郭靜穎zh_TW
dc.contributor.oralexamcommitteeTzu-Ming Jao;Kang-Yi Su;Ching-Ying Kuoen
dc.subject.keyword大腸直腸癌,Contactin 4,PTPRG,EGFR,PI3K,AKT,mTOR,4EBP1,STAT3,β-catenin,zh_TW
dc.subject.keywordColorectal cancer,Contactin 4,PTPRG,EGFR,PI3K,AKT,mTOR,4EBP1,STAT3,β-catenin,en
dc.relation.page104-
dc.identifier.doi10.6342/NTU202403376-
dc.rights.note未授權-
dc.date.accepted2024-08-05-
dc.contributor.author-college醫學院-
dc.contributor.author-dept醫學檢驗暨生物技術學系-
顯示於系所單位:醫學檢驗暨生物技術學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
34.95 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved