請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95111完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳焜裕 | zh_TW |
| dc.contributor.advisor | Kuen-Yuh Wu | en |
| dc.contributor.author | 陳沛宜 | zh_TW |
| dc.contributor.author | Pei-Yi Chen | en |
| dc.date.accessioned | 2024-08-28T16:19:14Z | - |
| dc.date.available | 2024-08-29 | - |
| dc.date.copyright | 2024-08-28 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-08 | - |
| dc.identifier.citation | Abbott, B. D., Wood, C. R., Watkins, A. M., Tatum-Gibbs, K., Das, K. P., & Lau, C. (2012). Effects of perfluorooctanoic acid (PFOA) on expression of peroxisome proliferator-activated receptors (PPAR) and nuclear receptor-regulated genes in fetal and postnatal CD-1 mouse tissues. Reproductive Toxicology, 33(4), 491-505. https://doi.org/https://doi.org/10.1016/j.reprotox.2011.11.005
Aboulfadl, M., Sharaf, A., Mostafa, M., & El-Saeid, M. (2019). Impact of household cooking on release of fluorinated compounds PFOA and PFOS from Tefal coated cookware to foods. World Journal of Advanced Research and Reviews, 3, 024-030. https://doi.org/10.30574/wjarr.2019.3.2.0060 Abraham, K., Mielke, H., Fromme, H., Völkel, W., Menzel, J., Peiser, M., . . . Weikert, C. (2020). Internal exposure to perfluoroalkyl substances (PFASs) and biological markers in 101 healthy 1-year-old children: associations between levels of perfluorooctanoic acid (PFOA) and vaccine response. Archives of Toxicology, 94(6), 2131-2147. https://doi.org/10.1007/s00204-020-02715-4 Abunada, Z., Alazaiza, M., & Bashir, M. (2020). An Overview of Per-and Polyfluoroalkyl Substances (PFAS) in the Environment: Source, Fate, Risk and Regulations. Water, 12, 3590. https://doi.org/10.3390/w12123590 Addicks, G. C., Rowan-Carroll, A., Reardon, A. J. F., Leingartner, K., Williams, A., Meier, M. J., . . . Atlas, E. (2023). Per- and polyfluoroalkyl substances (PFAS) in mixtures show additive effects on transcriptomic points of departure in human liver spheroids. Toxicological Sciences, 194(1), 38-52. https://doi.org/10.1093/toxsci/kfad044 Ahrens, L., & Bundschuh, M. (2014). Fate and effects of poly- and perfluoroalkyl substances in the aquatic environment: A review. Environmental Toxicology and Chemistry, 33(9), 1921-1929. https://doi.org/https://doi.org/10.1002/etc.2663 Authority, E. F. S. (2008). Perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and their salts Scientific Opinion of the Panel on Contaminants in the Food chain. EFSA Journal, 6(7), 653. https://doi.org/https://doi.org/10.2903/j.efsa.2008.653 Bao, J., Lee, Y. L., Chen, P.-C., Jin, Y.-H., & Dong, G.-H. (2014). Perfluoroalkyl acids in blood serum samples from children in Taiwan. Environmental Science and Pollution Research, 21(12), 7650-7655. https://doi.org/10.1007/s11356-014-2594-4 Barbarossa, A., Gazzotti, T., Zironi, E., Serraino, A., & Pagliuca, G. (2014). Short communication: Monitoring the presence of perfluoroalkyl substances in Italian cow milk. J Dairy Sci, 97(6), 3339-3343. https://doi.org/10.3168/jds.2014-8005 Bartell, S. M., Calafat, A. M., Lyu, C., Kato, K., Ryan, P. B., & Steenland, K. (2010). Rate of decline in serum PFOA concentrations after granular activated carbon filtration at two public water systems in Ohio and West Virginia. Environ Health Perspect, 118(2), 222-228. https://doi.org/10.1289/ehp.0901252 BfR. (2021). PFAS-Höchstgehalte in Futtermitteln: BfR empfiehlt verbesserte Analysemethoden: Stellungnahme Nr. 037/2021 des BfR vom 24. November 2021. Bundesinst. für Risikobewertung Retrieved from https://www.openagrar.de/receive/openagrar_mods_00075782 https://www.bfr.bund.de/cm/343/pfas-hoechstgehalte-in-futtermitteln-bfr-empfiehlt-verbesserte-analysemethoden.pdf https://doi.org/10.17590/20211124-122122 Blake, B. E., & Fenton, S. E. (2020). Early life exposure to per- and polyfluoroalkyl substances (PFAS) and latent health outcomes: A review including the placenta as a target tissue and possible driver of peri- and postnatal effects. Toxicology, 443, 152565. https://doi.org/10.1016/j.tox.2020.152565 Brase, R. A., Mullin, E. J., & Spink, D. C. (2021). Legacy and Emerging Per- and Polyfluoroalkyl Substances: Analytical Techniques, Environmental Fate, and Health Effects. Int J Mol Sci, 22(3). https://doi.org/10.3390/ijms22030995 Brocks, D. R., & Hamdy, D. A. (2020). Bayesian estimation of pharmacokinetic parameters: an important component to include in the teaching of clinical pharmacokinetics and therapeutic drug monitoring. Res Pharm Sci, 15(6), 503-514. https://doi.org/10.4103/1735-5362.301335 Brooks, S. P., & Gelman, A. (1998). General Methods for Monitoring Convergence of Iterative Simulations. Journal of Computational and Graphical Statistics, 7(4), 434-455. https://doi.org/10.1080/10618600.1998.10474787 Brusseau, M. L., Anderson, R. H., & Guo, B. (2020). PFAS concentrations in soils: Background levels versus contaminated sites. Sci Total Environ, 740, 140017. https://doi.org/10.1016/j.scitotenv.2020.140017 Buck, R. C., Franklin, J., Berger, U., Conder, J. M., Cousins, I. T., de Voogt, P., . . . van Leeuwen, S. P. (2011). Perfluoroalkyl and polyfluoroalkyl substances in the environment: Terminology, classification, and origins. Integrated Environmental Assessment and Management, 7(4), 513-541. https://doi.org/https://doi.org/10.1002/ieam.258 Budtz-Jørgensen, E., & Grandjean, P. (2018). Application of benchmark analysis for mixed contaminant exposures: Mutual adjustment of perfluoroalkylate substances associated with immunotoxicity. PLOS ONE, 13(10), e0205388. https://doi.org/10.1371/journal.pone.0205388 Bursian, S. J., Link, J. E., McCarty, M., Harr, K., Roberts, J., & Simcik, M. F. (2021). Dietary Exposure of Japanese Quail (Coturnix japonica) to Perfluorooctane Sulfonate (PFOS) and a Legacy Aqueous Film-Forming Foam (AFFF) Containing PFOS: Effects on Reproduction and Chick Survivability and Growth. Environmental Toxicology and Chemistry, 40(9), 2521-2537. https://doi.org/https://doi.org/10.1002/etc.5138 Butenhoff, J. L., Chang, S.-C., Olsen, G. W., & Thomford, P. J. (2012). Chronic dietary toxicity and carcinogenicity study with potassium perfluorooctanesulfonate in Sprague Dawley rats. Toxicology, 293(1), 1-15. https://doi.org/https://doi.org/10.1016/j.tox.2012.01.003 Butenhoff, J. L., Kennedy, G. L., Jr, Hinderliter, P. M., Lieder, P. H., Jung, R., Hansen, K. J., . . . Thomford, P. J. (2004). Pharmacokinetics of Perfluorooctanoate in Cynomolgus Monkeys. Toxicological Sciences, 82(2), 394-406. https://doi.org/10.1093/toxsci/kfh302 Butenhoff, J. L., Olsen, G. W., & Pfahles-Hutchens, A. (2006). The Applicability of Biomonitoring Data for Perfluorooctanesulfonate to the Environmental Public Health Continuum. Environmental Health Perspectives, 114(11), 1776-1782. https://doi.org/doi:10.1289/ehp.9060 Byrne, J. (2024). When will EU set limits on 'forever chemicals' in feed? HTTPS://WWW.FEEDNAVIGATOR.COM/ARTICLE/2024/04/23/WHEN-IS-EU-LIKELY-TO-INTRODUCE-LIMITS-ON-PFAS-IN-FEED Cakmak, S., Lukina, A., Karthikeyan, S., Atlas, E., & Dales, R. (2022). The association between blood PFAS concentrations and clinical biochemical measures of organ function and metabolism in participants of the Canadian Health Measures Survey (CHMS). Science of The Total Environment, 827, 153900. https://doi.org/https://doi.org/10.1016/j.scitotenv.2022.153900 Cao, H., Zhou, Z., Hu, Z., Wei, C., Li, J., Wang, L., . . . Liang, Y. (2022). Effect of Enterohepatic Circulation on the Accumulation of Per- and Polyfluoroalkyl Substances: Evidence from Experimental and Computational Studies. Environmental Science & Technology, 56(5), 3214-3224. https://doi.org/10.1021/acs.est.1c07176 Caverly Rae, J. M., Craig, L., Slone, T. W., Frame, S. R., Buxton, L. W., & Kennedy, G. L. (2015). Evaluation of chronic toxicity and carcinogenicity of ammonium 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)-propanoate in Sprague-Dawley rats. Toxicol Rep, 2, 939-949. https://doi.org/10.1016/j.toxrep.2015.06.001 Chang, S.-C., Noker, P. E., Gorman, G. S., Gibson, S. J., Hart, J. A., Ehresman, D. J., & Butenhoff, J. L. (2012). Comparative pharmacokinetics of perfluorooctanesulfonate (PFOS) in rats, mice, and monkeys. Reproductive Toxicology, 33(4), 428-440. https://doi.org/https://doi.org/10.1016/j.reprotox.2011.07.002 Chang, S. C., Noker, P. E., Gorman, G. S., Gibson, S. J., Hart, J. A., Ehresman, D. J., & Butenhoff, J. L. (2012). Comparative pharmacokinetics of perfluorooctanesulfonate (PFOS) in rats, mice, and monkeys. Reprod Toxicol, 33(4), 428-440. https://doi.org/10.1016/j.reprotox.2011.07.002 Chang, S. C., Thibodeaux, J. R., Eastvold, M. L., Ehresman, D. J., Bjork, J. A., Froehlich, J. W., . . . Butenhoff, J. L. (2008). Thyroid hormone status and pituitary function in adult rats given oral doses of perfluorooctanesulfonate (PFOS). Toxicology, 243(3), 330-339. https://doi.org/10.1016/j.tox.2007.10.014 Chen, W.-L., Bai, F.-Y., Chang, Y.-C., Chen, P.-C., & Chen, C.-Y. (2018). Concentrations of perfluoroalkyl substances in foods and the dietary exposure among Taiwan general population and pregnant women. Journal of Food and Drug Analysis, 26(3), 994-1004. https://doi.org/https://doi.org/10.1016/j.jfda.2017.12.011 Choi, Y. J., Lee, L. S., Hoskins, T. D., Gharehveran, M. M., & Sepúlveda, M. S. (2023). Occurrence and implications of per and polyfluoroalkyl substances in animal feeds used in laboratory toxicity testing. Science of The Total Environment, 867, 161583. https://doi.org/https://doi.org/10.1016/j.scitotenv.2023.161583 Chou, L.-Y. (2021). Probabilistic Health Risk Assessment for Cadmium and Nickel in Animal Feed: A Population Physiologically-Based Pharmacokinetics Approach Chou, W.-C., Tell, L. A., Baynes, R. E., Davis, J. L., Cheng, Y.-H., Maunsell, F. P., . . . Lin, Z. (2023). Development and application of an interactive generic physiologically based pharmacokinetic (igPBPK) model for adult beef cattle and lactating dairy cows to estimate tissue distribution and edible tissue and milk withdrawal intervals for per- and polyfluoroalkyl substances (PFAS). Food and Chemical Toxicology, 181, 114062. https://doi.org/https://doi.org/10.1016/j.fct.2023.114062 Cookson, E. S., & Detwiler, R. L. (2022). Global patterns and temporal trends of perfluoroalkyl substances in municipal wastewater: A meta-analysis. Water Research, 221, 118784. https://doi.org/https://doi.org/10.1016/j.watres.2022.118784 Crawford, K. A., Gallagher, L. G., Giffard, N. G., Gardiner, C. L., Keirns, T., Fernando, S., . . . Romano, M. E. (2024). Patterns of Seafood Consumption Among New Hampshire Residents Suggest Potential Exposure to Per- and Polyfluoroalkyl Substances. Exposure and Health. https://doi.org/10.1007/s12403-024-00640-w Cui, L., Liao, C.-y., Zhou, Q.-f., Xia, T.-m., Yun, Z.-j., & Jiang, G.-b. (2010). Excretion of PFOA and PFOS in Male Rats During a Subchronic Exposure. Archives of Environmental Contamination and Toxicology, 58(1), 205-213. https://doi.org/10.1007/s00244-009-9336-5 Curran, I., Hierlihy, S. L., Liston, V., Pantazopoulos, P., Nunnikhoven, A., Tittlemier, S., . . . Bondy, G. (2008). Altered Fatty Acid Homeostasis and Related Toxicologic Sequelae in Rats Exposed to Dietary Potassium Perfluorooctanesulfonate (PFOS). Journal of Toxicology and Environmental Health, Part A, 71(23), 1526-1541. https://doi.org/10.1080/15287390802361763 Del Gobbo, L., Tittlemier, S., Diamond, M., Pepper, K., Tague, B., Yeudall, F., & Vanderlinden, L. (2008). Cooking Decreases Observed Perfluorinated Compound Concentrations in Fish. Journal of Agricultural and Food Chemistry, 56(16), 7551-7559. https://doi.org/10.1021/jf800827r Dennhöfer, J. (2011). Untersuchungen zum „Carry-over“ von Perfluorierten Tensiden aus Futtermitteln und Tränkwasser in tierische Lebensmittel am Modell der Legewachtel. Dissertation Ding, G., Zhang, J., Chen, Y., Wang, L., Wang, M., Xiong, D., & Sun, Y. (2013). Combined Effects of PFOS and PFOA on Zebrafish (Danio rerio) Embryos. Archives of Environmental Contamination and Toxicology, 64(4), 668-675. https://doi.org/10.1007/s00244-012-9864-2 Dolman, S., & Pelzing, M. (2011). An optimized method for the determination of perfluorooctanoic acid, perfluorooctane sulfonate and other perfluorochemicals in different matrices using liquid chromatography/ion-trap mass spectrometry. Journal of Chromatography B, 879(22), 2043-2050. https://doi.org/https://doi.org/10.1016/j.jchromb.2011.05.032 Dorne, J. L., Doerge, D. R., Vandenbroeck, M., Fink-Gremmels, J., Mennes, W., Knutsen, H. K., . . . Benford, D. (2013). Recent advances in the risk assessment of melamine and cyanuric acid in animal feed. Toxicology and Applied Pharmacology, 270(3), 218-229. https://doi.org/https://doi.org/10.1016/j.taap.2012.01.012 Draghi, S., Pavlovic, R., Pellegrini, A., Fidani, M., Riva, F., Brecchia, G., . . . Curone, G. (2023). First Investigation of the Physiological Distribution of Legacy and Emerging Perfluoroalkyl Substances in Raw Bovine Milk According to the Component Fraction. Foods, 12(13). https://doi.org/10.3390/foods12132449 Drew, R., Hagen, T., Champness, D., & Sellier, A. (2019). PFAS tissue distribution in cattle. Poster Presentation at IUTOX 15th International Congress of Toxicology, Drew, R., Hagen, T. G., & Champness, D. (2021). Accumulation of PFAS by livestock – determination of transfer factors from water to serum for cattle and sheep in Australia. Food Additives & Contaminants: Part A, 38(11), 1897-1913. https://doi.org/10.1080/19440049.2021.1942562 Drew, R., Hagen, T. G., Champness, D., & Sellier, A. (2022). Half-lives of several polyfluoroalkyl substances (PFAS) in cattle serum and tissues. Food Additives & Contaminants: Part A, 39(2), 320-340. https://doi.org/10.1080/19440049.2021.1991004 Driesen, C., Zennegg, M., Morel, I., Hess, H. D., Nowack, B., & Lerch, S. (2021). Average transfer factors are not enough: The influence of growing cattle physiology on the transfer rate of polychlorinated biphenyls from feed to adipose. Chemosphere, 270, 129698. https://doi.org/https://doi.org/10.1016/j.chemosphere.2021.129698 Dueñas-Mas, M. J., Ballesteros-Gómez, A., & de Boer, J. (2023). Determination of several PFAS groups in food packaging material from fast-food restaurants in France. Chemosphere, 339, 139734. https://doi.org/https://doi.org/10.1016/j.chemosphere.2023.139734 Duffek, A., Conrad, A., Kolossa-Gehring, M., Lange, R., Rucic, E., Schulte, C., & Wellmitz, J. (2020). Per- and polyfluoroalkyl substances in blood plasma – Results of the German Environmental Survey for children and adolescents 2014–2017 (GerES V). International Journal of Hygiene and Environmental Health, 228, 113549. https://doi.org/https://doi.org/10.1016/j.ijheh.2020.113549 EFSA. (2008). Perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and their salts Scientific Opinion of the Panel on Contaminants in the Food chain. EFSA Journal, 6(7), 653. https://doi.org/https://doi.org/10.2903/j.efsa.2008.653 EFSA, Knutsen, H. K., Alexander, J., Barregård, L., Bignami, M., Brüschweiler, B., . . . Schwerdtle, T. (2018). Risk to human health related to the presence of perfluorooctane sulfonic acid and perfluorooctanoic acid in food. EFSA Journal, 16(12), e05194. https://doi.org/https://doi.org/10.2903/j.efsa.2018.5194 EFSA, Schrenk, D., Bignami, M., Bodin, L., Chipman, J. K., del Mazo, J., . . . Schwerdtle, T. (2020). Risk to human health related to the presence of perfluoroalkyl substances in food. EFSA Journal, 18(9), e06223. https://doi.org/https://doi.org/10.2903/j.efsa.2020.6223 Ehresman, D. J., Froehlich, J. W., Olsen, G. W., Chang, S. C., & Butenhoff, J. L. (2007). Comparison of human whole blood, plasma, and serum matrices for the determination of perfluorooctanesulfonate (PFOS), perfluorooctanoate (PFOA), and other fluorochemicals. Environ Res, 103(2), 176-184. https://doi.org/10.1016/j.envres.2006.06.008 Era, S., Harada, K. H., Toyoshima, M., Inoue, K., Minata, M., Saito, N., . . . Koizumi, A. (2009). Cleft palate caused by perfluorooctane sulfonate is caused mainly by extrinsic factors. Toxicology, 256(1), 42-47. https://doi.org/https://doi.org/10.1016/j.tox.2008.11.003 Eriksen, K. T., Raaschou-Nielsen, O., Sørensen, M., Roursgaard, M., Loft, S., & Møller, P. (2010). Genotoxic potential of the perfluorinated chemicals PFOA, PFOS, PFBS, PFNA and PFHxA in human HepG2 cells. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 700(1), 39-43. https://doi.org/https://doi.org/10.1016/j.mrgentox.2010.04.024 Eun, H., Yamazaki, E., Pan, Y., Taniyasu, S., Noborio, K., & Yamashita, N. (2022). Evaluating the Distribution of Perfluoroalkyl Substances in Rice Paddy Lysimeter with an Andosol. Int J Environ Res Public Health, 19(16). https://doi.org/10.3390/ijerph191610379 EURL. (2022). Guidance Document on Analytical Parameters for the Determination of Per- and Polyfluoroalkyl Substances (PFAS) in Food and Feed. European Commission. (24 August 2022). Commission Recommendation (EU) 2022/1431 of 24 August 2022 on the monitoring of perfluoroalkyl substances in food. Retrieved from http://data.europa.eu/eli/reco/2022/1431/oj European Commission. (25 April 2023). Commission Regulation (EU) 2023/915 of 25 April 2023 on maximum levels for certain contaminants in food and repealing Regulation (EC) No 1881/2006 (Text with EEA relevance). Retrieved from http://data.europa.eu/eli/reg/2023/915/oj European Medicines Agency. (2018). Regulatory terms: Withdrawal period. https://www.ema.europa.eu/en/glossary/withdrawal-period Eze, C. G., Okeke, E. S., Nwankwo, C. E., Nyaruaba, R., Anand, U., Okoro, O. J., & Bontempi, E. (2024). Emerging contaminants in food matrices: An overview of the occurrence, pathways, impacts and detection techniques of per- and polyfluoroalkyl substances. Toxicol Rep, 12, 436-447. https://doi.org/10.1016/j.toxrep.2024.03.012 Fan, Y., Li, X., Xu, Q., Zhang, Y., Yang, X., Han, X., . . . Lu, C. (2020). Serum albumin mediates the effect of multiple per- and polyfluoroalkyl substances on serum lipid levels. Environmental Pollution, 266, 115138. https://doi.org/https://doi.org/10.1016/j.envpol.2020.115138 Fàbrega, F., Kumar, V., Schuhmacher, M., Domingo, J. L., & Nadal, M. (2014). PBPK modeling for PFOS and PFOA: Validation with human experimental data. Toxicology Letters, 230(2), 244-251. https://doi.org/https://doi.org/10.1016/j.toxlet.2014.01.007 Felder, C., Trompeter, L., Skutlarek, D., Färber, H., Mutters, N. T., & Heinemann, C. (2023). Exposure of a single wild boar population in North Rhine-Westphalia (Germany) to perfluoroalkyl acids. Environmental Science and Pollution Research, 30(6), 15575-15584. https://doi.org/10.1007/s11356-022-23086-6 Fernandes, A. R., Lake, I. R., Dowding, A., Rose, M., Jones, N. R., Smith, F., & Panton, S. (2023). The transfer of environmental contaminants (Brominated and Chlorinated dioxins and biphenyls, PBDEs, HBCDDs, PCNs and PFAS) from recycled materials used for bedding to the eggs and tissues of chickens. Sci Total Environ, 892, 164441. https://doi.org/10.1016/j.scitotenv.2023.164441 Fernández Freire, P., Pérez Martin, J. M., Herrero, O., Peropadre, A., de la Peña, E., & Hazen, M. J. (2008). In vitro assessment of the cytotoxic and mutagenic potential of perfluorooctanoic acid. Toxicology in Vitro, 22(5), 1228-1233. https://doi.org/https://doi.org/10.1016/j.tiv.2008.04.004 Filgo, A. J., Quist, E. M., Hoenerhoff, M. J., Brix, A. E., Kissling, G. E., & Fenton, S. E. (2015). Perfluorooctanoic Acid (PFOA)–induced Liver Lesions in Two Strains of Mice Following Developmental Exposures:PPARα Is Not Required. Toxicologic Pathology, 43(4), 558-568. https://doi.org/10.1177/0192623314558463 Fisher, J. W., Yang, X., Mehta, D., Housand, C., & Lin, Z. (2020). Chapter 3 - Fundamentals of physiologically based pharmacokinetic modeling**The views of the authors do not necessarily reflect the views of the US FDA. In J. W. Fisher, J. M. Gearhart, & Z. Lin (Eds.), Physiologically Based Pharmacokinetic (PBPK) Modeling (pp. 57-80). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-818596-4.00003-5 Florentin, A., Deblonde, T., Diguio, N., Hautemaniere, A., & Hartemann, P. (2011). Impacts of two perfluorinated compounds (PFOS and PFOA) on human hepatoma cells: cytotoxicity but no genotoxicity? Int J Hyg Environ Health, 214(6), 493-499. https://doi.org/10.1016/j.ijheh.2011.05.010 Forsthuber, M., Kaiser, A. M., Granitzer, S., Hassl, I., Hengstschläger, M., Stangl, H., & Gundacker, C. (2020). Albumin is the major carrier protein for PFOS, PFOA, PFHxS, PFNA and PFDA in human plasma. Environment International, 137, 105324. https://doi.org/https://doi.org/10.1016/j.envint.2019.105324 Franko, J., Meade, B. J., Frasch, H. F., Barbero, A. M., & Anderson, S. E. (2012). Dermal Penetration Potential of Perfluorooctanoic Acid (PFOA) in Human and Mouse Skin. Journal of Toxicology and Environmental Health, Part A, 75(1), 50-62. https://doi.org/10.1080/15287394.2011.615108 Fromme, H., Wöckner, M., Roscher, E., & Völkel, W. (2017). ADONA and perfluoroalkylated substances in plasma samples of German blood donors living in South Germany. Int J Hyg Environ Health, 220(2 Pt B), 455-460. https://doi.org/10.1016/j.ijheh.2016.12.014 Göckener, B., Eichhorn, M., Lämmer, R., Kotthoff, M., Kowalczyk, J., Numata, J., . . . Bücking, M. (2020). Transfer of Per- and Polyfluoroalkyl Substances (PFAS) from Feed into the Eggs of Laying Hens. Part 1: Analytical Results Including a Modified Total Oxidizable Precursor Assay. Journal of Agricultural and Food Chemistry, 68(45), 12527-12538. https://doi.org/10.1021/acs.jafc.0c04456 Gaines, L. G. T. (2023). Historical and current usage of per- and polyfluoroalkyl substances (PFAS): A literature review. American Journal of Industrial Medicine, 66(5), 353-378. https://doi.org/https://doi.org/10.1002/ajim.23362 Gao, Y., Song, B., He, A., Liu, C., Lu, Y., Li, J., . . . Wang, Y. (2023). Isomer-specific perfluoroalkyl acids accumulation, excretion and maternal transfer to eggs in chickens around a fluorochemical manufactory in China. Science of The Total Environment, 865, 161125. https://doi.org/https://doi.org/10.1016/j.scitotenv.2022.161125 Gelman, A., Ligges, U., & Sturtz, S. (2005). R2winbugs: a package for running WinBUGS from R. Journal of Statistical Software, 12. https://doi.org/10.18637/jss.v012.i03 Glüge, J., Scheringer, M., Cousins, I. T., DeWitt, J. C., Goldenman, G., Herzke, D., . . . Wang, Z. (2020). An overview of the uses of per- and polyfluoroalkyl substances (PFAS). Environ Sci Process Impacts, 22(12), 2345-2373. https://doi.org/10.1039/d0em00291g Goodrum, P. E., Anderson, J. K., Luz, A. L., & Ansell, G. K. (2020). Application of a Framework for Grouping and Mixtures Toxicity Assessment of PFAS: A Closer Examination of Dose-Additivity Approaches. Toxicological Sciences, 179(2), 262-278. https://doi.org/10.1093/toxsci/kfaa123 Granby, K., Ersbøll, B. K., Olesen, P. T., Christensen, T., & Sørensen, S. (2024). Per- and poly-fluoroalkyl substances in commercial organic eggs via fishmeal in feed. Chemosphere, 346, 140553. https://doi.org/https://doi.org/10.1016/j.chemosphere.2023.140553 Grandjean, P., Andersen, E. W., Budtz-Jørgensen, E., Nielsen, F., Mølbak, K., Weihe, P., & Heilmann, C. (2012). Serum Vaccine Antibody Concentrations in Children Exposed to Perfluorinated Compounds. JAMA, 307(4), 391-397. https://doi.org/10.1001/jama.2011.2034 Guruge, K. S., Noguchi, M., Yoshioka, K., Yamazaki, E., Taniyasu, S., Yoshioka, M., . . . Kawaguchi, H. (2016). Microminipigs as a new experimental animal model for toxicological studies: comparative pharmacokinetics of perfluoroalkyl acids. Journal of Applied Toxicology, 36(1), 68-75. https://doi.org/https://doi.org/10.1002/jat.3145 Haas, M. (2008). A 28-Day Oral (Gavage) Toxicity Study of h-28397 in Mice with a 28-Day Recovery (Dupont). Ashland, OH: WIL Research Laboratories, LLC. https://hero. Epa. Gov/hero/index. Cfm/project/page/page/1/rows/10/sort/year% 20desc/format/list/project_id/2627/criteria_all/dupont/usage_searchtype/any. Accessed: October, 18, 2022. Haas, M. (2009). A 90-day Oral (Gavage) Toxicity Study of H-28548 in Rats with a 28-day Recovery (Study No. Wil-189216). WIL Research Laboratories, LLC, Ashland, OH. Hagan, A. (2004). Bayesian statistics: principles and benefits. 3. Hagen, T., Drew, R., Champness, D., & Ryan, J. (2019). PFAS clearance and distribution in sheep. IUTOX 15th International Congress of Toxicology, Honolulu, Hawaii. Han, J., Fu, J., Sun, J., Hall, D. R., Yang, D., Blatz, D., . . . Peng, H. (2021). Quantitative Chemical Proteomics Reveals Interspecies Variations on Binding Schemes of L-FABP with Perfluorooctanesulfonate. Environ Sci Technol, 55(13), 9012-9023. https://doi.org/10.1021/acs.est.1c00509 Harada, K. H., Hashida, S., Kaneko, T., Takenaka, K., Minata, M., Inoue, K., . . . Koizumi, A. (2007). Biliary excretion and cerebrospinal fluid partition of perfluorooctanoate and perfluorooctane sulfonate in humans. Environmental Toxicology and Pharmacology, 24(2), 134-139. https://doi.org/https://doi.org/10.1016/j.etap.2007.04.003 Hejazi, M., Grant, J. H., & Peterson, E. (2022). Trade impact of maximum residue limits in fresh fruits and vegetables. Food Policy, 106, 102203. https://doi.org/https://doi.org/10.1016/j.foodpol.2021.102203 Heuvel, J. P. V., Kuslikis, B. I., Van Rafelghem, M. J., & Peterson, R. E. (1991). Tissue distribution, metabolism, and elimination of perfluorooctanoic acid in male and female rats. Journal of Biochemical Toxicology, 6(2), 83-92. https://doi.org/https://doi.org/10.1002/jbt.2570060202 Hines, E. P., White, S. S., Stanko, J. P., Gibbs-Flournoy, E. A., Lau, C., & Fenton, S. E. (2009). Phenotypic dichotomy following developmental exposure to perfluorooctanoic acid (PFOA) in female CD-1 mice: Low doses induce elevated serum leptin and insulin, and overweight in mid-life. Molecular and Cellular Endocrinology, 304(1), 97-105. https://doi.org/https://doi.org/10.1016/j.mce.2009.02.021 Hsu, J.-Y., Hsu, J.-F., Ho, H.-H., Chiang, C.-F., & Liao, P.-C. (2013). Background levels of Persistent Organic Pollutants in humans from Taiwan: Perfluorooctane sulfonate and perfluorooctanoic acid. Chemosphere, 93(3), 532-537. https://doi.org/https://doi.org/10.1016/j.chemosphere.2013.06.047 Hu, X.-Z., & Hu, D.-C. (2009). Effects of perfluorooctanoate and perfluorooctane sulfonate exposure on hepatoma Hep G2 cells. Archives of Toxicology, 83(9), 851-861. https://doi.org/10.1007/s00204-009-0441-z Huang, M. C., Dzierlenga, A. L., Robinson, V. G., Waidyanatha, S., DeVito, M. J., Eifrid, M. A., . . . Blystone, C. R. (2019). Toxicokinetics of perfluorobutane sulfonate (PFBS), perfluorohexane-1-sulphonic acid (PFHxS), and perfluorooctane sulfonic acid (PFOS) in male and female Hsd:Sprague Dawley SD rats after intravenous and gavage administration. Toxicology Reports, 6, 645-655. https://doi.org/https://doi.org/10.1016/j.toxrep.2019.06.016 Hull, S. D., Deen, L., Petersen, K. U., Jensen, T. K., Hammer, P., Wils, R. S., . . . Tøttenborg, S. S. (2023). Time trends in per- and polyfluoroalkyl substances (PFAS) concentrations in the Danish population: A review based on published and newly analyzed data. Environmental Research, 237, 117036. https://doi.org/https://doi.org/10.1016/j.envres.2023.117036 Ismawati, Y., Strakova, J., Septiono, M., Anissa, A., Digangi, J., Brosche, S., & Zaki, K. B. (2023). PFAS in selected products in Indonesia. https://doi.org/10.13140/RG.2.2.27275.46887 ITRC. (2023 July). ITRC PFAS Physical and Chemical Properties Table 4-1 Excel File. Jha, G., Kankarla, V., McLennon, E., Pal, S., Sihi, D., Dari, B., . . . Nocco, M. (2021). Per- and Polyfluoroalkyl Substances (PFAS) in Integrated Crop-Livestock Systems: Environmental Exposure and Human Health Risks. Int J Environ Res Public Health, 18(23). https://doi.org/10.3390/ijerph182312550 Joerss, H., Xie, Z., Wagner, C. C., von Appen, W. J., Sunderland, E. M., & Ebinghaus, R. (2020). Transport of Legacy Perfluoroalkyl Substances and the Replacement Compound HFPO-DA through the Atlantic Gateway to the Arctic Ocean-Is the Arctic a Sink or a Source? Environ Sci Technol, 54(16), 9958-9967. https://doi.org/10.1021/acs.est.0c00228 Judson, R. S., Smith, D., DeVito, M., Wambaugh, J. F., Wetmore, B. A., Paul Friedman, K., . . . Carstens, K. E. (2024). A Comparison of In Vitro Points of Departure with Human Blood Levels for Per- and Polyfluoroalkyl Substances (PFAS). Toxics, 12(4), 271. https://www.mdpi.com/2305-6304/12/4/271 Karemera, D., Xiong, B., Smalls, G., & Whitesides, L. (2022). The political economy of maximum residue limits: A long-term health perspective. Journal of Agricultural Economics, 73(3), 709-719. https://doi.org/https://doi.org/10.1111/1477-9552.12476 Katakura, M., Kudo, N., Tsuda, T., Hibino, Y., Mitsumoto, A., & Kawashima, Y. (2007). Rat Organic Anion Transporter 3 and Organic Anion Transporting Polypeptide 1 Mediate Perfluorooctanoic Acid Transport. Journal of Health Science, 53, 77-83. https://doi.org/10.1248/jhs.53.77 Kim, M.-J., Park, J., Luo, L., Min, J., Kim, J. H., Yang, H.-D., . . . Moon, B. (2020). Effect of washing, soaking, and cooking methods on perfluorinated compounds in mackerel (Scomber japonicus). Food Science & Nutrition, 8(8), 4399-4408. https://doi.org/https://doi.org/10.1002/fsn3.1737 Kirk, M., Smurthwaite, K., Braunig, J., Trevenar, S., D'Este, C., Lucas, R., . . . Armstrong, B. (2018). The PFAS Health Study: Systematic Literature Review. T. A. N. U. National Centre for Epidemiology and Population Health. http://hdl.handle.net/1885/241032 Kissa, E. (2001). Fluorinated Surfactants and Repellents, Second Edition Revised and Expanded. New York: Marcel Dekker, Inc. Kowalczyk, J. (2014). Übergang von Perfluoroctansäure (PFOA) und Perfluoroctansulfonsäure (PFOS) aus kontaminierten Futtermitteln in ausgewählte Gewebe des Mastschweins und der Legehenne: Ein Beitrag zur Bewertung gesundheitlicher Risiken des Verbrauchers. Berlin, Germany. Kowalczyk, J., Ehlers, S., Fürst, P., Schafft, H., & Lahrssen-Wiederholt, M. (2012). Transfer of Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonate (PFOS) From Contaminated Feed Into Milk and Meat of Sheep: Pilot Study. Archives of Environmental Contamination and Toxicology, 63(2), 288-298. https://doi.org/10.1007/s00244-012-9759-2 Kowalczyk, J., Ehlers, S., Oberhausen, A., Tischer, M., Fürst, P., Schafft, H., & Lahrssen-Wiederholt, M. (2013). Absorption, Distribution, and Milk Secretion of the Perfluoroalkyl Acids PFBS, PFHxS, PFOS, and PFOA by Dairy Cows Fed Naturally Contaminated Feed. Journal of Agricultural and Food Chemistry, 61(12), 2903-2912. https://doi.org/10.1021/jf304680j Kowalczyk, J., Göckener, B., Eichhorn, M., Kotthoff, M., Bücking, M., Schafft, H., . . . Numata, J. (2020). Transfer of Per- and Polyfluoroalkyl Substances (PFAS) from Feed into the Eggs of Laying Hens. Part 2: Toxicokinetic Results Including the Role of Precursors. Journal of Agricultural and Food Chemistry, 68(45), 12539-12548. https://doi.org/10.1021/acs.jafc.0c04485 Kowalczyk, J., Numata, J., Zimmermann, B., Klinger, R., Habedank, F., Just, P., . . . Lahrssen-Wiederholt, M. (2018). Suitability of Wild Boar (Sus scrofa) as a Bioindicator for Environmental Pollution with Perfluorooctanoic Acid (PFOA) and Perfluorooctanesulfonic Acid (PFOS). Archives of Environmental Contamination and Toxicology, 75(4), 594-606. https://doi.org/10.1007/s00244-018-0552-8 Kudo, N., & Kawashima, Y. (2003). Toxicity and toxicokinetics of perfluorooctanoic acid in humans and animals. J Toxicol Sci, 28(2), 49-57. https://doi.org/10.2131/jts.28.49 Kudo, N., Sakai, A., Mitsumoto, A., Hibino, Y., Tsuda, T., & Kawashima, Y. (2007). Tissue distribution and hepatic subcellular distribution of perfluorooctanoic acid at low dose are different from those at high dose in rats. Biol Pharm Bull, 30(8), 1535-1540. https://doi.org/10.1248/bpb.30.1535 Kudo, N., Sakai, A., Mitsumoto, A., Hibino, Y., Tsuda, T., & Kawashima, Y. (2007). Tissue Distribution and Hepatic Subcellular Distribution of Perfluorooctanoic Acid at Low Dose Are Different from Those at High Dose in Rats. Biological and Pharmaceutical Bulletin, 30(8), 1535-1540. https://doi.org/10.1248/bpb.30.1535 Kurwadkar, S., Dane, J., Kanel, S. R., Nadagouda, M. N., Cawdrey, R. W., Ambade, B., . . . Wilkin, R. (2022). Per- and polyfluoroalkyl substances in water and wastewater: A critical review of their global occurrence and distribution. Science of The Total Environment, 809, 151003. https://doi.org/https://doi.org/10.1016/j.scitotenv.2021.151003 Kwon, Y. (2002). Handbook of Essential Pharmacokinetics, Pharmacodynamics and Drug Metabolism for Industrial Scientists. Kluwer Academic Publishers. https://doi.org/ https://doi.org/10.1007/b112416 Lan, Z., Zhou, M., Yao, Y., & Sun, H. (2018). Plant uptake and translocation of perfluoroalkyl acids in a wheat-soil system. Environ Sci Pollut Res Int, 25(31), 30907-30916. https://doi.org/10.1007/s11356-018-3070-3 Lasters, R., Groffen, T., Eens, M., Coertjens, D., Gebbink, W. A., Hofman, J., & Bervoets, L. (2022). Home-produced eggs: An important human exposure pathway of perfluoroalkylated substances (PFAS). Chemosphere, 308, 136283. https://doi.org/https://doi.org/10.1016/j.chemosphere.2022.136283 Lau, C., Thibodeaux, J. R., Hanson, R. G., Narotsky, M. G., Rogers, J. M., Lindstrom, A. B., & Strynar, M. J. (2006). Effects of Perfluorooctanoic Acid Exposure during Pregnancy in the Mouse. Toxicological Sciences, 90(2), 510-518. https://doi.org/10.1093/toxsci/kfj105 Lechner, M., & Knapp, H. (2011). Carryover of Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonate (PFOS) from Soil to Plant and Distribution to the Different Plant Compartments Studied in Cultures of Carrots (Daucus carota ssp. Sativus), Potatoes (Solanum tuberosum), and Cucumbers (Cucumis Sativus). Journal of Agricultural and Food Chemistry, 59(20), 11011-11018. https://doi.org/10.1021/jf201355y Lee, C. K., Kang, S. G., Lee, J. T., Lee, S.-W., Kim, J. H., Kim, D. H., . . . Park, Y. B. (2015). Effects of perfluorooctane sulfuric acid on placental PRL-family hormone production and fetal growth retardation in mice. Molecular and Cellular Endocrinology, 401, 165-172. https://doi.org/https://doi.org/10.1016/j.mce.2014.10.026 Leeman, W. R., Van Den Berg, K. J., & Houben, G. F. (2007). Transfer of chemicals from feed to animal products: The use of transfer factors in risk assessment. Food Addit Contam, 24(1), 1-13. https://doi.org/10.1080/02652030600815512 Lerch, M., Fengler, R., Mbog, G.-R., Nguyen, K. H., & Granby, K. (2023). Food simulants and real food – What do we know about the migration of PFAS from paper based food contact materials? Food Packaging and Shelf Life, 35, 100992. https://doi.org/https://doi.org/10.1016/j.fpsl.2022.100992 Leung, S. C. E., Wanninayake, D., Chen, D., Nguyen, N.-T., & Li, Q. (2023). Physicochemical properties and interactions of perfluoroalkyl substances (PFAS) - Challenges and opportunities in sensing and remediation. Science of The Total Environment, 905, 166764. https://doi.org/https://doi.org/10.1016/j.scitotenv.2023.166764 Li, M., Wang, Y.-S., Elwell-Cuddy, T., Baynes, R. E., Tell, L. A., Davis, J. L., . . . Lin, Z. (2021). Physiological parameter values for physiologically based pharmacokinetic models in food-producing animals. Part III: Sheep and goat. Journal of Veterinary Pharmacology and Therapeutics, 44(4), 456-477. https://doi.org/https://doi.org/10.1111/jvp.12938 Li, X., Dong, S., Zhang, W., Fan, X., Wang, R., Wang, P., & Su, X. (2019). The occurrence of perfluoroalkyl acids in an important feed material (fishmeal) and its potential risk through the farm-to-fork pathway to humans. Journal of Hazardous Materials, 367, 559-567. https://doi.org/https://doi.org/10.1016/j.jhazmat.2018.12.103 Li, X., Gao, K., Dong, S., Liu, X., Fu, K., Wang, P., . . . Fu, J. (2019). Length-specific occurrence and profile of perfluoroalkyl acids (PFAAs) in animal protein feeds. Journal of Hazardous Materials, 373, 224-231. https://doi.org/https://doi.org/10.1016/j.jhazmat.2019.03.074 Li, X., Liu, Y., Yin, Y., Wang, P., & Su, X. (2023). Occurrence of some legacy and emerging contaminants in feed and food and their ranking priorities for human exposure. Chemosphere, 321, 138117. https://doi.org/https://doi.org/10.1016/j.chemosphere.2023.138117 Li, Y., Ramdhan, D. H., Naito, H., Yamagishi, N., Ito, Y., Hayashi, Y., . . . Nakajima, T. (2011). Ammonium perfluorooctanoate may cause testosterone reduction by adversely affecting testis in relation to PPARα. Toxicology Letters, 205(3), 265-272. https://doi.org/https://doi.org/10.1016/j.toxlet.2011.06.015 Li, Z., & Fantke, P. (2023). Framework for defining pesticide maximum residue levels in feed: applications to cattle and sheep. Pest Management Science, 79(2), 748-759. https://doi.org/https://doi.org/10.1002/ps.7241 Lin, J. H., Sugiyama, Y., Awazu, S., & Hanano, M. (1982). In vitro andin vivo evaluation of the tissue-to-blood partition coefficient for physiological pharmacokinetic models. Journal of Pharmacokinetics and Biopharmaceutics, 10(6), 637-647. https://doi.org/10.1007/BF01062545 Lin, T.-W., Chen, M.-K., Lin, C.-C., Chen, M.-H., Tsai, M.-S., Chan, D.-C., . . . Chen, P.-C. (2020). Association between exposure to perfluoroalkyl substances and metabolic syndrome and related outcomes among older residents living near a Science Park in Taiwan. International Journal of Hygiene and Environmental Health, 230, 113607. https://doi.org/https://doi.org/10.1016/j.ijheh.2020.113607 Lin, Z., & Fisher, J. W. (2020). Chapter 1 - A history and recent efforts of selected physiologically based pharmacokinetic modeling topics. In J. W. Fisher, J. M. Gearhart, & Z. Lin (Eds.), Physiologically Based Pharmacokinetic (PBPK) Modeling (pp. 1-26). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-818596-4.00001-1 Lin, Z., Li, M., Wang, Y.-S., Tell, L. A., Baynes, R. E., Davis, J. L., . . . Riviere, J. E. (2020). Physiological parameter values for physiologically based pharmacokinetic models in food-producing animals. Part I: Cattle and swine. Journal of Veterinary Pharmacology and Therapeutics, 43(5), 385-420. https://doi.org/https://doi.org/10.1111/jvp.12861 Liu, C., Gin, K. Y. H., Chang, V. W. C., Goh, B. P. L., & Reinhard, M. (2011). Novel Perspectives on the Bioaccumulation of PFCs – the Concentration Dependency. Environmental Science & Technology, 45(22), 9758-9764. https://doi.org/10.1021/es202078n LIU, X., ZHANG, H., LI, J., SHEN, J., XIAO, C., & ZHAO, F. (2016). Investigation of Contamination Levels of Perfluorinated Compounds in Eggs from Nine Coastal Provinces of China[J]. . FOOD SCIENCE. https://doi.org/10.7506/spkx1002-6630-201604034. Liu, Y., Zhang, Q., Li, Y., Hao, Y., Li, J., Zhang, L., . . . Li, X. (2022). Occurrence of per- and polyfluoroalkyl substances (PFASs) in raw milk and feed from nine Chinese provinces and human exposure risk assessment. Chemosphere, 300, 134521. https://doi.org/https://doi.org/10.1016/j.chemosphere.2022.134521 Loccisano, A. E., Campbell, J. L., Andersen, M. E., & Clewell, H. J. (2011). Evaluation and prediction of pharmacokinetics of PFOA and PFOS in the monkey and human using a PBPK model. Regulatory Toxicology and Pharmacology, 59(1), 157-175. https://doi.org/https://doi.org/10.1016/j.yrtph.2010.12.004 Lu, Y., Meng, L., Ma, D., Cao, H., Liang, Y., Liu, H., . . . Jiang, G. (2021). The occurrence of PFAS in human placenta and their binding abilities to human serum albumin and organic anion transporter 4. Environmental Pollution, 273, 116460. https://doi.org/https://doi.org/10.1016/j.envpol.2021.116460 Luebker, D. J., Hansen, K. J., Bass, N. M., Butenhoff, J. L., & Seacat, A. M. (2002). Interactions of flurochemicals with rat liver fatty acid-binding protein. Toxicology, 176(3), 175-185. https://doi.org/https://doi.org/10.1016/S0300-483X(02)00081-1 Lupton, S. J., Dearfield, K. L., Johnston, J. J., Wagner, S., & Huwe, J. K. (2015). Perfluorooctane Sulfonate Plasma Half-Life Determination and Long-Term Tissue Distribution in Beef Cattle (Bos taurus). Journal of Agricultural and Food Chemistry, 63(51), 10988-10994. https://doi.org/10.1021/acs.jafc.5b04565 Lupton, S. J., Huwe, J. K., Smith, D. J., Dearfield, K. L., & Johnston, J. J. (2012). Absorption and Excretion of 14C-Perfluorooctanoic Acid (PFOA) in Angus Cattle (Bos taurus). Journal of Agricultural and Food Chemistry, 60(4), 1128-1134. https://doi.org/10.1021/jf2042505 Lupton, S. J., Huwe, J. K., Smith, D. J., Dearfield, K. L., & Johnston, J. J. (2014). Distribution and Excretion of Perfluorooctane Sulfonate (PFOS) in Beef Cattle (Bos taurus). Journal of Agricultural and Food Chemistry, 62(5), 1167-1173. https://doi.org/10.1021/jf404355b Lupton, S. J., Smith, D. J., Scholljegerdes, E., Ivey, S., Young, W., Genualdi, S., . . . Johnston, J. J. (2022). Plasma and Skin Per- and Polyfluoroalkyl Substance (PFAS) Levels in Dairy Cattle with Lifetime Exposures to PFAS-Contaminated Drinking Water and Feed. Journal of Agricultural and Food Chemistry, 70(50), 15945-15954. https://doi.org/10.1021/acs.jafc.2c06620 MacKenzie, S. (2010). H‐28548: Subchronic toxicity 90‐day gavage study in mice (DuPont). In: Newark, DE: EI du Pont de Nemours and company DuPont Haskell global centers …. MacLachlan, D. J. (2010). Physiologically based pharmacokinetic (PBPK) model for residues of lipophilic pesticides in poultry. Food Additives & Contaminants: Part A, 27(3), 302-314. https://doi.org/10.1080/19440040903296683 Macon, M. B., Villanueva, L. R., Tatum-Gibbs, K., Zehr, R. D., Strynar, M. J., Stanko, J. P., . . . Fenton, S. E. (2011). Prenatal perfluorooctanoic acid exposure in CD-1 mice: low-dose developmental effects and internal dosimetry. Toxicol Sci, 122(1), 134-145. https://doi.org/10.1093/toxsci/kfr076 Mamsen, L. S., Björvang, R. D., Mucs, D., Vinnars, M. T., Papadogiannakis, N., Lindh, C. H., . . . Damdimopoulou, P. (2019). Concentrations of perfluoroalkyl substances (PFASs) in human embryonic and fetal organs from first, second, and third trimester pregnancies. Environ Int, 124, 482-492. https://doi.org/10.1016/j.envint.2019.01.010 Mao, W., Li, M., Xue, X., Cao, W., Wang, X., Xu, F., & Jiang, W. (2023). Bioaccumulation and toxicity of perfluorooctanoic acid and perfluorooctane sulfonate in marine algae Chlorella sp. Science of The Total Environment, 870, 161882. https://doi.org/https://doi.org/10.1016/j.scitotenv.2023.161882 Michigan PFAS Action Response Team. (2022). FAQ: PFAS and pets and livestock health. Michigan PFAS Action Response Team. Retrieved June 30 from https://www.michigan.gov/pfasresponse/faq/categories/pfas-and-pets-and-livestock-healt Mikkonen, A. T., Martin, J., Upton, R. N., Moenning, J.-L., Numata, J., Taylor, M. P., . . . Mackenzie, L. (2023). Dynamic exposure and body burden models for per- and polyfluoroalkyl substances (PFAS) enable management of food safety risks in cattle. Environment International, 180, 108218. https://doi.org/https://doi.org/10.1016/j.envint.2023.108218 Mikolajczyk, S., Pajurek, M., & Warenik-Bany, M. (2022). Perfluoroalkyl substances in hen eggs from different types of husbandry. Chemosphere, 303, 134950. https://doi.org/https://doi.org/10.1016/j.chemosphere.2022.134950 Mikołajczyk, S., Warenik-Bany, M., & Pajurek, M. (2023). Occurrence of perfluoroalkyl substances in cow's, goat's and sheep's milk - dietary intake and risk assessment. J Vet Res, 67(4), 593-602. https://doi.org/10.2478/jvetres-2023-0058 National Research Council. (2007). Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids. The National Academies Press. https://doi.org/doi:10.17226/11654 National Toxicology Program. (2023). NTP technical report on the toxicology and carcinogenesis studies of perfluorooctanoic acid (CASRN 335-67-1) administered in feed to Sprague Dawley (Hsd: Sprague Dawley® SD®) rats (revised). Newsted, J. L., Beach, S. A., Gallagher, S. P., & Giesy, J. P. (2006). Pharmacokinetics and Acute Lethality of Perfluorooctanesulfonate (PFOS) to Juvenile Mallard and Northern Bobwhite. Archives of Environmental Contamination and Toxicology, 50(3), 411-420. https://doi.org/10.1007/s00244-005-1137-x Newsted, J. L., Coady, K. K., Beach, S. A., Butenhoff, J. L., Gallagher, S., & Giesy, J. P. (2007). Effects of perfluorooctane sulfonate on mallard and northern bobwhite quail exposed chronically via the diet. Environmental Toxicology and Pharmacology, 23(1), 1-9. https://doi.org/https://doi.org/10.1016/j.etap.2006.04.008 Ngo, H. T., Hetland, R. B., Sabaredzovic, A., Haug, L. S., & Steffensen, I.-L. (2014). In utero exposure to perfluorooctanoate (PFOA) or perfluorooctane sulfonate (PFOS) did not increase body weight or intestinal tumorigenesis in multiple intestinal neoplasia (Min/+) mice. Environmental Research, 132, 251-263. https://doi.org/https://doi.org/10.1016/j.envres.2014.03.033 Noker, P. (2003). A Pharmacokinetic Study of Perfluorobutanesulfonate in the Cynomolgus Monkey (3M-EPA-00174301 ). S. R. Institute. NSW Government Local Land Services. (2021). Pig Nutrition. https://www.lls.nsw.gov.au/__data/assets/pdf_file/0005/1317902/Pig-Newsletter-13-Pig-Nutrition-.pdf Numata, J., Kowalczyk, J., Adolphs, J., Ehlers, S., Schafft, H., Fuerst, P., . . . Greiner, M. (2014). Toxicokinetics of Seven Perfluoroalkyl Sulfonic and Carboxylic Acids in Pigs Fed a Contaminated Diet. Journal of Agricultural and Food Chemistry, 62(28), 6861-6870. https://doi.org/10.1021/jf405827u OECD. (2013). Synthesis paper on per- and polyfluorinated chemicals (PFCs). Environment, Health and Safety, Environment Directorate. https://www.oecd.org/env/ehs/risk-management/PFC_FINAL-Web.pdf Ohmori, K., Kudo, N., Katayama, K., & Kawashima, Y. (2003). Comparison of the toxicokinetics between perfluorocarboxylic acids with different carbon chain length. Toxicology, 184(2), 135-140. https://doi.org/https://doi.org/10.1016/S0300-483X(02)00573-5 Ojo, A. F., Peng, C., & Ng, J. C. (2020). Combined effects and toxicological interactions of perfluoroalkyl and polyfluoroalkyl substances mixtures in human liver cells (HepG2). Environmental Pollution, 263, 114182. https://doi.org/https://doi.org/10.1016/j.envpol.2020.114182 Ojo, A. F., Peng, C., & Ng, J. C. (2021). Assessing the human health risks of per- and polyfluoroalkyl substances: A need for greater focus on their interactions as mixtures. Journal of Hazardous Materials, 407, 124863. https://doi.org/https://doi.org/10.1016/j.jhazmat.2020.124863 Olsen, G. W., Burris, J. M., Ehresman, D. J., Froehlich, J. W., Seacat, A. M., Butenhoff, J. L., & Zobel, L. R. (2007). Half-life of serum elimination of perfluorooctanesulfonate,perfluorohexanesulfonate, and perfluorooctanoate in retired fluorochemical production workers. Environ Health Perspect, 115(9), 1298-1305. https://doi.org/10.1289/ehp.10009 Önel, S. E., Sungur, Ş., & Köroğlu, M. (2019). Determination of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) in livestock feeds. South African Journal of Animal Science, 48(6). Otsuki, T., Wilson, J. S., & Sewadeh, M. (2001). What price precaution? European harmonisation of aflatoxin regulations and African groundnut exports. European Review of Agricultural Economics, 28(3), 263-284. https://doi.org/10.1093/erae/28.3.263 Pérez, F., Nadal, M., Navarro-Ortega, A., Fàbrega, F., Domingo, J. L., Barceló, D., & Farré, M. (2013). Accumulation of perfluoroalkyl substances in human tissues. Environment International, 59, 354-362. https://doi.org/https://doi.org/10.1016/j.envint.2013.06.004 Pajurek, M., Warenik-Bany, M., & Mikolajczyk, S. (2023). Dioxin transfer simulation from feed to animal tissues and risk assessment. Chemosphere, 313, 137379. https://doi.org/https://doi.org/10.1016/j.chemosphere.2022.137379 Penrod, E. (2023). Australian scientist looks to mitigate PFAS in animal feed. https://www.feedstrategy.com/animal-feed-regulations-safety/article/15443466/australian-scientist-looks-to-mitigate-pfas-in-animal-feed Pfuhl, R., Bellmann, O., Kuehn, C., Teuscher, F., Ender, K., & Wegner, J. (2007). Beef versus dairy cattle: A comparison of feed conversion, carcass composition, and meat quality. Archiv fur Tierzucht, 50, 59-70. https://doi.org/10.5194/aab-50-59-2007 Plummer, M., Best, N., Cowles, K., & Vines, K. (2006). CODA: Convergence Diagnosis and Output Analysis for MCMC. R News, 6(1), 7-11. https://journal.r-project.org/archive/ Poothong, S., Papadopoulou, E., Padilla-Sánchez, J. A., Thomsen, C., & Haug, L. S. (2020). Multiple pathways of human exposure to poly- and perfluoroalkyl substances (PFASs): From external exposure to human blood. Environment International, 134, 105244. https://doi.org/https://doi.org/10.1016/j.envint.2019.105244 Qi, Y. J., Zhou, Z., Shi, Y. L., & Meng, Z. F. (2013). [Pollution levels of perfluorochemicals in chicken eggs and duck eggs from the markets in Beijing]. Huan Jing Ke Xue, 34(1), 244-250. Ragnarsdóttir, O., Abdallah, M. A.-E., & Harrad, S. (2022). Dermal uptake: An important pathway of human exposure to perfluoroalkyl substances? Environmental Pollution, 307, 119478. https://doi.org/https://doi.org/10.1016/j.envpol.2022.119478 Rayne, S., & Forest, K. (2009). Perfluoroalkyl sulfonic and carboxylic acids: A critical review of physicochemical properties, levels and patterns in waters and wastewaters, and treatment methods. Journal of Environmental Science and Health, Part A, 44(12), 1145-1199. https://doi.org/10.1080/10934520903139811 Reardon, A. J. F., Rowan-Carroll, A., Ferguson, S. S., Leingartner, K., Gagne, R., Kuo, B., . . . Atlas, E. (2021). Potency Ranking of Per- and Polyfluoroalkyl Substances Using High-Throughput Transcriptomic Analysis of Human Liver Spheroids. Toxicological Sciences, 184(1), 154-169. https://doi.org/10.1093/toxsci/kfab102 Rowan-Carroll, A., Reardon, A., Leingartner, K., Gagné, R., Williams, A., Meier, M. J., . . . Yauk, C. (2021). High-Throughput Transcriptomic Analysis of Human Primary Hepatocyte Spheroids Exposed to Per- and Polyfluoroalkyl Substances as a Platform for Relative Potency Characterization. Toxicological Sciences, 181(2), 199-214. https://doi.org/10.1093/toxsci/kfab039 Rupp, J., Guckert, M., Berger, U., Drost, W., Mader, A., Nödler, K., . . . Reemtsma, T. (2023). Comprehensive target analysis and TOP assay of per- and polyfluoroalkyl substances (PFAS) in wild boar livers indicate contamination hot-spots in the environment. Science of The Total Environment, 871, 162028. https://doi.org/https://doi.org/10.1016/j.scitotenv.2023.162028 Sato, I., Kawamoto, K., Nishikawa, Y., Tsuda, S., Yoshida, M., Yaegashi, K., . . . Jin, Y. (2009). Neurotoxicity of perfluorooctane sulfonate (PFOS) in rats and mice after single oral exposure. The Journal of Toxicological Sciences, 34(5), 569-574. https://doi.org/10.2131/jts.34.569 Schlummer, M., Sölch, C., Meisel, T., Still, M., Gruber, L., & Wolz, G. (2015). Emission of perfluoroalkyl carboxylic acids (PFCA) from heated surfaces made of polytetrafluoroethylene (PTFE) applied in food contact materials and consumer products. Chemosphere, 129, 46-53. https://doi.org/https://doi.org/10.1016/j.chemosphere.2014.11.036 Seacat, A. M., Thomford, P. J., Hansen, K. J., Olsen, G. W., Case, M. T., & Butenhoff, J. L. (2002). Subchronic toxicity studies on perfluorooctanesulfonate potassium salt in cynomolgus monkeys. Toxicol Sci, 68(1), 249-264. https://doi.org/10.1093/toxsci/68.1.249 Seals, R., Bartell, S. M., & Steenland, K. (2011). Accumulation and Clearance of Perfluorooctanoic Acid (PFOA) in Current and Former Residents of an Exposed Community. Environmental Health Perspectives, 119(1), 119-124. https://doi.org/doi:10.1289/ehp.1002346 Secretariat of the Stockholm Convention. (2019). Stockholm Convention. https://chm.pops.int/Implementation/IndustrialPOPs/PFAS/Overview/tabid/5221/Default.aspx Shin, H.-M., Vieira, V. M., Ryan, P. B., Steenland, K., & Bartell, S. M. (2011). Retrospective Exposure Estimation and Predicted versus Observed Serum Perfluorooctanoic Acid Concentrations for Participants in the C8 Health Project. Environmental Health Perspectives, 119(12), 1760-1765. https://doi.org/doi:10.1289/ehp.1103729 Smith, J., Beuthe, B., Dunk, M., Demeure, S., Carmona, J. M. M., Medve, A., . . . Slenders, H. (2016). Environmental fate and effects of polyand perfluoroalkyl substances (PFAS). 1-107. Son, H. Y., Kim, S. H., Shin, H. I., Bae, H. I., & Yang, J. H. (2008). Perfluorooctanoic acid-induced hepatic toxicity following 21-day oral exposure in mice. Arch Toxicol, 82(4), 239-246. https://doi.org/10.1007/s00204-007-0246-x Stahl, T., Falk, S., Failing, K., Berger, J., Georgii, S., & Brunn, H. (2012). Perfluorooctanoic acid and perfluorooctane sulfonate in liver and muscle tissue from wild boar in Hesse, Germany. Arch Environ Contam Toxicol, 62(4), 696-703. https://doi.org/10.1007/s00244-011-9726-3 Stahl, T., Heyn, J., Thiele, H., Hüther, J., Failing, K., Georgii, S., & Brunn, H. (2009). Carryover of Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonate (PFOS) from Soil to Plants. Archives of Environmental Contamination and Toxicology, 57(2), 289-298. https://doi.org/10.1007/s00244-008-9272-9 Stramenga, A., Tavoloni, T., Stecconi, T., Galarini, R., Giannotti, M., Siracusa, M., . . . Piersanti, A. (2021). Perfluoroalkyl and polyfluoroalkyl substances (PFASs): An optimized LC-MS/MS procedure for feed analysis. Journal of Chromatography B, 1186, 123009. https://doi.org/https://doi.org/10.1016/j.jchromb.2021.123009 Su, T.-C., Kuo, C.-C., Hwang, J.-J., Lien, G.-W., Chen, M.-F., & Chen, P.-C. (2016). Serum perfluorinated chemicals, glucose homeostasis and the risk of diabetes in working-aged Taiwanese adults. Environment International, 88, 15-22. https://doi.org/https://doi.org/10.1016/j.envint.2015.11.016 Suominen, K., Hallikainen, A., Ruokojärvi, P., Airaksinen, R., Koponen, J., Rannikko, R., & Kiviranta, H. (2011). Occurrence of PCDD/F, PCB, PBDE, PFAS, and Organotin Compounds in Fish Meal, Fish Oil and Fish Feed. Chemosphere, 85(3), 300-306. https://doi.org/https://doi.org/10.1016/j.chemosphere.2011.06.010 Szabo, D., Moodie, D., Green, M. P., Mulder, R. A., & Clarke, B. O. (2022). Field-Based Distribution and Bioaccumulation Factors for Cyclic and Aliphatic Per- and Polyfluoroalkyl Substances (PFASs) in an Urban Sedentary Waterbird Population. Environmental Science & Technology, 56(12), 8231-8244. https://doi.org/10.1021/acs.est.2c01965 Tahziz, A., Mohamad Haron, D. E., & Aziz, M. Y. (2020). Liquid Chromatographic Tandem Mass Spectrometric (LC-MS/MS) Determination of Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoic Acid (PFOA) in the Yolk of Poultry Eggs in Malaysia. Molecules, 25(10). https://doi.org/10.3390/molecules25102335 Taiwan Food and Drug Administration, & National Health Research Institutes. (2012a). National Food Consumption Database http://tnfcds.nhri.edu.tw/ Taiwan Food and Drug Administration, & National Health Research Institutes. (2012b). National Food Consumption Database(食物品項-攝食量計算結果(資料來源2005-2012 營養調查)) http://tnfcds.nhri.edu.tw/ Taiwan Food and Drug Administration, & National Health Research Institutes. (2023). National Food Consumption Database(食物品項-攝食量計算結果(資料來源2017-2020 營養調查)) http://tnfcds.nhri.edu.tw/ Tan, Y.-M., Worley, R. R., Leonard, J. A., & Fisher, J. W. (2018). Challenges Associated With Applying Physiologically Based Pharmacokinetic Modeling for Public Health Decision-Making. Toxicological Sciences, 162(2), 341-348. https://doi.org/10.1093/toxsci/kfy010 Tarazona, J. V., Rodríguez, C., Alonso, E., Sáez, M., González, F., San Andrés, M. D., . . . San Andrés, M. I. (2015). Toxicokinetics of perfluorooctane sulfonate in birds under environmentally realistic exposure conditions and development of a kinetic predictive model. Toxicology Letters, 232(2), 363-368. https://doi.org/https://doi.org/10.1016/j.toxlet.2014.11.022 Tavoloni, T., Stramenga, A., Stecconi, T., Gavaudan, S., Moscati, L., Sagratini, G., . . . Piersanti, A. (2023). Brominated flame retardants (PBDEs and HBCDs) and perfluoroalkyl substances (PFASs) in wild boars (Sus scrofa) from Central Italy. Science of The Total Environment, 858, 159745. https://doi.org/https://doi.org/10.1016/j.scitotenv.2022.159745 Teymourian, T., Teymoorian, T., Kowsari, E., & Ramakrishna, S. (2021). A review of emerging PFAS contaminants: sources, fate, health risks, and a comprehensive assortment of recent sorbents for PFAS treatment by evaluating their mechanism. Research on Chemical Intermediates, 47(12), 4879-4914. https://doi.org/10.1007/s11164-021-04603-7 The Environmental Working Group. (2023). Global danger: Wildlife at risk from PFAS exposure. Thilmany, D. D., & Barrett, C. B. (1997). Regulatory Barriers in an Integrating World Food Market. Applied Economic Perspectives and Policy, 19(1), 91-107. https://doi.org/https://doi.org/10.2307/1349680 Thomas, A., O'Hara, R., Ligges, U., & Sturtz, S. (2006). Making BUGS open. R News., 6(1), 12-17. http://cran.r-project.org/doc/Rnews Thompson, C. M., Fitch, S. E., Ring, C., Rish, W., Cullen, J. M., & Haws, L. C. (2019). Development of an oral reference dose for the perfluorinated compound GenX. J Appl Toxicol, 39(9), 1267-1282. https://doi.org/10.1002/jat.3812 Tucker, D. K., Macon, M. B., Strynar, M. J., Dagnino, S., Andersen, E., & Fenton, S. E. (2015). The mammary gland is a sensitive pubertal target in CD-1 and C57Bl/6 mice following perinatal perfluorooctanoic acid (PFOA) exposure. Reproductive Toxicology, 54, 26-36. https://doi.org/https://doi.org/10.1016/j.reprotox.2014.12.002 Upson, K., Shearston, J. A., & Kioumourtzoglou, M. A. (2022). An Epidemiologic Review of Menstrual Blood Loss as an Excretion Route for Per- and Polyfluoroalkyl Substances. Curr Environ Health Rep, 9(1), 29-37. https://doi.org/10.1007/s40572-022-00332-0 USEPA. (1993). Reference Dose (RfD): description and use in health risk assessments background document 1A, March 15, 1993 (631092 ). I. R. I. S. U.S. Environmental Protection Agency. https://www.epa.gov/iris/reference-dose-rfd-description-and-use-health-risk-assessments USEPA. (2000). Supplementary Guidance for Conducting Health Risk Assessment of Chemical Mixtures. Retrieved from https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=20533 USEPA. (2014a). Emerging Contaminants Fact Sheet – Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoic Acid (PFOA). EPA 505-F-14-001. March Fact Sheet Retrieved from https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P100LTG6.txt USEPA. (2014b). Technical Fact Sheet – Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoic Acid (PFOA. EPA 505-F-17-001). USEPA. (2021a). Proposed Approaches to the Derivation of a Draft Maximum Contaminant Level Goal for Perfluorooctane Sulfonic Acid (PFOS) (CASRN 1763-23-1) in Drinking Water. Washington, DC Retrieved from https://sab.epa.gov/ords/sab/f?p=100:0:2797755709305:APPLICATION_PROCESS=AGENCY_REVIEW:::AR_ID:2467 USEPA. (2021b). Proposed Approaches to the Derivation of a Draft Maximum Contaminant Level Goal for Perfluorooctanoic Acid (PFOA) (CASRN 335-67-1) in Drinking Water. Washington, DC Retrieved from https://sab.epa.gov/ords/sab/f?p=100:0:2797755709305:APPLICATION_PROCESS=AGENCY_REVIEW:::AR_ID:2469 USEPA. (2022a). INTERIM Drinking Water Health Advisory: Perfluorooctane Sulfonic Acid (PFOS). (CASRN 1763-23-1. EPA/822/R-22/004.). Washington, DC USEPA. (2022b). INTERIM Drinking Water Health Advisory: Perfluorooctanoic Acid (PFOA) (CASRN 335-67-1. EPA/822/R-22/003). Washington, DC USEPA. (2024a). FINAL Human Health Toxicity Assessment for Perfluorooctane Sulfonic Acid (PFOS) and Related Salts. (815R24007). Washington, DC Retrieved from https://www.epa.gov/system/files/documents/2024-05/final-human-health-toxicity-assessment-pfos.pdf USEPA. (2024b). FINAL Human Health Toxicity Assessment for Perfluorooctanoic Acid (PFOA) and Related Salts. (815R24006). Washington, DC Retrieved from https://www.epa.gov/system/files/documents/2024-05/final-human-health-toxicity-assessment-pfoa.pdf van Asselt, E. D., Kowalczyk, J., van Eijkeren, J. C. H., Zeilmaker, M. J., Ehlers, S., Fürst, P., . . . van der Fels-Klerx, H. J. (2013). Transfer of perfluorooctane sulfonic acid (PFOS) from contaminated feed to dairy milk. Food Chemistry, 141(2), 1489-1495. https://doi.org/https://doi.org/10.1016/j.foodchem.2013.04.035 Vendl, C., Pottier, P., Taylor, M. D., Bräunig, J., Gibson, M. J., Hesselson, D., . . . Nakagawa, S. (2022). Thermal processing reduces PFAS concentrations in blue food – A systematic review and meta-analysis. Environmental Pollution, 304, 119081. https://doi.org/https://doi.org/10.1016/j.envpol.2022.119081 Verstraete, F. (2023). EU policy on perfluoroalkyl substances (PFAS) in food and feed. Vestergren, R., Berger, U., Glynn, A., & Cousins, I. T. (2012). Dietary exposure to perfluoroalkyl acids for the Swedish population in 1999, 2005 and 2010. Environment International, 49, 120-127. https://doi.org/https://doi.org/10.1016/j.envint.2012.08.016 Vestergren, R., Orata, F., Berger, U., & Cousins, I. T. (2013). Bioaccumulation of perfluoroalkyl acids in dairy cows in a naturally contaminated environment. Environmental Science and Pollution Research, 20(11), 7959-7969. https://doi.org/10.1007/s11356-013-1722-x Wan, H. T., Zhao, Y. G., Wei, X., Hui, K. Y., Giesy, J. P., & Wong, C. K. C. (2012). PFOS-induced hepatic steatosis, the mechanistic actions on β-oxidation and lipid transport. Biochimica et Biophysica Acta (BBA) - General Subjects, 1820(7), 1092-1101. https://doi.org/https://doi.org/10.1016/j.bbagen.2012.03.010 Wang, G., Lu, J., Xing, Z., Li, S., Liu, Z., & Tong, Y. (2017). Occurrence, Distribution, and Risk Assessment of Perfluoroalkyl Acids (PFAAs) in Muscle and Liver of Cattle in Xinjiang, China. Int J Environ Res Public Health, 14(9). https://doi.org/10.3390/ijerph14090970 Wang, J., Shi, Y., Pan, Y., & Cai, Y. (2010). Perfluorinated compounds in milk, milk powder and yoghurt purchased from markets in China. Chinese Science Bulletin, 55(11), 1020-1025. https://doi.org/10.1007/s11434-010-0055-0 Wang, L., Wang, Y., Liang, Y., Li, J., Liu, Y., Zhang, J., . . . Jiang, G. (2014). PFOS induced lipid metabolism disturbances in BALB/c mice through inhibition of low density lipoproteins excretion. Scientific Reports, 4(1), 4582. https://doi.org/10.1038/srep04582 Wang, Y.-S., Li, M., Tell, L. A., Baynes, R. E., Davis, J. L., Vickroy, T. W., . . . Lin, Z. (2021). Physiological parameter values for physiologically based pharmacokinetic models in food-producing animals. Part II: Chicken and turkey. Journal of Veterinary Pharmacology and Therapeutics, 44(4), 423-455. https://doi.org/https://doi.org/10.1111/jvp.12931 Wang, Y., Gui, J., Howe, C. G., Emond, J. A., Criswell, R. L., Gallagher, L. G., . . . Romano, M. E. (2024). Association of diet with per- and polyfluoroalkyl substances in plasma and human milk in the New Hampshire Birth Cohort Study. Science of The Total Environment, 933, 173157. https://doi.org/https://doi.org/10.1016/j.scitotenv.2024.173157 Wang, Y., Rogan, W. J., Chen, P.-C., Lien, G.-W., Chen, H.-Y., Tseng, Y.-C., . . . Wang, S.-L. (2014). Association between Maternal Serum Perfluoroalkyl Substances during Pregnancy and Maternal and Cord Thyroid Hormones: Taiwan Maternal and Infant Cohort Study. Environmental Health Perspectives, 122(5), 529-534. https://doi.org/doi:10.1289/ehp.1306925 Wang, Y., Yeung, L. W. Y., Yamashita, N., Taniyasu, S., So, M. K., Murphy, M. B., & Lam, P. K. S. (2008). Perfluorooctane sulfonate (PFOS) and related fluorochemicals in chicken egg in China. Chinese Science Bulletin, 53(4), 501-507. https://doi.org/10.1007/s11434-008-0128-5 Wang, Y., Zhang, X., Wang, M., Cao, Y., Wang, X., Liu, Y., . . . Xu, A. (2015). Mutagenic Effects of Perfluorooctanesulfonic Acid in gpt Delta Transgenic System Are Mediated by Hydrogen Peroxide. Environmental Science & Technology, 49(10), 6294-6303. https://doi.org/10.1021/acs.est.5b00530 Wen, B., Zhang, H., Li, L., Hu, X., Liu, Y., Shan, X.-q., & Zhang, S. (2015). Bioavailability of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in biosolids-amended soils to earthworms (Eisenia fetida). Chemosphere, 118, 361-366. https://doi.org/https://doi.org/10.1016/j.chemosphere.2014.08.009 White, S. S., Kato, K., Jia, L. T., Basden, B. J., Calafat, A. M., Hines, E. P., . . . Fenton, S. E. (2009). Effects of perfluorooctanoic acid on mouse mammary gland development and differentiation resulting from cross-foster and restricted gestational exposures. Reproductive Toxicology, 27(3), 289-298. https://doi.org/https://doi.org/10.1016/j.reprotox.2008.11.054 White, S. S., Stanko, J. P., Kato, K., Calafat, A. M., Hines, E. P., & Fenton, S. E. (2011). Gestational and Chronic Low-Dose PFOA Exposures and Mammary Gland Growth and Differentiation in Three Generations of CD-1 Mice. Environmental Health Perspectives, 119(8), 1070-1076. https://doi.org/doi:10.1289/ehp.1002741 Wilson, T. B., Stevenson, G., Crough, R., de Araujo, J., Fernando, N., Anwar, A., . . . Archer, M. J. G. (2021). Evaluation of Residues in Hen Eggs After Exposure of Laying Hens to Water Containing Per- and Polyfluoroalkyl Substances. Environmental Toxicology and Chemistry, 40(3), 735-743. https://doi.org/https://doi.org/10.1002/etc.4723 Witt, C. C., Gadek, C. R., Cartron, J.-L. E., Andersen, M. J., Campbell, M. L., Castro-Farías, M., . . . Dunnum, J. L. (2024). Extraordinary levels of per- and polyfluoroalkyl substances (PFAS) in vertebrate animals at a New Mexico desert oasis: Multiple pathways for wildlife and human exposure. Environmental Research, 249, 118229. https://doi.org/https://doi.org/10.1016/j.envres.2024.118229 Wong, F., MacLeod, M., Mueller, J. F., & Cousins, I. T. (2014). Enhanced Elimination of Perfluorooctane Sulfonic Acid by Menstruating Women: Evidence from Population-Based Pharmacokinetic Modeling. Environmental Science & Technology, 48(15), 8807-8814. https://doi.org/10.1021/es500796y Worley, R. R., Yang, X., & Fisher, J. (2017). Physiologically based pharmacokinetic modeling of human exposure to perfluorooctanoic acid suggests historical non drinking-water exposures are important for predicting current serum concentrations. Toxicology and Applied Pharmacology, 330, 9-21. https://doi.org/https://doi.org/10.1016/j.taap.2017.07.001 Xia, W., Wan, Y., Li, Y.-y., Zeng, H., Lv, Z., Li, G., . . . Xu, S.-q. (2011). PFOS prenatal exposure induce mitochondrial injury and gene expression change in hearts of weaned SD rats. Toxicology, 282(1), 23-29. https://doi.org/https://doi.org/10.1016/j.tox.2011.01.011 Xie, S., Cui, Y., Yang, Y., Meng, K., Pan, Y., Liu, Z., & Chen, D. (2020). Tissue distribution and bioaccumulation of 8:2 fluorotelomer alcohol and its metabolites in pigs after oral exposure. Chemosphere, 249, 126016. https://doi.org/https://doi.org/10.1016/j.chemosphere.2020.126016 Xing, J., Wang, G., Zhao, J., Wang, E., Yin, B., Fang, D., . . . Chen, W. (2016). Toxicity assessment of perfluorooctane sulfonate using acute and subchronic male C57BL/6J mouse models. Environmental Pollution, 210, 388-396. https://doi.org/https://doi.org/10.1016/j.envpol.2015.12.008 Xing, Y., Zhou, Y., Zhang, X., Lin, X., Li, J., Liu, P., . . . Huang, Z. (2023). The sources and bioaccumulation of per- and polyfluoroalkyl substances in animal-derived foods and the potential risk of dietary intake. Science of The Total Environment, 905, 167313. https://doi.org/https://doi.org/10.1016/j.scitotenv.2023.167313 Xing, Z., Lu, J., Liu, Z., Li, S., Wang, G., & Wang, X. (2016). Occurrence of Perfluorooctanoic Acid and Perfluorooctane Sulfonate in Milk and Yogurt and Their Risk Assessment. Int J Environ Res Public Health, 13(10). https://doi.org/10.3390/ijerph13101037 Yahia, D., Haruka, I., Kagashi, Y., & Tsuda, S. (2016). 8-Hydroxy-2′-deoxyguanosine as a biomarker of oxidative DNA damage induced by perfluorinated compounds in TK6 cells. Environmental Toxicology, 31(2), 192-200. https://doi.org/https://doi.org/10.1002/tox.22034 Yang, B., Zou, W., Hu, Z., Liu, F., Zhou, L., Yang, S., . . . Zhang, D. (2014). Involvement of Oxidative Stress and Inflammation in Liver Injury Caused by Perfluorooctanoic Acid Exposure in Mice. BioMed Research International, 2014, 409837. https://doi.org/10.1155/2014/409837 Yang, D., Han, J., Hall, D. R., Sun, J., Fu, J., Kutarna, S., . . . Peng, H. (2020). Nontarget Screening of Per- and Polyfluoroalkyl Substances Binding to Human Liver Fatty Acid Binding Protein. Environ Sci Technol, 54(9), 5676-5686. https://doi.org/10.1021/acs.est.0c00049 Yang, H.-B., Zhao, Y.-Z., Tang, Y., Gong, H.-Q., Guo, F., Sun, W.-H., . . . Chen, F. (2019). Antioxidant defence system is responsible for the toxicological interactions of mixtures: A case study on PFOS and PFOA in Daphnia magna. Science of The Total Environment, 667, 435-443. https://doi.org/https://doi.org/10.1016/j.scitotenv.2019.02.418 Yeung, L. W. Y., Loi, E. I. H., Wong, V. Y. Y., Guruge, K. S., Yamanaka, N., Tanimura, N., . . . Lam, P. K. S. (2009). Biochemical Responses and Accumulation Properties of Long-Chain Perfluorinated Compounds (PFOS/PFDA/PFOA) in Juvenile Chickens (Gallus gallus). Archives of Environmental Contamination and Toxicology, 57(2), 377-386. https://doi.org/10.1007/s00244-008-9278-3 Yoo, H., Guruge, K. S., Yamanaka, N., Sato, C., Mikami, O., Miyazaki, S., . . . Giesy, J. P. (2009). Depuration kinetics and tissue disposition of PFOA and PFOS in white leghorn chickens (Gallus gallus) administered by subcutaneous implantation. Ecotoxicology and Environmental Safety, 72(1), 26-36. https://doi.org/https://doi.org/10.1016/j.ecoenv.2007.09.007 Young, W., Wiggins, S., Limm, W., Fisher, C. M., DeJager, L., & Genualdi, S. (2022). Analysis of Per- and Poly(fluoroalkyl) Substances (PFASs) in Highly Consumed Seafood Products from U.S. Markets. Journal of Agricultural and Food Chemistry, 70(42), 13545-13553. https://doi.org/10.1021/acs.jafc.2c04673 Yuan, S., & Chen, H. (2019). Mathematical rules for synergistic, additive, and antagonistic effects of multi-drug combinations and their application in research and development of combinatorial drugs and special medical food combinations. Food Science and Human Wellness, 8(2), 136-141. https://doi.org/https://doi.org/10.1016/j.fshw.2019.01.003 Yun, J., Jang, E. C., Kwon, S. C., Min, Y. S., & Lee, Y. J. (2023). The association of perfluoroalkyl substances (PFAS) exposure and kidney function in Korean adolescents using data from Korean National Environmental Health Survey (KoNEHS) cycle 4 (2018-2020): a cross-sectional study. Ann Occup Environ Med, 35, e5. https://doi.org/10.35371/aoem.2023.35.e5 Zafeiraki, E., Costopoulou, D., Vassiliadou, I., Leondiadis, L., Dassenakis, E., Hoogenboom, R. L. A. P., & van Leeuwen, S. P. J. (2016). Perfluoroalkylated substances (PFASs) in home and commercially produced chicken eggs from the Netherlands and Greece. Chemosphere, 144, 2106-2112. https://doi.org/https://doi.org/10.1016/j.chemosphere.2015.10.105 Zafeiraki, E., Vassiliadou, I., Costopoulou, D., Leondiadis, L., Schafft, H. A., Hoogenboom, R. L. A. P., & van Leeuwen, S. P. J. (2016). Perfluoroalkylated substances in edible livers of farm animals, including depuration behaviour in young sheep fed with contaminated grass. Chemosphere, 156, 280-285. https://doi.org/https://doi.org/10.1016/j.chemosphere.2016.05.003 Zahm, S., Bonde, J. P., Chiu, W. A., Hoppin, J., Kanno, J., Abdallah, M., . . . Schubauer-Berigan, M. K. (2024). Carcinogenicity of perfluorooctanoic acid and perfluorooctanesulfonic acid. The Lancet Oncology, 25(1), 16-17. https://doi.org/https://doi.org/10.1016/S1470-2045(23)00622-8 Zhang, H., Lu, Y., Luo, B., Yan, S., Guo, X., & Dai, J. (2014). Proteomic Analysis of Mouse Testis Reveals Perfluorooctanoic Acid-Induced Reproductive Dysfunction via Direct Disturbance of Testicular Steroidogenic Machinery. Journal of Proteome Research, 13(7), 3370-3385. https://doi.org/10.1021/pr500228d Zhang, L., Ren, X.-M., & Guo, L.-H. (2013). Structure-Based Investigation on the Interaction of Perfluorinated Compounds with Human Liver Fatty Acid Binding Protein. Environmental Science & Technology, 47(19), 11293-11301. https://doi.org/10.1021/es4026722 Zhang, T., Sun, H., Qin, X., Gan, Z., & Kannan, K. (2015). PFOS and PFOA in paired urine and blood from general adults and pregnant women: assessment of urinary elimination. Environmental Science and Pollution Research, 22(7), 5572-5579. https://doi.org/10.1007/s11356-014-3725-7 Zhao, B., Li, L., Liu, J., Li, H., Zhang, C., Han, P., . . . Chu, Y. (2014). Exposure to Perfluorooctane Sulfonate In Utero Reduces Testosterone Production in Rat Fetal Leydig Cells. PLOS ONE, 9(1), e78888. https://doi.org/10.1371/journal.pone.0078888 Zhou, W., Zhao, S., Tong, C., Chen, L., Yu, X., Yuan, T., . . . Zhang, J. (2019). Dietary intake, drinking water ingestion and plasma perfluoroalkyl substances concentration in reproductive aged Chinese women. Environ Int, 127, 487-494. https://doi.org/10.1016/j.envint.2019.03.075 王正宏. (1972). 農業知識入口網:肉牛如何飼養才能獲利. https://kmweb.moa.gov.tw/redirect_files.php?id=110458 吳焜裕. (2020). 健康風險評估:科學決策之基礎. 新文京. 邱皓政. (2020). 貝氏統計:原理與應用. 雙葉書廊. 美國肉類出口協會. (2005). 美國牛肉之生產. https://www.usmef.org.tw/beefproduction 財團法人中央畜產會. (2022). 肉牛產業現況. 陳盈豪. (1995). 農業知識入口網:羔羊肉,歐美老饕的最愛. https://kmweb.moa.gov.tw/redirect_files.php?id=164088 黃振芳. (2023). 農業知識入口網:蛋鴨之飼養管理. https://kmweb.moa.gov.tw/subject/subject.php?id=13778 黃齡誼. (2016). 破除謠言!白肉雞從來沒有打過「生長激素」,只養35天就能賣的秘密是... 食力FoodNEXT. https://health.businessweekly.com.tw/article/ARTL000077145 勤億蛋品科技. (2021). 細說產蛋雞. https://tw.chinyieggs.com/library/18/ 楊士慶, & 陳耀茂. (2018). 貝氏統計導論──EXCEL應用. 五南. 農業部. (2021). 農業知識入口網:乳牛生活史. https://kmweb.moa.gov.tw/subject/subject.php?id=10481 農業部. (2023). 食農教育資訊整合平臺:臺灣農產地圖-羊奶. https://fae.moa.gov.tw/map/food_item.php?type=AS01&id=388 衛生福利部國民健康署. (2019). 國民營養健康調查(原國民營養健康狀況變遷調查). https://www.hpa.gov.tw/3998/s 豐年社. (2023). 使命必達,保種臺灣黑豬:屏東縣內埔鄉毛豬產銷班第3班. 豐年雜誌. https://www.agriharvest.tw/archives/111271/ | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95111 | - |
| dc.description.abstract | 全氟與多氟烷基物質(Per- and polyfluoroalkyl substances , PFASs),具有抗水、抗油和耐高溫的特性,被廣泛應用於消防泡沫、食品包裝和個人護理用品等,並在環境中無處不在。多種PFASs被認為是致癌物,並具有生殖毒性與發育毒性,由於其在各種環境介質中的持久性和生物累積性,其潛在的健康影響備受關注。
在各種PFAS暴露途徑(exposure scenarios)中,經由日常食用肉類和動物源性產品而間接暴露於動物飼料中的PFASs尚未得到研究,但這對於傳統上經常食用養殖動物內臟的臺灣人群和亞洲國家居民尤為關鍵。 目前,轉移因子(Transfer factor, TF)和基於生理學的毒物動力學(physiologically based toxicokinetics, PBTK)模型已被用來估算從飼料轉移到動物組織中的危害,但由於其複雜性和高不確定性,缺乏對動物群體個體差異的考慮,並未被廣泛使用。為了解決這些問題,本研究旨在以全氟辛酸(Perfluorooctanoic acid, PFOA)和全氟辛烷磺酸(Perfluorooctane sulfonic acid, PFOS)為例,通過貝氏統計(Bayesian statistics)方法建立其在動物組織中的濃度與飼料中濃度的關係,以此進行健康風險評估,並提出飼料中PFOA和PFOS的最大限量(maximum limits, MLs),評估結果將可提供我國政府與國際間作為制定飼料中PFOS 與 PFOA 殘留標準之參考。 我們建立了用於評估危害物質從飼料到動物轉移的框架,該框架能夠根據半衰期和飼養期去選擇合適的計算方法,不僅考量了物種間和物種內的差異,同時也較容易上手,可用於數據有限的情況。在這個框架下,我們首先比較動物飼養期和化合物於動物體內的半衰期的長短,接著建立單室藥代動力學模型,求解後以泰勒級數(Tayor’s series)展開,由此獲得短半衰期化合物的轉移因子,長半衰期化合物的線性和時間依賴(time dependent)的轉移因子,介於兩者之間的其餘化合物,則將使用毒物動力學推導而來的公式,以估算這些動物在食入受PFOS 和 PFOA 汙染後,PFASs 在動物組織與器官的分布。 針對短半衰期化合物和長半衰期化合物,我們收集了牛、羊、豬、雞的 PFOS 和 PFOA之轉移數據,作為貝氏統計建模的先驗信息,以估算這些五種家禽和家畜中轉移因子和殘留濃度的後驗分佈;並蒐集介於兩者之間的化合物,蒐集其生理參數、半衰期與動物實驗數據等,使用蒙地卡羅模擬進行殘留濃度的估計。 最後,使用國家攝食資料庫(National Food Consumption Database)中的肉類和內臟攝食量(consumption rates),結合各動物群體組織中的PFOS和PFOA殘留濃度分佈情形,進行機率健康風險評估(probabilistic risk assessment)。 我們假設動物在整個飼養期內,每天皆暴露於含有1 μg/kg PFOA/PFOS的動物飼料,估算了殘留濃度,PFOS 部分,殘留濃度估計值由高至低依序為豬肝、豬腎、牛肝、羊肝、雞蛋、鴨肝、其他豬內臟、羊腎等;PFOA 則依序為:豬腎、豬肝、雞蛋、其他雞內臟。 這些數據進一步用於機率風險評估。我們以蒙地卡羅模擬進行10,000次試驗(10,000 trials),評估在 General public和 Consumer only下,臺灣各年齡組的平均每日攝取劑量(Average daily intyake , ADD)和終生平均每天暴露劑量(Lifetime average daily dose, LADD),並計算危害商數(Hazard quotient, HQ),以提出 MLs 建議值。 我們提出的飼料 MLs如下:PFOS 為 2.1×10^(-4) 至 2.6×10^(-3) μg∕kg,PFOA 為 2×10^(-4) 至 2.2 ×10^(-3) μg∕kg,這遠低於當前已有文獻記載的飼料濃度,其顯示當前的飼料濃度對人類的間接暴露存在健康風險。然而,這也遠低於當前的偵測與定量限,因此未來應增進飼料中微量物質分析之能力,並制定飼料之PFOS 與 PFOA之限量基準,以維護國人健康。 | zh_TW |
| dc.description.abstract | Per- and polyfluoroalkyl substances (PFASs), resistant to water, oil, and temperature, are widely applied in industries like the production of firefighting foams, food packaging, and personal care items and ubiquitous in environment. Several PFASs are carcinogens and reproductive and developmental toxicants and their potential health effects have been of great concerns due to their persistence and bioaccumulation in various environmental media.
Among the various scenarios of PFAS exposures, the indirect exposures to PFASs in animal feed via daily consumption of meats and animal products have not been assessed, but particularly critical for the Taiwanese populations and people in Asia countries, traditionally consuming offal of farmed animals. Currently, the transfer factor (TF) and physiologically-based Toxicokinetics (PBTK) have been used to estimate hazard residues in tissues of animals transferred from feed. But, the former lacks theoretic basis and conditions of utilization, and the later lacks consideration of inter-individual differences in an animal population and are not popular with its complexity and high uncertainty. To improve the current methods, the objective of this study is to use PFOA and PFOS as examples to establish the relationships of their concentrations in the tissues of animals with those in feed using Bayesian statistics for health risk assessment and to propose maximum limits (MLs) of PFOA and PFOS in feed. These results will provide a valuable reference for the Taiwanese government and international regulatory agencies in establishing standards for PFOS and PFOA residues in animal feed. We developed a framework for estimating the residual concentration of a hazard in tissues of farmed animals transferred from feed, which features: easy to use, an appropriate method selected by using half life and feeding period, suitable for cases with limited data, with considering inter- and intra-species variability. Under this framework, an one-compartment pharmacokinetics will be formulated, solved, and expanded with the Tayor’s series to obtain a TF for a short-half-life compound and linear and time-dependent TF for a long-half-life compound compared with animal feeding periods. For compounds with intermediate half-lives, we used pharmacokinetic-derived formulas to estimate the distribution of PFASs in animal tissues and organs after ingestion of PFOS and PFOA-contaminated feed. For short- and long-half-life compounds, TF data of PFOS and PFOA in cattle, sheep, pigs, hens, ducks (Only PFOS) will be cited to serve as prior information for Bayesian statistical modeling to estimate the posterior distributions of their TFs and residues in tissues of these poultry and livestock; For intermediate-half-live compounds, we collected physiological parameters, half-life data, and animal experiment data to estimate residue concentrations using Monte Carlo simulations. The distributions of meat and offal consumption rates are cited from the National Food Consumption Database and used to probabilistically assess health risk with the distributions of PFOS and PFOA residues in tissues of each animal population. We assumed that animals were exposed daily to feed containing 1 μg/kg of PFOA/PFOS throughout the feeding period and estimated the residue concentrations. For PFOS, the estimated residue concentrations from highest to lowest were pig liver, pig kidney, cattle liver, sheep liver, chicken eggs, duck liver, other pig organs, and sheep kidney. For PFOA, they were pig kidney, pig liver, chicken eggs, and other chicken organs in that order. According to our assessment, the HQs for different age groups under general public and consumer only in Taiwan are based to propose MLs in feed: PFOS ranges from 2.1×〖10〗^(-4) to 2.6×10^(-3) μg/kg, and PFOA ranges from 2×10^(-4) to 2.2 ×10^(-3) μg/kg. These levels are much lower than the current PFOS and PFOA levels in feed, indicating potential health concerns due to indirect human exposures to both compounds in feed. Moreover, these levels are also much lower than current detection and quantification limits, and advanced analytical methods with sufficient sensitivity are needed for trace analysis of them in animal feed to ensure that the newly-revised standards of PFOS and PFOA in feed can be enforced to protect public health. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-28T16:19:14Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-28T16:19:14Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 中文摘要 iii Abstract v 目次 viii 圖次 xii 表次 xiii 第一章、緒論 1 第二章、文獻回顧 4 2.1 PFASs 4 2.1.1 PFASs的物理和化學特性 7 2.1.2 PFASs的用途與應用領域 9 2.2 PFOA和PFOS在環境中的排放與分布 10 2.2.1 排放 10 2.2.2 分布 11 2.3 PFOA和PFOS的毒物動力學(Toxicokinetics models) 13 2.3.1 吸收 14 2.3.2 分布 15 2.3.3 代謝 16 2.3.4 排泄 16 2.3.5 半衰期 17 2.3.6 PBTK 模型與組織:血漿分配係數 19 2.4 PFOA和PFOS 的健康不良效應與毒理學 26 2.4.1 急毒性 26 2.4.2 亞慢毒性與慢毒性 27 2.4.3 致癌性 27 2.4.4 生殖和發育毒性 28 2.4.5 其餘方面的毒性 29 2.5 人體暴露 30 2.5.1 人類的PFOA和PFOS生物偵測數據 30 2.5.2 人體的暴露途徑 31 2.6 PFOA和PFOS的劑量效應關係評估 41 2.6.1 劑量效應關係評估相關之名詞定義 41 2.6.2 當前劑量效應關係評估結果 42 2.7 PFOA和PFOS之相關法律與規範 46 2.7.1 歐盟:每周耐受攝取量、食品中的最大含量 46 2.7.2 美國:國家初級飲用水法規 49 2.7.3.台灣當前管理狀況 49 2.8 來自飼料的間接暴露:PFASs從飼料轉移至動物源性食品 50 2.8.1 動物飼料內的PFOA和PFOS 51 2.8.2 PFOA和PFOS的轉移 61 2.9 飼料中汙染物的健康風險評估 85 2.9.1 飼料中汙染物的暴露評估 86 2.10 知識缺口 90 2.11 研究目的 91 第三章、材料與方法 92 3.1 研究架構 92 3.2 研究關注的化學品與家禽/家畜 93 3.3 非致癌性健康風險評估 93 3.4 貝氏統計與 Openbugs 97 3.4.1 貝氏定理、貝氏統計與貝氏估計 97 3.4.2 馬可夫鏈蒙地卡羅(MCMC)與 OpenBUGS 99 3.5. 動物源性食品內殘留濃度推估 102 3.5.1 殘留濃度推估假設 102 3.5.2 數學推導 102 3.5.3 汙染物在血液中的濃度 103 3.5.4 動物其他器官中的轉移因子:從血液推至其他器官與組織 110 3.5.5 小結 115 3.5.6 殘留濃度推估所需參數 117 3.6 國人攝食量 134 3.7 統計分析及軟體 141 第四章、結果 142 4.1 使用 OpenBUGS 貝氏統計方法建立殘留濃度模型 142 4.1.1 短半衰期(穩定狀態)下的殘留濃度 142 4.1.2 長半衰期下(T123.5tfp)的殘留濃度 144 4.1.3 建立線性關係後,取穩定狀態時的殘留濃度 145 4.2 ADD估算 147 4.2.1 飼料濃度為1 μg∕kg下的情形 147 4.3 代入其他飼料濃度使 HQ<1 165 4.3.1 目標:LADD平均值的HQ<1 165 4.4.1 目標:LADD第 95 百分位的HQ<1 170 第五章、討論 175 5.1 針對殘留濃度估計結果:意義、優勢與不確定性 175 5.1.1 結果討論 175 5.1.2 結果驗證 178 5.1.3 殘餘濃度估算方法的優點 179 5.1.4 殘餘濃度估算方法的不確定性 180 5.1.5 其他未考量到的部分 181 5.2 貝氏統計的優點與過程遇到的問題 182 5.3 台灣國人的暴露劑量 183 5.3.1 結果討論 183 5.3.2 攝食資料來源 186 5.3.3 其他未考量到的部分 187 5.4 飼料中的 PFOA 和 PFOS 之MLs 190 5.4.1 結果討論 190 5.4.2 安全劑量的選擇 192 5.4.3 其他未考量到的部分 193 5.4.4 與BfR進行比較 195 5.5 未來可能的趨勢 196 5.5.1 愈來愈嚴格的管制規範 196 5.5.2 新興PFASs 201 5.6 研究限制 203 5.6.1 不確定性分析 203 5.6.2 其他研究限制 205 第六章、結論 206 References 208 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 全氟與多氟烷基物質 | zh_TW |
| dc.subject | 家畜和家禽 | zh_TW |
| dc.subject | 飼料 | zh_TW |
| dc.subject | 全氟辛烷磺酸 | zh_TW |
| dc.subject | 全氟辛酸 | zh_TW |
| dc.subject | PFOA | en |
| dc.subject | feed | en |
| dc.subject | Per- and polyfluoroalkyl substances (PFASs) | en |
| dc.subject | livestock and poultry | en |
| dc.subject | PFOS | en |
| dc.title | 飼料中的PFOS與PFOA之健康風險評估 | zh_TW |
| dc.title | Health Risk Assessment on PFOS & PFOA in animal feed | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 蔡東湖;鄭尊仁;林榮信;王彥雯 | zh_TW |
| dc.contributor.oralexamcommittee | Tung-Hu Tsai;Tsun-Jen Cheng;Rong-Shinn Lin;Charlotte Wang | en |
| dc.subject.keyword | 全氟與多氟烷基物質,全氟辛酸,全氟辛烷磺酸,飼料,家畜和家禽, | zh_TW |
| dc.subject.keyword | Per- and polyfluoroalkyl substances (PFASs),PFOA,PFOS,feed,livestock and poultry, | en |
| dc.relation.page | 252 | - |
| dc.identifier.doi | 10.6342/NTU202403872 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-08 | - |
| dc.contributor.author-college | 公共衛生學院 | - |
| dc.contributor.author-dept | 環境與職業健康科學研究所 | - |
| dc.date.embargo-lift | 2026-08-31 | - |
| 顯示於系所單位: | 環境與職業健康科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 6.16 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
