Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95108
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor蘇剛毅zh_TW
dc.contributor.advisorKang-Yi Suen
dc.contributor.author林俊宏zh_TW
dc.contributor.authorKevin Devlinen
dc.date.accessioned2024-08-28T16:18:20Z-
dc.date.available2024-08-29-
dc.date.copyright2024-08-28-
dc.date.issued2024-
dc.date.submitted2024-08-06-
dc.identifier.citation1. Prospective Studies, C., Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies. The Lancet, 2009. 373(9669): p. 1083-1096.
2. Federation, W.O. World Obesity Atlas 2024. 2024 [cited 2024 August 2]; Available from: https://data.worldobesity.org/publications/?cat=22.
3. Health Effects of Overweight and Obesity in 195 Countries over 25 Years. New England Journal of Medicine, 2017. 377(1): p. 13-27.
4. Calle, E.E., et al., Overweight, Obesity, and Mortality from Cancer in a Prospectively Studied Cohort of U.S. Adults. New England Journal of Medicine, 2003. 348(17): p. 1625-1638.
5. Verberne, L.D.M., et al., Overweight in patients with chronic obstructive pulmonary disease needs more attention: a cross-sectional study in general practice. npj Primary Care Respiratory Medicine, 2017. 27(1).
6. Colditz, G.A., et al., Weight gain as a risk factor for clinical diabetes mellitus in women. Annals of internal medicine, 1995. 122(7): p. 481-486.
7. World Health Organization. Noncommunicable diseases. 2023 September 16 [cited 2023, December 25]; Available from: https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases#:~:text=Cardiovascular%20diseases%20account%20for%20most,disease%20deaths%20caused%20by%20diabetes).
8. Blüher, M., Obesity: global epidemiology and pathogenesis. Nature Reviews Endocrinology, 2019. 15(5): p. 288-298.
9. Wen, X., et al., Signaling pathways in obesity: mechanisms and therapeutic interventions. Signal Transduction and Targeted Therapy, 2022. 7(1).
10. Myers, M.G. and D.P. Olson, Central nervous system control of metabolism. Nature, 2012. 491(7424): p. 357-363.
11. Cone, R.D., Anatomy and regulation of the central melanocortin system. Nature Neuroscience, 2005. 8(5): p. 571-578.
12. Friedman, J.M., Leptin and the endocrine control of energy balance. Nature Metabolism, 2019. 1(8): p. 754-764.
13. Chen, Y., et al., Sensory Detection of Food Rapidly Modulates Arcuate Feeding Circuits. Cell, 2015. 160(5): p. 829-841.
14. Cone, R., et al., The arcuate nucleus as a conduit for diverse signals relevant to energy homeostasis. International Journal of Obesity, 2001. 25(S5): p. S63-S67.
15. Perry, B. and Y. Wang, Appetite regulation and weight control: the role of gut hormones. Nutrition & Diabetes, 2012. 2(1): p. e26-e26.
16. Gastaldelli, A., M. Gaggini, and R.A. DeFronzo, Role of Adipose Tissue Insulin Resistance in the Natural History of Type 2 Diabetes: Results From the San Antonio Metabolism Study. Diabetes, 2017. 66(4): p. 815-822.
17. Sjöström, L., et al., Effects of bariatric surgery on mortality in Swedish obese subjects. New England journal of medicine, 2007. 357(8): p. 741-752.
18. Committee, S.G., Guidelines for clinical application of laparoscopic bariatric surgery.
19. Müller, T.D., et al., Anti-Obesity Therapy: from Rainbow Pills to Polyagonists. Pharmacological Reviews, 2018. 70(4): p. 712-746.
20. Müller, T.D., et al., Anti-obesity drug discovery: advances and challenges. Nature Reviews Drug Discovery, 2022. 21(3): p. 201-223.
21. O'Neil, P.M., et al., Efficacy and safety of semaglutide compared with liraglutide and placebo for weight loss in patients with obesity: a randomised, double-blind, placebo and active controlled, dose-ranging, phase 2 trial. The Lancet, 2018. 392(10148): p. 637-649.
22. Wilding, J.P.H., et al., Once-Weekly Semaglutide in Adults with Overweight or Obesity. New England Journal of Medicine, 2021. 384(11): p. 989-1002.
23. Pi-Sunyer, X., et al., A Randomized, Controlled Trial of 3.0 mg of Liraglutide in Weight Management. New England Journal of Medicine, 2015. 373(1): p. 11-22.
24. Greenberg, A.S., et al., Perilipin, a major hormonally regulated adipocyte-specific phosphoprotein associated with the periphery of lipid storage droplets. Journal of Biological Chemistry, 1991. 266(17): p. 11341-11346.
25. Sakers, A., et al., Adipose-tissue plasticity in health and disease. Cell, 2022. 185(3): p. 419-446.
26. Hagberg, C.E. and K.L. Spalding, White adipocyte dysfunction and obesity-associated pathologies in humans. Nature Reviews Molecular Cell Biology, 2024. 25(4): p. 270-289.
27. Esteve Ràfols, M., Adipose tissue: Cell heterogeneity and functional diversity. Endocrinología y Nutrición (English Edition), 2014. 61(2): p. 100-112.
28. Zwick, R.K., et al., Anatomical, Physiological, and Functional Diversity of Adipose Tissue. Cell Metabolism, 2018. 27(1): p. 68-83.
29. Song, Z., A.M. Xiaoli, and F. Yang, Regulation and Metabolic Significance of De Novo Lipogenesis in Adipose Tissues. Nutrients, 2018. 10(10): p. 1383.
30. Ahmadian, M., Y. Wang, and H.S. Sul, Lipolysis in adipocytes. The International Journal of Biochemistry & Cell Biology, 2010. 42(5): p. 555-559.
31. Funcke, J.-B. and P.E. Scherer, Beyond adiponectin and leptin: adipose tissue-derived mediators of inter-organ communication. Journal of lipid research, 2019. 60(10): p. 1648-1697.
32. Fedorenko, A., Polina, and Y. Kirichok, Mechanism of Fatty-Acid-Dependent UCP1 Uncoupling in Brown Fat Mitochondria. Cell, 2012. 151(2): p. 400-413.
33. Chouchani, E.T., L. Kazak, and B.M. Spiegelman, New Advances in Adaptive Thermogenesis: UCP1 and Beyond. Cell Metabolism, 2019. 29(1): p. 27-37.
34. Ziqubu, K., et al., Brown adipose tissue-derived metabolites and their role in regulating metabolism. Metabolism, 2023: p. 155709.
35. Gesta, S., Y.-H. Tseng, and C.R. Kahn, Developmental Origin of Fat: Tracking Obesity to Its Source. Cell, 2007. 131(2): p. 242-256.
36. Taylor, S.M. and P.A. Jones, Multiple new phenotypes induced in 10T12 and 3T3 cells treated with 5-azacytidine. Cell, 1979. 17(4): p. 771-779.
37. Cristancho, A.G. and M.A. Lazar, Forming functional fat: a growing understanding of adipocyte differentiation. Nature Reviews Molecular Cell Biology, 2011. 12(11): p. 722-734.
38. Cohen, P. and S. Kajimura, The cellular and functional complexity of thermogenic fat. Nature Reviews Molecular Cell Biology, 2021. 22(6): p. 393-409.
39. Cousin, B., et al., Occurrence of brown adipocytes in rat white adipose tissue: molecular and morphological characterization. Journal of Cell Science, 1992. 103(4): p. 931-942.
40. Guerra, C., et al., Emergence of brown adipocytes in white fat in mice is under genetic control. Effects on body weight and adiposity. Journal of Clinical Investigation, 1998. 102(2): p. 412-420.
41. Himms-Hagen, J., et al., Multilocular fat cells in WAT of CL-316243-treated rats derive directly from white adipocytes. American Journal of Physiology-Cell Physiology, 2000. 279(3): p. C670-C681.
42. Abe, I., et al., Lipolysis-derived linoleic acid drives beige fat progenitor cell proliferation. Developmental Cell, 2022. 57(23): p. 2623-2637.e8.
43. Shao, M., et al., Cellular Origins of Beige Fat Cells Revisited. Diabetes, 2019. 68(10): p. 1874-1885.
44. Bahmad, H.F., et al., Modeling Adipogenesis: Current and Future Perspective. Cells, 2020. 9(10): p. 2326.
45. Zhou, Y., et al., SIRT1 inhibits adipogenesis and promotes myogenic differentiation in C3H10T1/2 pluripotent cells by regulating Wnt signaling. Cell & Bioscience, 2015. 5(1).
46. Mitić, R., et al., A simplified and defined serum-free medium for cultivating fat across species. IScience, 2023. 26(1).
47. Freytag, S.O., D.L. Paielli, and J.D. Gilbert, Ectopic expression of the CCAAT/enhancer-binding protein alpha promotes the adipogenic program in a variety of mouse fibroblastic cells. Genes & Development, 1994. 8(14): p. 1654-1663.
48. Ross, S.E., et al., Inhibition of Adipogenesis by Wnt Signaling. Science, 2000. 289(5481): p. 950-953.
49. Tontonoz, P., E. Hu, and B.M. Spiegelman, Stimulation of adipogenesis in fibroblasts by PPARγ2, a lipid-activated transcription factor. Cell, 1994. 79(7): p. 1147-1156.
50. Rosen, E.D., et al., C/EBPα induces adipogenesis through PPARγ: a unified pathway. Genes & Development, 2002. 16(1): p. 22-26.
51. Kim, J.B., et al., ADD1/SREBP1 activates PPARγ through the production of endogenous ligand. Proceedings of the National Academy of Sciences, 1998. 95(8): p. 4333-4337.
52. Mori, T., et al., Role of Krüppel-like Factor 15 (KLF15) in Transcriptional Regulation of Adipogenesis. Journal of Biological Chemistry, 2005. 280(13): p. 12867-12875.
53. Goto, T., et al., Activation of peroxisome proliferator-activated receptor-alpha stimulates both differentiation and fatty acid oxidation in adipocytes. Journal of Lipid Research, 2011. 52(5): p. 873-884.
54. Tchkonia, T., et al., Mechanisms and Metabolic Implications of Regional Differences among Fat Depots. Cell Metabolism, 2013. 17(5): p. 644-656.
55. McQuaid, S.E., et al., Downregulation of Adipose Tissue Fatty Acid Trafficking in Obesity. Diabetes, 2011. 60(1): p. 47-55.
56. Neeland, I.J., et al., Visceral and ectopic fat, atherosclerosis, and cardiometabolic disease: a position statement. The Lancet Diabetes & Endocrinology, 2019. 7(9): p. 715-725.
57. Boden, G., et al., Effect of thiazolidinediones on glucose and fatty acid metabolism in patients with type 2 diabetes. Metabolism, 2003. 52(6): p. 753-759.
58. Herz, C.T. and F.W. Kiefer, Adipose tissue browning in mice and humans. Journal of Endocrinology, 2019. 241(3): p. R97-R109.
59. Pigeyre, M., et al., Recent progress in genetics, epigenetics and metagenomics unveils the pathophysiology of human obesity. Clinical Science, 2016. 130(12): p. 943-986.
60. Montague, C.T., et al., Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature, 1997. 387(6636): p. 903-908.
61. Krude, H., H. Biebermann, and A. Grüters, Mutations in the Human Proopiomelanocortin Gene. Annals of the New York Academy of Sciences, 2003. 994(1): p. 233-239.
62. Li, Y., et al., Local hyperthermia therapy induces browning of white fat and treats obesity. Cell, 2022. 185(6): p. 949-966. e19.
63. Lindquist, S. and E.A. Craig, THE HEAT-SHOCK PROTEINS. Annual Review of Genetics, 1988. 22(1): p. 631-677.
64. Ritossa, F., A new puffing pattern induced by temperature shock and DNP in drosophila. Experientia, 1962. 18(12): p. 571-573.
65. Tissiéres, A., H.K. Mitchell, and U.M. Tracy, Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs. Journal of molecular biology, 1974. 84(3): p. 389-398.
66. Courgeon, A.-M., C. Maisonhaute, and M. Best-Belpomme, Heat shock proteins are induced by cadmium in Drosophila cells. Experimental cell research, 1984. 153(2): p. 515-521.
67. Michel, G.P. and J. Starka, Effect of ethanol and heat stresses on the protein pattern of Zymomonas mobilis. Journal of Bacteriology, 1986. 165(3): p. 1040-1042.
68. Heikkila, J., et al., Expression of a set of fish genes following heat or metal ion exposure. Journal of Biological Chemistry, 1982. 257(20): p. 12000-12005.
69. Feder, M.E. and G.E. Hofmann, HEAT-SHOCK PROTEINS, MOLECULAR CHAPERONES, AND THE STRESS RESPONSE: Evolutionary and Ecological Physiology. Annual Review of Physiology, 1999. 61(1): p. 243-282.
70. Hu, C., et al., Heat shock proteins: Biological functions, pathological roles, and therapeutic opportunities. MedComm, 2022. 3(3).
71. Hartl, F.U., A. Bracher, and M. Hayer-Hartl, Molecular chaperones in protein folding and proteostasis. Nature, 2011. 475(7356): p. 324-332.
72. Hartl, F.U. and M. Hayer-Hartl, Converging concepts of protein folding in vitro and in vivo. Nature Structural & Molecular Biology, 2009. 16(6): p. 574-581.
73. Mayer, M.P., S. Rüdiger, and B. Bukau, Molecular basis for interactions of the DnaK chaperone with substrates. 2000.
74. Bukau, B. and A.L. Horwich, The Hsp70 and Hsp60 Chaperone Machines. Cell, 1998. 92(3): p. 351-366.
75. Scheufler, C., et al., Structure of TPR Domain–Peptide Complexes. Cell, 2000. 101(2): p. 199-210.
76. Biebl, M.M., et al., NudC guides client transfer between the Hsp40/70 and Hsp90 chaperone systems. Molecular Cell, 2022. 82(3): p. 555-569.e7.
77. Kampinga, H.H. and E.A. Craig, The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nature reviews Molecular cell biology, 2010. 11(8): p. 579-592.
78. Kampinga, H.H., et al., Guidelines for the nomenclature of the human heat shock proteins. Cell Stress and Chaperones, 2009. 14(1): p. 105-111.
79. Qiu, X.B., et al., The diversity of the DnaJ/Hsp40 family, the crucial partners for Hsp70 chaperones. Cellular and Molecular Life Sciences, 2006. 63(22): p. 2560-2570.
80. Johnson, O.T., et al., Two distinct classes of cochaperones compete for the EEVD motif in heat shock protein 70 to tune its chaperone activities. Journal of Biological Chemistry, 2022. 298(3): p. 101697.
81. Chen, C.H., et al., HLJ1 is an endogenous Src inhibitor suppressing cancer progression through dual mechanisms. Oncogene, 2016. 35(43): p. 5674-5685.
82. Simões-Correia, J., et al., DNAJB4 molecular chaperone distinguishes WT from mutant E-cadherin, determining their fate in vitro and in vivo. Human Molecular Genetics, 2014. 23(8): p. 2094-2105.
83. Liu, Y., et al., HLJ1 is a novel biomarker for colorectal carcinoma progression and overall patient survival. International Journal of Clinical and Experimental Pathology, 2014. 7(3): p. 969.
84. Zhang, L., et al., Hepatitis B virus protein up-regulated HLJ1 expression via the transcription factor YY1 in human hepatocarcinoma cells. Virus research, 2011. 157(1): p. 76-81.
85. Luo, W.-J., et al., HLJ1 amplifies endotoxin-induced sepsis severity by promoting IL-12 heterodimerization in macrophages. Elife, 2022. 11: p. e76094.
86. Abu-Farha, M., et al., DNAJB3/HSP-40 cochaperone improves insulin signaling and enhances glucose uptake in vitro through JNK repression. Scientific Reports, 2015. 5(1): p. 14448.
87. Pelham, H.R., A regulatory upstream promoter element in the Drosophila hsp 70 heat-shock gene. Cell, 1982. 30(2): p. 517-528.
88. Neudegger, T., et al., Structure of human heat-shock transcription factor 1 in complex with DNA. Nature Structural & Molecular Biology, 2016. 23(2): p. 140-146.
89. Wu, C., Heat Shock Transcription Factors: Structure and Regulation. Annual Review of Cell and Developmental Biology, 1995. 11(1): p. 441-469.
90. Gomez-Pastor, R., E.T. Burchfiel, and D.J. Thiele, Regulation of heat shock transcription factors and their roles in physiology and disease. Nature reviews Molecular cell biology, 2018. 19(1): p. 4-19.
91. Xiao, X., HSF1 is required for extra-embryonic development, postnatal growth and protection during inflammatory responses in mice. The EMBO Journal, 1999. 18(21): p. 5943-5952.
92. McMillan, D.R., et al., Targeted Disruption of Heat Shock Transcription Factor 1 Abolishes Thermotolerance and Protection against Heat-inducible Apoptosis. Journal of Biological Chemistry, 1998. 273(13): p. 7523-7528.
93. Zhang, Y., et al., Targeted disruption of <i>hsf1</i> leads to lack of thermotolerance and defines tissue‐specific regulation for stress‐inducible Hsp molecular chaperones. Journal of Cellular Biochemistry, 2002. 86(2): p. 376-393.
94. Åkerfelt, M., R.I. Morimoto, and L. Sistonen, Heat shock factors: integrators of cell stress, development and lifespan. Nature Reviews Molecular Cell Biology, 2010. 11(8): p. 545-555.
95. Zou, J., et al., Repression of Heat Shock Transcription Factor HSF1 Activation by HSP90 (HSP90 Complex) that Forms a Stress-Sensitive Complex with HSF1. Cell, 1998. 94(4): p. 471-480.
96. Daniel, et al., A Direct Regulatory Interaction between Chaperonin TRiC and Stress-Responsive Transcription Factor HSF1. Cell Reports, 2014. 9(3): p. 955-966.
97. Rabindran, S.K., et al., Regulation of heat shock factor trimer formation: role of a conserved leucine zipper. Science, 1993. 259(5092): p. 230-234.
98. Marc, et al., HSF1 Drives a Transcriptional Program Distinct from Heat Shock to Support Highly Malignant Human Cancers. Cell, 2012. 150(3): p. 549-562.
99. Ma, X.R., et al., Celastrol Protects against Obesity and Metabolic Dysfunction through Activation of a HSF1-PGC1 alpha Transcriptional Axis. Cell Metabolism, 2015. 22(4): p. 695-708.
100. Chakrabarti, P., et al., SIRT1 controls lipolysis in adipocytes via FOXO1-mediated expression of ATGL. Journal of Lipid Research, 2011. 52(9): p. 1693-1701.
101. Kuang, J., et al., Fat-Specific Sirt6 Ablation Sensitizes Mice to High-Fat Diet–Induced Obesity and Insulin Resistance by Inhibiting Lipolysis. Diabetes, 2017. 66(5): p. 1159-1171.
102. Najt, C.P., et al., Lipid droplet-derived monounsaturated fatty acids traffic via PLIN5 to allosterically activate SIRT1. Molecular cell, 2020. 77(4): p. 810-824. e8.
103. Kao, S.-H., et al., Analysis of Protein Stability by the Cycloheximide Chase Assay. BIO-PROTOCOL, 2015. 5(1).
104. Hoj, J.P., B. Mayro, and A.M. Pendergast, The ABL2 kinase regulates an HSF1-dependent transcriptional program required for lung adenocarcinoma brain metastasis. Proceedings of the National Academy of Sciences, 2020. 117(52): p. 33486-33495.
105. Xu, M., et al., Heat shock factor 1 (HSF1) specifically potentiates c-MYC-mediated transcription independently of the canonical heat shock response. Cell reports, 2023. 42(6).
106. Drews, O., C. Zong, and P. Ping, Exploring proteasome complexes by proteomic approaches. PROTEOMICS, 2007. 7(7): p. 1047-1058.
107. Janus, P., et al., Pro-death signaling of cytoprotective heat shock factor 1: upregulation of NOXA leading to apoptosis in heat-sensitive cells. Cell Death & Differentiation, 2020. 27(7): p. 2280-2292.
108. Lin, B.C., et al., UBQLN proteins in health and disease with a focus on UBQLN2 in ALS/FTD. The FEBS Journal, 2022. 289(20): p. 6132-6153.
109. Hjerpe, R., et al., UBQLN2 Mediates Autophagy-Independent Protein Aggregate Clearance by the Proteasome. Cell, 2016. 166(4): p. 935-949.
110. Kim, E., et al., NEDD4-mediated HSF1 degradation underlies α-synucleinopathy. Human Molecular Genetics, 2016. 25(2): p. 211-222.
111. Gomez-Pastor, R., et al., Abnormal degradation of the neuronal stress-protective transcription factor HSF1 in Huntington’s disease. Nature Communications, 2017. 8(1): p. 14405.
112. Lee, Y.J., et al., A novel function for HSF1-induced mitotic exit failure and genomic instability through direct interaction between HSF1 and Cdc20. Oncogene, 2008. 27(21): p. 2999-3009.
113. Lee, Y.-J., et al., HSF1 as a mitotic regulator: phosphorylation of HSF1 by Plk1 is essential for mitotic progression. Cancer research, 2008. 68(18): p. 7550-7560.
114. Skaar, J.R., J.K. Pagan, and M. Pagano, Mechanisms and function of substrate recruitment by F-box proteins. Nature Reviews Molecular Cell Biology, 2013. 14(6): p. 369-381.
115. Kourtis, N., et al., FBXW7 modulates cellular stress response and metastatic potential through HSF1 post-translational modification. Nature Cell Biology, 2015. 17(3): p. 322-332.
116. Raychaudhuri, S., et al., Interplay of Acetyltransferase EP300 and the Proteasome System in Regulating Heat Shock Transcription Factor 1. Cell, 2014. 156(5): p. 975-985.
117. Kmiecik, S.W., L. Le Breton, and M.P. Mayer, Feedback regulation of heat shock factor 1 (Hsf1) activity by Hsp70‐mediated trimer unzipping and dissociation from DNA. The EMBO journal, 2020. 39(14): p. e104096.
118. Kim, S.-A., et al., CHIP interacts with heat shock factor 1 during heat stress. FEBS Letters, 2005. 579(29): p. 6559-6563.
119. Huang, C.-Y., et al., Doxorubicin attenuates CHIP-guarded HSF1 nuclear translocation and protein stability to trigger IGF-IIR-dependent cardiomyocyte death. Cell Death & Disease, 2016. 7(11): p. e2455-e2455.
120. Fujimoto, M., et al., HSF1 phosphorylation establishes an active chromatin state via the TRRAP–TIP60 complex and promotes tumorigenesis. Nature Communications, 2022. 13(1).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95108-
dc.description.abstract根據WHO的定義,以 BMI ≥ 30 kg/m2 為特徵的肥胖症已升級至令人擔憂的水平。預計到 2035年,全球肥胖人口將超過15億。 考慮到肥胖與非傳染性疾病(non-communicable disease),特別是心血管疾病、各癌症、呼吸系統疾病之間的緊密聯繫,有效的肥胖管理對控制非傳染性疾病的加重影響至關重要。 由於肥胖會對脂肪細胞產生壓力,因此我們專注於了解因應這種壓力的細胞保護機制,特別是針對熱休克蛋白。 根據我們比較WT小鼠和熱休克蛋白 40 家族成員 Dnajb4 (HLJ1) 敲除小鼠 (HLJ1-/- 小鼠) 高脂飲食的初步數據,我們發現 HLJ1-/- 小鼠對飲食引起的肥胖具有增強的抵抗力。 HLJ1-/-小鼠的腹股溝白色脂肪組織 (iWAT) 中的 SCD1 蛋白和 mRNA升高。 SCD1 可以產生單元不飽和脂肪酸,而單元不飽和脂肪酸可以增強sirtuins蛋白的活性,進而增強脂肪分解。 鑑於 SCD1 promoter中存在預測的 HSE序列,顯示 SCD1 轉錄預計由 HSF1 調節。 然而,在高脂環境壓力下,脂肪細胞中HLJ1對HSF1的調節機制仍不清楚。 我們假設 HLJ1 的缺失會提高 HSF1 的活性和表達,可作為透過增強脂肪細胞分解脂肪以實現抗肥胖效果的標靶治療。 在本研究中,我們建構了 3 個主要質體,用於僅過度 HSF1表現、用HSF1和HLJ1 共同過度表現以及由 SCD1 promoter驅動的螢光素酶luciferase質體,將用於後續實驗。 透過螢光素酶Luciferase和cycloheximide測定,我們發現HLJ1分別降低HSF1轉錄活性和半衰期,顯示有負調控。 我們在 MG132 抑制下觀察到免疫沉澱樣本中 HLJ1 和 HSF1 的變化,顯示ubiquitination參與了它們的調節。 然而,HSF1和HLJ1之間的直接物理結合或詳細的調控機制仍沒有定論。 此外,我們的研究也發現 HSF1 和 HLJ1 對脂肪細胞生物學中的關鍵基因具有拮抗作用。因此,HSF1和HLJ1之間的詳細關係和機制仍繼續研究。 本研究旨在揭示HLJ1和HSF1之間作用的分子機制,特別是它們于脂肪生成的調控,為未來肥胖管理提供潛在的標靶。zh_TW
dc.description.abstractObesity, defined by a body mass index (BMI) above 30 kg/m2, has escalated to a concerning level, with over 1.53 billion people estimated to be affected in 2035, according to the world obesity federation. Its association with non-communicable diseases (NCDs), such as cardiovascular diseases, cancers, respiratory disorders, and diabetes, emphasizes the urgent need for effective management strategies. As obesity induces adipocyte stress, we focus on understanding cellular protective mechanisms in response to this stress, specifically targeting heat shock proteins (HSPs). Our preliminary data, comparing wild-type mice (WT mice) and a heat shock protein 40 family member Dnajb4 (HLJ1) knock-out mice (HLJ1-/- mice) fed with high-fat diets, revealed that HLJ1-/- mice exhibited increased resistance to diet-induced obesity. The inguinal white adipose tissues (iWATs) of HLJ1-/- mice had elevated of Stearoyl-CoA desaturase 1 (SCD1) protein and mRNA expression levels. SCD1 has been known to generate monounsaturated fatty acids, which can enhance sirtuin activity. Our findings suggested that the elevated SCD1 transcription could be regulated by heat shock transcription factor 1 (HSF1), given the predicted heat shock element (HSE) in the SCD1 promoter region. However, the regulatory mechanism of HSF1 by HLJ1 in adipocytes under high-fat environment stress remains unclear. We hypothesize that the loss of HLJ1 increases the HSF1 activity and its expression level, potentially emerging as a therapeutic target through enhancing adipocyte lipolysis to achieve an anti-obesity effect. For subsequent experiments in this study, plasmids including HSF1 overexpression, HSF1-HLJ1 co-overexpression, or luciferase reporter plasmids under SCD1 promoter (with or without predicted HSE) were constructed. Luciferase and cycloheximide assays revealed HLJ1-mediated reduction in HSF1 transcriptional activity and stability, suggesting the negative regulation. Immunoprecipitation analysis under proteasome inhibitor MG132 indicated potential involvement of post-translational modifications, possibly ubiquitination, in HLJ1 and HSF1 regulation. However, the direct physical binding between HSF1 and HLJ1 or the detailed regulatory mechanism remains inconclusive. Furthermore, our investigation revealed that HSF1 and HLJ1 exert antagonistic effects on essential genes crucial for adipocyte biology. This study uncovered the molecular mechanisms underlying the relationship between HLJ1 and HSF1, particularly their roles in adipocyte biology, to provide a potential target for obesity management in the future.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-28T16:18:20Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-28T16:18:20Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract iv
Abbreviation vi
Chapter 1. Introduction 1
1.1 Obesity 1
1.2 Adipose tissue 3
1.2.1 Adipocyte classification 3
1.2.2 Origin of adipocytes 5
1.2.3 Adipocyte study model 6
1.2.4 Adipose tissue in obese condition 6
1.3 Heat shock protein 7
1.3.1 DnaJ heat shock protein family (Hsp40) member B4 (HLJ1) 8
1.4 Heat shock factor 1 9
Chapter 2. Research Background and Specific Aim 11
HLJ1 deficiency enhances lipolysis through SCD1-Sirtuins axis 11
Chapter 3. Materials and Methods 12
3.1 RNA extraction 12
3.2 Reverse transcription 12
3.3 Quantitative PCR 13
3.4 DNA extraction 13
3.5 Plasmid construction and preparation 14
3.5.1 pAAV-HSF1-IRES-GFP 14
3.5.2 pBSKII-HSF1-IRES-GFP 17
3.5.3 pLJM1-HSF1-IRES-GFP 18
3.5.4 pAAV-SCD1 promoter-Luciferase 19
3.5.5 pLJM1-HSF1-IRES-HLJ1 21
3.5.6 pAAV-SCD1 promoter no HSE-Luciferase 23
3.6 Cell culture 24
3.7 Cell transfection 24
3.8 Cell electroporation 25
3.9 Lentiviral transduction 25
3.10 3T3-L1 pre-adipocyte differentiation 26
3.11 Protein extraction and quantification 26
3.12 Immunoprecipitation 27
3.13 Western Blotting 27
3.14 Luciferase reporter assay 28
3.15 Cycloheximide chase assay 28
3.16 Statistical analysis 29
Chapter 4. Results 30
4.1 HLJ1 deficiency upregulates SCD1 mRNA level through HSF1 30
4.2 Plasmid preparation 30
4.3 HLJ1 inhibits HSF1 transcriptional activity 31
4.4 Weak binding between HLJ1 and HSF1 was observed 32
4.5 HLJ1 reduces the stability of HSF1 33
4.6 HLJ1 and HSF1 binding was observed upon MG132 treatment 34
4.7 HLJ1 and HSF1 has antagonistic effect in adipocyte biology 34
Chapter 5. Discussions 37
Chapter 6. Figures 43
Chapter 7. Tables 58
Reference 63
Supplementary figure 70
Appendix 76
-
dc.language.isoen-
dc.subject熱休克蛋白zh_TW
dc.subject轉譯後修飾zh_TW
dc.subject脂肪zh_TW
dc.subject熱休克因子zh_TW
dc.subject肥胖zh_TW
dc.subjectpost-translational modificationsen
dc.subjectObesityen
dc.subjecthigh-fat dieten
dc.subjectHSP40en
dc.subjectDNAJB4en
dc.subjectHLJ1en
dc.subjectHSF1en
dc.title探討熱休克蛋白 DNAJB4/HLJ1 和熱休克因子 HSF1 調控機制在脂肪組織生成過程中所扮演之角色zh_TW
dc.titleInvestigating the Regulatory Mechanism between Heat Shock Protein 40 (DNAJB4) and Heat Shock Factor 1 (HSF1) in White Adipose Tissue Biogenesisen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee王志豪;郭靜穎;林亮音;楊雅倩zh_TW
dc.contributor.oralexamcommitteeChih-Hao Wang;Ching-Ying Kuo;Liang-In Lin;Ya-Chien Yangen
dc.subject.keyword肥胖,熱休克蛋白,熱休克因子,脂肪,轉譯後修飾,zh_TW
dc.subject.keywordObesity,high-fat diet,HSP40,DNAJB4,HLJ1,HSF1,post-translational modifications,en
dc.relation.page82-
dc.identifier.doi10.6342/NTU202402930-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-06-
dc.contributor.author-college醫學院-
dc.contributor.author-dept醫學檢驗暨生物技術學系-
dc.date.embargo-lift2026-08-01-
Appears in Collections:醫學檢驗暨生物技術學系

Files in This Item:
File SizeFormat 
ntu-112-2.pdf
  Restricted Access
4.6 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved