Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 基因體暨蛋白體醫學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95107
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor洪維廷zh_TW
dc.contributor.advisorWei-Ting Hungen
dc.contributor.author黃裕逸zh_TW
dc.contributor.authorYuYi Huangen
dc.date.accessioned2024-08-28T16:18:03Z-
dc.date.available2024-08-29-
dc.date.copyright2024-08-28-
dc.date.issued2024-
dc.date.submitted2024-08-06-
dc.identifier.citation1. Sung, H., et al., Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 2021. 71(3): p. 209-249.
2. Teng, Y.-H., et al., Epidemiology and Mortality of Ovarian Cancer in Taiwan: A Population-Based Study. Journal of Clinical Medicine, 2022. 11(19): p. 5627.
3. Gaona-Luviano, P., L.A. Medina-Gaona, and K. Magaña-Pérez, Epidemiology of ovarian cancer. Chin Clin Oncol, 2020. 9(4): p. 47.
4. Ledermann, J.A., et al., Newly diagnosed and relapsed epithelial ovarian carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol, 2013. 24 Suppl 6: p. vi24-32.
5. Kurman, R.J. and M. Shih Ie, The origin and pathogenesis of epithelial ovarian cancer: a proposed unifying theory. Am J Surg Pathol, 2010. 34(3): p. 433-43.
6. Tavares, V., et al., Paradigm Shift: A Comprehensive Review of Ovarian Cancer Management in an Era of Advancements. Int J Mol Sci, 2024. 25(3).
7. Matulonis, U.A., et al., Ovarian cancer. Nature Reviews Disease Primers, 2016. 2(1): p. 16061.
8. Chan, J.K., et al., Do clear cell ovarian carcinomas have poorer prognosis compared to other epithelial cell types? A study of 1411 clear cell ovarian cancers. Gynecologic Oncology, 2008. 109(3): p. 370-376.
9. Lee, Y.-Y., et al., Prognosis of ovarian clear cell carcinoma compared to other histological subtypes: A meta-analysis. Gynecologic Oncology, 2011. 122(3): p. 541-547.
10. Zhu, C., et al., Clinical characteristics and prognosis of ovarian clear cell carcinoma: a 10-year retrospective study. BMC Cancer, 2021. 21(1): p. 322.
11. Chan, J.K., et al., Prognostic factors for high-risk early-stage epithelial ovarian cancer. Cancer, 2008. 112(10): p. 2202-2210.
12. Shih, I.M., Y. Wang, and T.L. Wang, The Origin of Ovarian Cancer Species and Precancerous Landscape. Am J Pathol, 2021. 191(1): p. 26-39.
13. Sung, P.-L., et al., Global distribution pattern of histological subtypes of epithelial ovarian cancer: A database analysis and systematic review. Gynecologic Oncology, 2014. 133(2): p. 147-154.
14. Ku, F.-C., et al., Clear cell carcinomas of the ovary have poorer outcomes compared with serous carcinomas: Results from a single-center Taiwanese study. Journal of the Formosan Medical Association, 2018. 117(2): p. 117-125.
15. Sugiyama, T., et al., Randomized Phase III Trial of Irinotecan Plus Cisplatin Compared With Paclitaxel Plus Carboplatin As First-Line Chemotherapy for Ovarian Clear Cell Carcinoma: JGOG3017/GCIG Trial. J Clin Oncol, 2016. 34(24): p. 2881-7.
16. del Carmen, M.G., M. Birrer, and J.O. Schorge, Clear cell carcinoma of the ovary: a review of the literature. Gynecol Oncol, 2012. 126(3): p. 481-90.
17. Su, Y.-F., et al., Targeted sequencing of a specific gene panel detects a high frequency of ARID1A and PIK3CA mutations in ovarian clear cell carcinoma. Clinica Chimica Acta, 2019. 494: p. 1-7.
18. Shibuya, Y., et al., Identification of somatic genetic alterations in ovarian clear cell carcinoma with next generation sequencing. Genes, Chromosomes and Cancer, 2018. 57(2): p. 51-60.
19. Kim, S.I., et al., Genomic landscape of ovarian clear cell carcinoma via whole exome sequencing. Gynecologic Oncology, 2018. 148(2): p. 375-382.
20. Takahashi, K., et al., Treatment Strategies for ARID1A-Deficient Ovarian Clear Cell Carcinoma. Cancers (Basel), 2021. 13(8).
21. Sasano, T., et al., Preclinical Efficacy for AKT Targeting in Clear Cell Carcinoma of the Ovary. Molecular Cancer Research, 2015. 13(4): p. 795-806.
22. Ogasawara, A., S. Sato, and K. Hasegawa, Current and future strategies for treatment of ovarian clear cell carcinoma. Journal of Obstetrics and Gynaecology Research, 2020. 46(9): p. 1678-1689.
23. Yin, M., et al., Differential molecular pathway expression according to chemotherapeutic response in ovarian clear cell carcinoma. BMC Womens Health, 2023. 23(1): p. 298.
24. Mohammad, R.M., et al., Broad targeting of resistance to apoptosis in cancer. Seminars in Cancer Biology, 2015. 35: p. S78-S103.
25. Nunes, S.C., Tumor Microenvironment – Selective Pressures Boosting Cancer Progression, in Tumor Microenvironment : The Main Driver of Metabolic Adaptation, J. Serpa, Editor. 2020, Springer International Publishing: Cham. p. 35-49.
26. Binnewies, M., et al., Understanding the tumor immune microenvironment (TIME) for effective therapy. Nature Medicine, 2018. 24(5): p. 541-550.
27. Pauken, K.E. and E.J. Wherry, Overcoming T cell exhaustion in infection and cancer. Trends Immunol, 2015. 36(4): p. 265-76.
28. Wherry, E.J., T cell exhaustion. Nature Immunology, 2011. 12(6): p. 492-499.
29. Spranger, S., et al., Tumor-Residing Batf3 Dendritic Cells Are Required for Effector T Cell Trafficking and Adoptive T Cell Therapy. Cancer Cell, 2017. 31(5): p. 711-723.e4.
30. Spranger, S., R. Bao, and T.F. Gajewski, Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature, 2015. 523(7559): p. 231-235.
31. Mlecnik, B., et al., Integrative Analyses of Colorectal Cancer Show Immunoscore Is a Stronger Predictor of Patient Survival Than Microsatellite Instability. Immunity, 2016. 44(3): p. 698-711.
32. Gatalica, Z., et al., Programmed Cell Death 1 (PD-1) and Its Ligand (PD-L1) in Common Cancers and Their Correlation with Molecular Cancer Type. Cancer Epidemiology, Biomarkers & Prevention, 2014. 23(12): p. 2965-2970.
33. Becht, E., et al., Immune and Stromal Classification of Colorectal Cancer Is Associated with Molecular Subtypes and Relevant for Precision Immunotherapy. Clinical Cancer Research, 2016. 22(16): p. 4057-4066.
34. Greaves, M. and C.C. Maley, Clonal evolution in cancer. Nature, 2012. 481(7381): p. 306-313.
35. Jhunjhunwala, S., C. Hammer, and L. Delamarre, Antigen presentation in cancer: insights into tumour immunogenicity and immune evasion. Nature Reviews Cancer, 2021. 21(5): p. 298-312.
36. Jia, Q., et al., Heterogeneity of the tumor immune microenvironment and its clinical relevance. Experimental Hematology & Oncology, 2022. 11(1): p. 24.
37. Ren, X., et al., Immunological Classification of Tumor Types and Advances in Precision Combination Immunotherapy. Frontiers in Immunology, 2022. 13.
38. Wang, L., et al., Hot and cold tumors: Immunological features and the therapeutic strategies. MedComm (2020), 2023. 4(5): p. e343.
39. Huang, R.Y.-J., et al., Immune-Hot tumor features associated with recurrence in early-stage ovarian clear cell carcinoma. International Journal of Cancer, 2023. 152(10): p. 2174-2185.
40. Heong, V., et al., A multi-ethnic analysis of immune-related gene expression signatures in patients with ovarian clear cell carcinoma. The Journal of Pathology, 2021. 255(3): p. 285-295.
41. AlHilli, M.M., et al., Incidence and factors associated with synchronous ovarian and endometrial cancer: A population-based case-control study. Gynecologic Oncology, 2012. 125(1): p. 109-113.
42. van Niekerk, C.C., et al., The Association between Primary Endometrioid Carcinoma of the Ovary and Synchronous Malignancy of the Endometrium. Obstet Gynecol Int, 2010. 2010: p. 465162.
43. Ulbright, T.M. and L.M. Roth, Metastatic and independent cancers of the endometrium and ovary: a clinicopathologic study of 34 cases. Hum Pathol, 1985. 16(1): p. 28-34.
44. Scully, R. and R. Young, Metastatic tumors of the ovary. Blaustein's Pathology of the Female Genital Tract. Cham: Springer International Publishing, 2002: p. 987-90.
45. Falkenberry, S.S., et al., Synchronous endometrioid tumors of the ovary and endometrium. A clinicopathologic study of 22 cases. J Reprod Med, 1996. 41(10): p. 713-8.
46. Chiang, Y.-C., et al., Synchronous primary cancers of the endometrium and ovary. International Journal of Gynecologic Cancer, 2008. 18(1): p. 159-164.
47. Shin, W., et al., How to manage synchronous endometrial and ovarian cancer patients? BMC Cancer, 2021. 21(1): p. 489.
48. Chen, L., Q. Zhao, and X. Lv, Characteristics and prognosis of coexisting adnexa malignancy with endometrial cancer: a single institution review of 51 cases. Arch Gynecol Obstet, 2011. 283(5): p. 1133-7.
49. AlHilli, M.M., et al., Incidence and factors associated with synchronous ovarian and endometrial cancer: a population-based case-control study. Gynecol Oncol, 2012. 125(1): p. 109-13.
50. Anglesio, M.S., et al., Synchronous Endometrial and Ovarian Carcinomas: Evidence of Clonality. JNCI: Journal of the National Cancer Institute, 2016. 108(6).
51. Schultheis, A.M., et al., Massively Parallel Sequencing-Based Clonality Analysis of Synchronous Endometrioid Endometrial and Ovarian Carcinomas. JNCI: Journal of the National Cancer Institute, 2016. 108(6).
52. Moukarzel, L.A., et al., Clonal relationship and directionality of progression of synchronous endometrial and ovarian carcinomas in patients with DNA mismatch repair-deficiency associated syndromes. Mod Pathol, 2021. 34(5): p. 994-1007.
53. Sakamoto, I., et al., Elucidation of genomic origin of synchronous endometrial and ovarian cancer (SEO) by genomic and microsatellite analysis. J Gynecol Oncol, 2023. 34(1): p. e6.
54. Reijnen, C., et al., Molecular profiling identifies synchronous endometrial and ovarian cancers as metastatic endometrial cancer with favorable clinical outcome. Int J Cancer, 2020. 147(2): p. 478-489.
55. Naxerova, K., et al., Origins of lymphatic and distant metastases in human colorectal cancer. Science, 2017. 357(6346): p. 55-60.
56. Reiter, J.G., et al., Lymph node metastases develop through a wider evolutionary bottleneck than distant metastases. Nature Genetics, 2020. 52(7): p. 692-700.
57. Zhang, Y., et al., PolyG-DS: An ultrasensitive polyguanine tract–profiling method to detect clonal expansions and trace cell lineage. Proceedings of the National Academy of Sciences, 2021. 118(31): p. e2023373118.
58. Werner, B., et al., Measuring single cell divisions in human tissues from multi-region sequencing data. Nature Communications, 2020. 11(1): p. 1035.
59. Hu, Z., et al., Quantitative evidence for early metastatic seeding in colorectal cancer. Nature Genetics, 2019. 51(7): p. 1113-1122.
60. McDonald, M.J., et al., Mutation at a distance caused by homopolymeric guanine repeats in <i>Saccharomyces cerevisiae</i>. Science Advances, 2016. 2(5): p. e1501033.
61. Boyer, J.C., et al., Sequence dependent instability of mononucleotide microsatellites in cultured mismatch repair proficient and deficient mammalian cells. Human Molecular Genetics, 2002. 11(6): p. 707-713.
62. Naxerova, K., et al., Quantifying cell divisions along evolutionary lineages in cancer. 2024.
63. Paradis, E., J. Claude, and K. Strimmer, APE: Analyses of Phylogenetics and Evolution in R language. Bioinformatics, 2004. 20(2): p. 289-290.
64. Schliep, K.P., phangorn: phylogenetic analysis in R. Bioinformatics, 2010. 27(4): p. 592-593.
65. Revell, L.J., phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 2012. 3(2): p. 217-223.
66. Poell, J.B., et al., ACE: absolute copy number estimation from low-coverage whole-genome sequencing data. Bioinformatics, 2019. 35(16): p. 2847-2849.
67. Alexandrov, L.B., et al., The repertoire of mutational signatures in human cancer. Nature, 2020. 578(7793): p. 94-101.
68. Chen, T. and C. Guestrin, XGBoost: A Scalable Tree Boosting System, in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016, Association for Computing Machinery: San Francisco, California, USA. p. 785–794.
69. Moon, I., et al., Machine learning for genetics-based classification and treatment response prediction in cancer of unknown primary. Nature Medicine, 2023. 29(8): p. 2057-2067.
70. Hanssen, F., et al., Scalable and efficient DNA sequencing analysis on different compute infrastructures aiding variant discovery. NAR Genomics and Bioinformatics, 2024. 6(2).
71. Di Tommaso, P., et al., Nextflow enables reproducible computational workflows. Nature Biotechnology, 2017. 35(4): p. 316-319.
72. Reiter, J.G., et al., Reconstructing metastatic seeding patterns of human cancers. Nat Commun, 2017. 8: p. 14114.
73. Robin, X., et al., pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics, 2011. 12(1): p. 77.
74. Hathout, L., et al., Prognostic Effect of Mismatch Repair Status in Early-Stage Endometrial Cancer Treated With Adjuvant Radiation: A Multi-institutional Analysis. International Journal of Radiation Oncology*Biology*Physics, 2024. 119(4): p. 1158-1165.
75. Harter, P., et al., A Randomized Trial of Lymphadenectomy in Patients with Advanced Ovarian Neoplasms. N Engl J Med, 2019. 380(9): p. 822-832.
76. Pergialiotis, V., et al., Survival outcomes of ovarian cancer patients treated with secondary cytoreductive surgery for isolated lymph node recurrence: A systematic review of the literature. Int J Surg, 2019. 69: p. 61-66.
77. Fang, C., et al., The relationship between retroperitoneal lymphadenectomy and survival in advanced ovarian cancer patients. BMC Cancer, 2020. 20(1): p. 654.
78. Nguyen, P.H.D., et al., Intratumoural immune heterogeneity as a hallmark of tumour evolution and progression in hepatocellular carcinoma. Nature Communications, 2021. 12(1): p. 227.
79. Ramón y Cajal, S., et al., Clinical implications of intratumor heterogeneity: challenges and opportunities. Journal of Molecular Medicine, 2020. 98(2): p. 161-177.
80. Sebestyén, A., Tumor metabolism: metabolic alterations and heterogeneity in cancer progression. Cancer and Metastasis Reviews, 2021. 40(4): p. 987-988.
81. Devlin, M.J., et al., The Tumor Microenvironment of Clear-Cell Ovarian Cancer. Cancer Immunol Res, 2022. 10(11): p. 1326-1339.
82. Chiang, Y.C., et al., Synchronous primary cancers of the endometrium and ovary. Int J Gynecol Cancer, 2008. 18(1): p. 159-64.
83. Li, P., et al., Impact of age and mismatch repair status on survival in colorectal cancer. Cancer Med, 2017. 6(5): p. 975-981.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95107-
dc.description.abstract上皮性卵巢癌是全球十大惡性腫瘤之一,其中亮細胞卵巢癌的組織學分型在亞洲,尤其在台灣具有較高的發病率和較差的存活率,這加強了對該疾病進行深入剖析的緊迫性。癌症發展過程中會受到不同的因素影響,免疫環境則是當中相當重要的一個因素。在研究中發現“熱”腫瘤通常預後會較好,但亮細胞卵巢癌(OCCC)亞型卻顯示出相反的結果,但目前沒有直接的原因解釋這個現象。所以我們希望可以利用演化的方式去疾病進展和免疫相互作用的動態環境,以揭示選擇壓力如何影響疾病進展的生物意義。本研究會利用多鳥嘌呤指紋圖譜計算樣本間的遺傳距離,並結合突變率來重建與細胞分裂相關的系譜,以了解其相互作用。目前我們已完成十個病人的系譜重建,包括六個免疫熱病例和四個免疫冷病例。“熱”腫瘤的受精卵到最近共同祖先(MRCA)細胞分裂平均為3888次,略高於“冷”腫瘤的984次,這意味著熱腫瘤的突變負荷較高。“熱”腫瘤的變異係數平均為34%,而“冷”腫瘤為28.7%。“熱”的腫瘤多鳥嘌呤分佈的標準差的變異數的為0.98,而“冷”腫瘤的變異數為1.00。根據共祖先率(coalescence ratio)的結果顯示,免疫熱腫瘤的平均比率為0.67,而免疫冷腫瘤的比率為0.56。而這表明“熱”腫瘤可能由初始創始細胞的高突變負荷定義,並影響了後續的克隆結構。相反,“冷”腫瘤可能因選擇壓力低,導致更多的克隆掃蕩形成一個相對同質性高的克隆結構。另一方面,當同時發現患者有子宮內膜癌(EC)和卵巢癌(OC)的情況下對臨床診以及治療上會是一種挑戰,並且兩者會常具有相同的組織學樣形態-子宮內膜樣亞型,導致潛在的誤診和治療不足。為了解決這一問題,我們提出了一種基於多聚鳥嘌呤指紋圖譜的工具,用於根據遺傳相似性區分疾病狀態。在分析34個同時性子宮內膜癌和卵巢癌(SEOC)的病例時,結果顯示有1個樣本有高遺傳距離與DNA核酸錯配修復(MMR)狀態不匹配的情況,這表明該工具有可能定義MMR狀態。核酸錯配修復缺陷(MMRd)病例被排除在分析之外。然後,我們計算了皮爾遜相關係數的結果合併無進展生存期數據的共祖先率(coalescence ratio),發現高相似性的樣本具有不同的分群,一群顯示高相似性和低疾病無惡化存活期,而一群則顯示高相似性和高疾病無惡化存活期。鑑於SEOC病例中EC和OC不同存活具有一定差異,我假設高相似性的群中包括兩種不同的疾病。我們會使用機器學習的方法針對定序資料進行分析,以識別這些高相似性但不同存活率的樣本組,用以確定是否存在兩種不同疾病。在總結中,我們的系譜分析表明,免疫相互作用對OCCC的疾病進展有不同影響,但需要更多病例來驗證這一觀察結果。SEOC的區分工具可以識別隱藏的MMRd腫瘤並區雙重原位癌症和轉移癌症,為準確的原發地預測和改善預後提供關鍵資訊。zh_TW
dc.description.abstractEpithelial ovarian cancer (EOC) is a top 10 malignancy worldwide. Ovarian clear cell carcinoma (OCCC), a subtype of EOC, has a higher prevalence and worse survival in Asian populations, especially in Taiwan, highlighting the urgent need for a deeper understanding of the disease. The survival outcome of the endometrioid-like subtype is optimal, but it poses a unique clinical challenge when it coexists with endometrial cancer due to their similar histological features. In this thesis, we aimed to dissect them by understanding their evolution (disease progression). Although “hot” tumors usually have better prognoses, ovarian clear cell carcinoma (OCCC) shows the opposite. We aimed to understand how the interaction between mutation burden and the immune microenvironment shaped selection processes by building phylogenetic trees utilizing indels in polyguanine sequences. Among the ten phylogenies we constructed (hot: 6; cold: 4), the zygote-to-MRCA distance in “hot” tumors averages 3,880 cell divisions, slightly higher than the 984 divisions observed in “cold” tumors. “Hot” tumors also exhibited higher intra-tumor heterogeneity (34%), defined by the average coefficient of variance, compared to “cold” tumors (28.7%). The stutter distribution for immune-hot tumors had a mean variance of 0.98, compared to 1 for immune-cold tumors. The coalescence ratio shows an average of 0.67 in immune-hot tumors, compared to 0.56 in immune-cold tumors. This suggests that “hot” tumors might be defined by the high mutation burden of the initial founder cell, which subsequently influences the clonal structure. In contrast, “cold” tumors might experience low selection pressure, leading to more clonal sweeps and a homogeneous clonal structure. Utilizing this method, on the other hand, we studied synchronous endometrial and ovarian cancer (SEOC) utilizing a cohort of 39 cases in which 8 cases with high tumor mutation burden were identified by our approach compared with 7 cases by IHC staining. The coalescence ratio was calculated by using Pearson correlation coefficient to distinguish cases with double primary tumor (6/25) from metastatic diseases (19/25). However, we found that genetic similarity does not correlate with survival outcomes, indicating the importance of recognizing the tumor's origin. Therefore, we applied well-established machine learning methods to sequencing data to identify the origins of the tumors. In summary, our phylogenetic analysis suggested that immune interactions impacted OCCC progression differently. Immune-hot tumors tended to have a high mutation burden and complex clonal structure, while immune-cold tumors showed lower mutation burden and homogenous clonal structure. Additional cases are needed to confirm these findings. Polyguanine fingerprinting could serve as a better tool for identifying cases with high TMB and for distinguishing between DPC and MC, offering a promising alternative for clinical practice.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-28T16:18:03Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-28T16:18:03Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgement i
摘要 ii
Abstract iv
Contents vii
List of figures x
List of tables xii
Chapter I - Introduction 1
1. Epithelial ovarian cancer 1
2. Ovarian clear cell carcinoma (OCCC) 3
3. Tumor immune mircroenvironment (TIME) 5
4. Immune-microenvironment impact on OCCC cancer progression 7
5. Synchronous endometrial and ovarian cancer (SEOC) 9
6. Polyguanine fingerprinting 11
7. Objectives 12
7.1 Aim 1- Clarifying the effect of TIME on the evolutionary process in early-stage OCCC 12
7.2 Aim 2- Differentiating the DPC and MC status with polyG genetic similarity in SEOC 15
Chapter II - Materials and Methods 17
1. Patient cohort 17
2. Tissue processing and DNA extraction 17
3. Polyguanine fingerprinting 18
4. L1 distance and cell division calculation 20
5. Phylogenetic reconstruction and correlation coefficient calculation 21
6. Low-pass whole genome sequencing (lpWGS) and subsequential analysis pipeline 21
7. Immunohistochemistry (IHC) staining for mismatch repair (MMR) status 22
8. Oncology NGS-based primary cancer-type classifier (OncoNPC) 23
9. Whole exome sequencing (WES) preparation and analysis of gastric cancer (GC) and OCCC 23
10. OncoNPC data pre-processing in SEOC cohort 25
11. Phylogenetics analysis with WES data 26
12. Quantification of cell division tree 26
13. Statistical analysis 27
Chapter III - Results 28
1. Overview of the study 28
2. Aim 1- Clarifying the effect of TIME on the evolutionary process in early-stage OCCC 29
2.1 Overview of the cohort 29
2.2 The most recent common ancestors (MRCA) of immune-hot and -cold tumors showed similar evolutionary history 30
2.3 The immune-hot and -cold tumors showed similar intra-tumor heterogeneity 31
2.4 The immune-hot and -cold tumors presented similar evolutionary trajectories 32
2.5 The immune-hot and -cold tumors indicated similar trunk driver genes 32
2.6 The immune-hot and -cold tumor demonstrated different level of CNA 33
3. Aim 2- Differentiating the DPC and MC status with polyG genetic similarity in SEOC 34
3.1 Overview of the SEOC cohort 34
3.2 Polyguanine fingerprinting can comprehensively identify tumors with higher mutation burden 35
3.3 Coalescence ratio can be the tool to measure the similarity between two samples 36
3.4 Genetic similarity between samples does not correlate with survival outcome 37
3.5 OncoNPC can determine the origin of the tumor 38
Chapter IV – Discussion 40
Figures 44
Tables 57
Reference 62
-
dc.language.isoen-
dc.title利用多鳥嘌呤重複序列探討卵巢癌之演化過程zh_TW
dc.titleExploring the Evolutionary Processes of Ovarian Cancer Utilizing Indels in Poly-Guanine Repeatsen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee魏凌鴻;楊慕華;潘思樺;藍凡耘zh_TW
dc.contributor.oralexamcommitteeLing-Hung Wei;Muh-Hwa Yang;Szu-Hua Pan;Fan-Yun Lanen
dc.subject.keyword亮細胞卵巢癌,腫瘤免疫微環境,癌症演化,多鳥嘌吟重複序列,同時性子宮內膜癌和卵巢癌,癌症基因體學,zh_TW
dc.subject.keywordOvarian clear cell carcinoma,tumor immune microenvironment,cancer evolution,poly-guanine repeats,synchronous endometrial and ovarian cancer,cancer genomic,en
dc.relation.page72-
dc.identifier.doi10.6342/NTU202403552-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-07-
dc.contributor.author-college醫學院-
dc.contributor.author-dept基因體暨蛋白體醫學研究所-
dc.date.embargo-lift2029-08-06-
Appears in Collections:基因體暨蛋白體醫學研究所

Files in This Item:
File SizeFormat 
ntu-112-2.pdf
  Restricted Access
4.33 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved