Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95106
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林水龍zh_TW
dc.contributor.advisorShuei-Liong Linen
dc.contributor.author吳孟軒zh_TW
dc.contributor.authorMeng-Hsuan Wuen
dc.date.accessioned2024-08-28T16:17:46Z-
dc.date.available2024-08-29-
dc.date.copyright2024-08-28-
dc.date.issued2024-
dc.date.submitted2024-08-05-
dc.identifier.citation1. Saloni Dattani, L.R.-G., Hannah Ritchie, Esteban Ortiz-Ospina and Max Roser Life Expectancy. Our World in Data 2023; Available from: https://ourworldindata.org/life-expectancy.
2. Lopez-Otin, C., et al., The hallmarks of aging. Cell, 2013. 153(6): p. 1194-1217.
3. Partridge, L., J. Deelen, and P.E. Slagboom, Facing up to the global challenges of ageing. Nature, 2018. 561(7721): p. 45-56.
4. Kennedy, B.K., et al., Geroscience: linking aging to chronic disease. Cell, 2014. 159(4): p. 709-713.
5. Brandenberger, C. and C. Mühlfeld, Mechanisms of lung aging. Cell Tissue Res., 2017. 367(3): p. 469-480.
6. Isaev, N.K., E.V. Stelmashook, and E.E. Genrikhs, Neurogenesis and brain aging. Nat. Rev. Neurosci., 2019. 30(6): p. 573-580.
7. Drozdowski, L. and A.B. Thomson, Aging and the intestine. World J Gastroenterol, 2006. 12(47): p. 7578-7584.
8. He, L., et al., AKI on CKD: heightened injury, suppressed repair, and the underlying mechanisms. Kidney Int, 2017. 92(5): p. 1071-1083.
9. Denic, A., et al., The Substantial Loss of Nephrons in Healthy Human Kidneys with Aging. J Am Soc Nephrol, 2017. 28(1): p. 313-320.
10. Glassock, R.J. and A.D. Rule, The implications of anatomical and functional changes of the aging kidney: with an emphasis on the glomeruli. Kidney Int, 2012. 82(3): p. 270-277.
11. Hoy, W.E., et al., A stereological study of glomerular number and volume: preliminary findings in a multiracial study of kidneys at autopsy. Kidney Int Suppl, 2003(83): p. S31-37.
12. Schmitt, R. and A. Melk, Molecular mechanisms of renal aging. Kidney Int, 2017. 92(3): p. 569-579.
13. Duarte, D., C. Santos-Araujo, and A.F. Leite-Moreira, Hypertension and angiogenesis in the aging kidney: a review. Arch Gerontol Geriatr, 2011. 52(3): p. e93-102.
14. Schmitt, R. and L.G. Cantley, The impact of aging on kidney repair. Am J Physiol Renal Physiol, 2008. 294(6): p. F1265-1272.
15. Kumar, R., C.M. Hill, and M.G. McGeown, Acute renal failure in the elderly. Lancet, 1973. 1(7794): p. 90-91.
16. Ortiz, A., et al., Ageing meets kidney disease. Nephrol Dial Transplant, 2023. 38(3): p. 523-526.
17. Gai, Z., et al., Lipid Accumulation and Chronic Kidney Disease. Nutrients, 2019. 11(4): 722.
18. Zuk, A. and J.V. Bonventre, Acute Kidney Injury. Annu Rev Med, 2016. 67: p. 293-307.
19. Stamellou, E., K. Leuchtle, and M.J. Moeller, Regenerating tubular epithelial cells of the kidney. Nephrol Dial Transplant, 2021. 36(11): p. 1968-1975.
20. Qi, R. and C. Yang, Renal tubular epithelial cells: the neglected mediator of tubulointerstitial fibrosis after injury. Cell Death Dis, 2018. 9(11): p. 1126.
21. Nastase, M.V., et al., Targeting renal fibrosis: Mechanisms and drug delivery systems. Adv Drug Deliv Rev, 2018. 129: p. 295-307.
22. Cantaluppi, V., et al., Interaction between systemic inflammation and renal tubular epithelial cells. Nephrol Dial Transplant, 2014. 29(11): p. 2004-2011.
23. Asakura, T., et al., Relationship between expression of drug-resistance factors and drug sensitivity in normal human renal proximal tubular epithelial cells in comparison with renal cell carcinoma. Oncol Rep, 2005. 14(3): p. 601-607.
24. Valentijn, F.A., et al., Cellular communication network 2 (connective tissue growth factor) aggravates acute DNA damage and subsequent DNA damage response-senescence-fibrosis following kidney ischemia reperfusion injury. Kidney Int, 2022. 102(6): p. 1305-1319.
25. Hayflick, L. and P.S. Moorhead, The serial cultivation of human diploid cell strains. Exp Cell Res, 1961. 25: p. 585-621.
26. Hayflick, L., The Limited in Vitro Lifetime of Human Diploid Cell Strains. Exp Cell Res, 1965. 37: p. 614-636.
27. Olovnikov, A.M., A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J Theor Biol, 1973. 41(1): p. 181-190.
28. D'Adda Di Fagagna, F., S.-H. Teo, and S.P. Jackson, Functional links between telomeres and proteins of the DNA-damage response. Genes & Development, 2004. 18(15): p. 1781-1799.
29. d'Adda di Fagagna, F., et al., A DNA damage checkpoint response in telomere-initiated senescence. Nature, 2003. 426(6963): p. 194-198.
30. Serrano, M., et al., Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell, 1997. 88(5): p. 593-602.
31. Campisi, J. and F. d'Adda di Fagagna, Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol, 2007. 8(9): p. 729-740.
32. van Deursen, J.M., The role of senescent cells in ageing. Nature, 2014. 509(7501): p. 439-446.
33. Sherr, C.J. and F. McCormick, The RB and p53 pathways in cancer. Cancer Cell, 2002. 2(2): p. 103-112.
34. Campisi, J., Aging, cellular senescence, and cancer. Annu Rev Physiol, 2013. 75: p. 685-705.
35. Liu, J.Y., et al., Cells exhibiting strong p16(INK4a) promoter activation in vivo display features of senescence. Proc Natl Acad Sci U S A, 2019. 116(7): p. 2603-2611.
36. Zhang, J., et al., p16INK4a modulates p53 in primary human mammary epithelial cells. Cancer Res, 2006. 66(21): p. 10325-10331.
37. Lee, B.Y., et al., Senescence-associated beta-galactosidase is lysosomal beta-galactosidase. Aging Cell, 2006. 5(2): p. 187-195.
38. Coppe, J.P., et al., Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol, 2008. 6(12): p. 2853-2868.
39. Coppe, J.P., et al., A human-like senescence-associated secretory phenotype is conserved in mouse cells dependent on physiological oxygen. PLoS One, 2010. 5(2): p. e9188.
40. Eren, M., et al., PAI-1-regulated extracellular proteolysis governs senescence and survival in Klotho mice. Proc Natl Acad Sci U S A, 2014. 111(19): p. 7090-7095.
41. Ozcan, S., et al., Unbiased analysis of senescence associated secretory phenotype (SASP) to identify common components following different genotoxic stresses. Aging (Albany NY), 2016. 8(7): p. 1316-1329.
42. Hsieh, H.H., et al., The serine protease inhibitor serpinB2 binds and stabilizes p21 in senescent cells. J Cell Sci, 2017. 130(19): p. 3272-3281.
43. Thorsen, S., et al., Kinetics of inhibition of tissue-type and urokinase-type plasminogen activator by plasminogen-activator inhibitor type 1 and type 2. Eur J Biochem, 1988. 175(1): p. 33-39.
44. Schroder, W.A., et al., A physiological function of inflammation-associated SerpinB2 is regulation of adaptive immunity. J Immunol, 2010. 184(5): p. 2663-2670.
45. Kruithof, E.K., M.S. Baker, and C.L. Bunn, Biological and clinical aspects of plasminogen activator inhibitor type 2. Blood, 1995. 86(11): p. 4007-4024.
46. Sen, P., et al., SerpinB2 Regulates Immune Response in Kidney Injury and Aging. J Am Soc Nephrol, 2020. 31(5): p. 983-995.
47. Eckert, R.L., et al., Transglutaminase regulation of cell function. Physiol Rev, 2014. 94(2): p. 383-417.
48. Klock, C., T.R. Diraimondo, and C. Khosla, Role of transglutaminase 2 in celiac disease pathogenesis. Semin Immunopathol, 2012. 34(4): p. 513-522.
49. Burhan, I., et al., Interplay between transglutaminases and heparan sulphate in progressive renal scarring. Sci Rep, 2016. 6: p. 31343.
50. Palanski, B.A. and C. Khosla, Cystamine and Disulfiram Inhibit Human Transglutaminase 2 via an Oxidative Mechanism. Biochemistry, 2018. 57(24): p. 3359-3363.
51. Vij, N., Nano-based rescue of dysfunctional autophagy in chronic obstructive lung diseases. Expert Opin Drug Deliv, 2017. 14(4): p. 483-489.
52. Gibrat, C. and F. Cicchetti, Potential of cystamine and cysteamine in the treatment of neurodegenerative diseases. Prog Neuropsychopharmacol Biol Psychiatry, 2011. 35(2): p. 380-389.
53. Cicchetti, F., et al., Cysteamine as a novel disease-modifying compound for Parkinson's disease: Over a decade of research supporting a clinical trial. Neurobiol Dis, 2019. 130: p. 104530.
54. Evans, R.M. and D.J. Mangelsdorf, Nuclear Receptors, RXR, and the Big Bang. Cell, 2014. 157(1): p. 255-266.
55. Sever, R. and C.K. Glass, Signaling by nuclear receptors. Cold Spring Harb Perspect Biol, 2013. 5(3): p. a016709.
56. Dawson, M.I. and Z. Xia, The retinoid X receptors and their ligands. Biochim Biophys Acta, 2012. 1821(1): p. 21-56.
57. Harley, C.B., A.B. Futcher, and C.W. Greider, Telomeres shorten during ageing of human fibroblasts. Nature, 1990. 345(6274): p. 458-460.
58. Hemann, M.T., et al., The Shortest Telomere, Not Average Telomere Length, Is Critical for Cell Viability and Chromosome Stability. Cell, 2001. 107(1): p. 67-77.
59. Martens, U.M., et al., Accumulation of short telomeres in human fibroblasts prior to replicative senescence. Exp Cell Res, 2000. 256(1): p. 291-299.
60. Kim, H., et al., Expression profiles of p53-, p16(INK4a)-, and telomere-regulating genes in replicative senescent primary human, mouse, and chicken fibroblast cells. Exp Cell Res, 2002. 272(2): p. 199-208.
61. Parrinello, S., et al., Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts. Nature Cell Biology, 2003. 5(8): p. 741-747.
62. Todaro, G.J. and H. Green, Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines. J Cell Biol, 1963. 17(2): p. 299-313.
63. Aaronson, S.A. and G.J. Todaro, Basis for the acquisition of malignant potential by mouse cells cultivated in vitro. Science, 1968. 162(3857): p. 1024-1026.
64. Schroder, W.A., L. Major, and A. Suhrbier, The role of SerpinB2 in immunity. Crit Rev Immunol, 2011. 31(1): p. 15-30.
65. Medcalf, R.L. and S.J. Stasinopoulos, The undecided serpin. The FEBS Journal, 2005. 272(19): p. 4858-4867.
66. Eaton, A., et al., Cysteinyl leukotriene signaling through perinuclear CysLT1 receptors on vascular smooth muscle cells transduces nuclear calcium signaling and alterations of gene expression. Journal of Molecular Medicine, 2012. 90(10): p. 1223-1231.
67. Park, J.M., et al., Signaling Pathways and Genes that Inhibit Pathogen-Induced Macrophage Apoptosis— CREB and NF-κB as Key Regulators. Immunity, 2005. 23(3): p. 319-329.
68. Akira, S. and K. Takeda, Toll-like receptor signalling. Nature Reviews Immunology, 2004. 4(7): p. 499-511.
69. Martin, N., X. Ma, and D. Bernard, Regulation of cellular senescence by retinoid X receptors and their partners. Mech Ageing Dev, 2019. 183: p. 111131.
70. Correia‐Melo, C., et al., Mitochondria are required for pro‐ageing features of the senescent phenotype. The EMBO Journal, 2016. 35(7): p. 724-742.
71. el-Deiry, W.S., et al., WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res, 1994. 54(5): p. 1169-1174.
72. el-Deiry, W.S., et al., WAF1, a potential mediator of p53 tumor suppression. Cell, 1993. 75(4): p. 817-825.
73. Xiong, Y., et al., p21 is a universal inhibitor of cyclin kinases. Nature, 1993. 366(6456): p. 701-704.
74. Harper, J.W., et al., Inhibition of cyclin-dependent kinases by p21. Mol Biol Cell, 1995. 6(4): p. 387-400.
75. Furini, G., et al., Insights into the heparan sulphate-dependent externalisation of transglutaminase-2 (TG2) in glucose-stimulated proximal-like tubular epithelial cells. Anal. Biochem., 2020. 603: p. 113628.
76. Furini, G., et al., Proteomic Profiling Reveals the Transglutaminase-2 Externalization Pathway in Kidneys after Unilateral Ureteric Obstruction. J Am Soc Nephrol, 2018. 29(3): p. 880-905.
77. Annes, J.P., J.S. Munger, and D.B. Rifkin, Making sense of latent TGFβ activation. J Cell Sci, 2003. 116(2): p. 217-224.
78. Wong, P.F., et al., Senescent HUVECs-secreted exosomes trigger endothelial barrier dysfunction in young endothelial cells. EXCLI J, 2019. 18: p. 764-776.
79. Chen, X., et al., Small extracellular vesicles from young plasma reverse age-related functional declines by improving mitochondrial energy metabolism. Nature Aging, 2024. 4(6): p. 814-838.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95106-
dc.description.abstract人類平均壽命的延長使老化成為多數人會面對的問題,腎臟作為人體重要的代謝和排毒器官,其老化過程不僅直接影響到個體健康,還是許多年齡相關疾病的關鍵因素,例如慢性腎病 (chronic kidney disease, CKD)、第2型糖尿病和高血壓等,再者CKD還會加劇全身性器官的老化。因此了解腎臟老化與損傷的機制並設法延緩或改善具有重要意義。
已知隨著細胞分裂,端粒不斷縮短會引起DNA損傷反應 (DNA damage response, DDR),誘導轉錄調節因子p53蛋白活化,促使下游基因Serpinb2和p21的表達增加。p21蛋白(也稱為CDKN1a)可結合並抑制細胞週期依賴性激酶 (cyclin-dependent kinase, CDK)的酵素活性,而SerpinB2會透過活化轉麩醯胺酸酶2 (transglutaminase 2, TGM2)的脫胺作用來穩定p21蛋白的結構,進而導致細胞週期停滯和細胞衰老。在過往的實驗發現,無論是老化的腎小管細胞,還是老年小鼠(24月齡)或是損傷小鼠模型的腎臟,SerpinB2的基因表達均顯著高於年輕的對照組。此外,給予小鼠類視網醇X受體 (retinoid X receptors, RXR)活化劑bexarotene的實驗中,觀察到其腎臟中另一個細胞週期抑制劑p16蛋白(也稱為CDKN2a或p16INK4a)的表現增加,意指RXR路徑與調節細胞週期、腎臟老化有關。故本研究是為了探討RXR-SerpinB2-TGM2訊號軸在腎小管細胞衰老中的作用。
由免疫螢光 (immunofluorescence, IF)染色確認RXR分布於小鼠的腎小管上皮細胞,故使用小鼠初代腎小管上皮細胞 (primary tubular epithelial cells, PTECs)來進行後續實驗。在觀察複製型衰老 (replicative senescence)的群體倍增 (population doubling, PD)實驗中,無法看到PTECs的自然老化,生長曲線持續上升,但給了RXR活化劑bexarotene一段時間後細胞就會出現生長停滯,生長曲線逐漸平緩;若給RXR抑制劑HX531時細胞則持續分裂,甚至比對照組上升得更快,不會出現生長停滯,表示活化與抑制RXR途徑會影響PTECs的生長。進一步看PTECs給予bexarotene和HX531後的基因和蛋白質表現變化,Tgm2基因的表達隨著給bexarotene顯著上升,給HX531則顯著下降,而p16、p21、p53以及部分衰老相關分泌表型 (senescence associated secretory phenotype, SASP)基因的表現在給bexarotene或HX531後與對照組皆無差異;在蛋白質表現的分析中,可發現p21、SerpinB2和TGM2在給予bexarotene時表現量顯著上升,而給予HX531時p21、SerpinB2和TGM2的表現量顯著下降,p16、p53的蛋白表現則在給bexarotene或HX531後與對照組無差異。以上代表在PTECs中,RXR對SerpinB2-TGM2軸線的基因和蛋白表現具有調控作用,但不影響促進發炎或纖維化的細胞激素表達。
在細胞週期分析實驗中,發現給bexarotene會使細胞週期停滯在G0/G1,傷口癒合實驗得知bexarotene作用讓PTECs生長與爬行較慢。同時,有加bexarotene的組別其衰老相關的β-半乳糖苷酶 (senescence-associated β-galactosidase, SA-β-gal)表現量上升且可被TGM2的活性抑制劑cystamine抑制,TGM2活性檢測,驗證了給bexarotene使TGM2活性增加,且同樣可受cystamine抑制。活化RXR會影響PTECs的衰老表型增加,而透過抑制TGM2活性,可以反轉活化RXR的作用效果。另外,用免疫螢光染色發現TGM2表現在小鼠的腎小管上皮細胞與間質,且在小鼠急性腎損傷 (Acute kidney injury, AKI)模型之腎臟組織的表現量會增多,而SerpinB2則表現在小鼠的腎小管上皮細胞及刷狀緣 (brush border)。未來我們將利用原位雜交技術確定表達Tgm2的腎細胞,並探討一種腎細胞分泌的TGM2是否可能影響另一種細胞。計劃利用基因轉殖技術在小鼠中進行Tgm2全身性及專一性剔除,觀察基因剔除對壽命的影響,同時驗證細胞層面觀察到的實驗結果,並給予AKI模型的小鼠bexarotene或HX531,看活化、抑制RXR對於腎臟損傷與修復的影響,將有助於深入理解RXR-SerpinB2-TGM2軸線在腎臟老化與損傷過程中的具體作用,並為針對這一途徑的治療策略開發提供實驗基礎。
zh_TW
dc.description.abstractThe increase in human life expectancy has made aging a common issue faced by many. As a crucial metabolic and detoxifying organ, the kidney plays a significant role in individual health. It is a key factor in numerous age-related diseases such as chronic kidney disease (CKD), type 2 diabetes, and hypertension. Moreover, CKD can exacerbate the aging of systemic organs. Thus, it is important to understand the mechanisms of renal aging and injury and find ways to slow or improve them.
Telomere attrition with each cell division initiates a DNA damage response (DDR), activating the transcription regulator p53, which enhances Serpinb2 and p21 gene expressions. The p21 protein inhibits the activity of cyclin-dependent kinases (CDKs), and SerpinB2 stabilizes p21 through the action of transglutaminase 2 (TGM2), leading to cell cycle arrest and senescence. Previous experiments have found that whether in senescent renal tubular cells, aged mice (24 months old), or an injury mouse model, the gene expression of SerpinB2 is significantly higher than in young control groups. Furthermore, in experiments in which mice were given the retinoid X receptor (RXR) activator bexarotene, an increase in the expression of another cell cycle inhibitor protein p16 was observed, indicating that the RXR pathway is involved in regulating the cell cycle and kidney aging. Therefore, this study aims to explore the role of the RXR-SerpinB2-TGM2 signaling axis in renal tubular cell senescence.
Immunofluorescence staining confirmed the distribution of RXR in the renal tubular epithelial cells of mice, so primary tubular epithelial cells (PTECs) were used for subsequent experiments. In the population doubling (PD) experiments for observing replicative senescence, the natural aging of PTECs was not observed, and the growth curve continued to rise. However, after a period of treatment with the RXR activator bexarotene, cell growth stalled, and the growth curve gradually flattened. When the RXR inhibitor HX531 was administered, the cells continued to divide, even increasing faster than the control group without showing growth arrest. This indicates that activating and inhibiting the RXR pathway affects the aging and growth of PTECs, respectively. Further experiments revealed that bexarotene and HX531 increased and decreased the expression of Tgm2 gene in PTECs, respectively. Meanwhile, the gene expression of cell cycle regulators including p16, p21, p53, and senescence-associated secretory phenotype (SASP) including IL1β, MMP3, and TGFβ1 remained unchanged compared to the control group after treatment with bexarotene or HX531. However, the protein expression of p21, SerpinB2, and TGM2 significantly increased with bexarotene treatment, while they decreased significantly with HX531 treatment. The protein expressions of p16 and p53 remained unchanged compared to the control group after treatment with bexarotene or HX531. This indicates that RXR activation upregulates the protein expression of SerpinB2-TGM2-p21 axis in PTECs but does not affect the expression of cytokines that promote inflammation or fibrosis.
In cell cycle analysis experiments, bexarotene was found to cause cell cycle arrest at G0/G1 phase and fewer cells entering S phase. Wound healing experiments revealed that bexarotene treatment slowed the growth and migration of PTECs. Additionally, the group treated with bexarotene exhibited an increase in senescence-associated β-galactosidase (SA-β-gal) expression, which could be inhibited by the TGM2 inhibitor cystamine. TGM2 activity assay confirmed that bexarotene increased TGM2 activity, which could also be inhibited by cystamine. These data indicate that RXR activation promotes the aging phenotype of PTECs; however, TGM2 inhibition by cystamine can reverse the effects of RXR activation.
We found that TGM2 is expressed in the renal tubular epithelial cells and interstitium of mice by immunofluorescence staining. Its expression increases in kidney tissues of acute kidney injury (AKI) mouse models, while SerpinB2 is expressed in the renal tubular epithelial cells and brush border of mice. We will first clarify Tgm2-expressing kidney cells by in situ hybridization and the possibility of TGM2 secretion from one kidney cell type affecting the other cell type. Plans include using transgenic mice for systemic and specific knockout of Tgm2 to observe the impact of gene knockout on lifespan and renal function during aging and diseases, while also verifying the experimental results observed at the cellular level. Administering bexarotene or HX531 to mice in AKI models to see the effects of activating and inhibiting RXR on kidney injury and repair will help deepen the understanding of the specific role of the RXR-SerpinB2-TGM2 axis in renal aging and diseases. This will provide an experimental basis for the development of therapeutic strategies targeting this pathway.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-28T16:17:45Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-28T16:17:46Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
致謝 ii
摘要 iii
Abstract v
目次 viii
圖次 xi
表次 xii
一、 1
1. 老化 (aging) 1
2. 腎臟老化 2
3. 細胞衰老 (cellular senescence) 3
3.1 細胞衰老機制 4
3.2 細胞衰老標記 4
4. SerpinB2 5
5. 轉麩醯胺酸酶2 (transglutaminase 2, TGM2) 5
6. 類視黃醇X 受體 (retinoid X receptors, RXRs) 6
7. 研究目的 7
二、 材料與方法 9
1. 藥品與試劑 9
2. 溶液 11
3. 細胞培養 12
4. 群體倍增 (population doubling)研究 12
5. 細胞毒性測定 13
6. 基因表達量檢測 13
6.1 藥品與試劑 13
6.2 RNA 萃取 13
6.3 反轉錄 (Reverse transcription)和即時聚合酶連鎖反應 (real-time polymerase chain reaction, real-time PCR) 14
7. 細胞激素測定 14
8. 蛋白質萃取與定量 14
8.1 藥品與試劑 14
8.2 RIPA mix 配製 15
8.3 蛋白質萃取 15
8.4 蛋白質濃度定量 15
9. 西方墨點法 (Western blot) 16
9.1 藥品與試劑 16
9.2 溶液 17
9.3 蛋白質樣品製備 18
9.4 製膠與跑膠 18
9.5 抗體 19
10. 細胞週期分析 20
11. 傷口癒合實驗 20
12. SA-β-Gal 染色 21
13. TGM2 活性檢測 21
14. 實驗動物 22
15. 腎臟組織的採集 22
16. 免疫螢光染色 (Immunofluorescence, IF) 23
17. 統計分析 (Statistical analysis) 24
三、 實驗結果 25
1. RXRα 表現在小鼠的腎小管上皮細胞 25
2. 小鼠PTECs 在建議的培養條件下不會出現複製性生長停滯 25
3. RXR 活化劑bexarotene 可使PTECs 出現生長停滯 25
4. RXR 拮抗劑HX531 可使PTECs 生長加速 26
5. 給PTECs bexarotene 活化RXR 途徑也影響老化相關基因的表現 27
6. 給PTECs bexarotene 使老化相關蛋白表現量上升 28
7. 給PTECs HX531 對老化相關基因表現的影響 29
8. 給PTECs HX531 使老化相關蛋白表現量下降 29
9. 給bexarotene 使PTECs 細胞週期停滯 30
10. Bexarotene 減弱PTECs 的生長癒合能力 31
11. Bexarotene 使SA-β-gal 表現量上升且可被cystamine 抑制 31
12. Cystamine 能抑制bexarotene 對TGM2 活性的作用 32
13. TGM2、SerpinB2 在腎小管的分布 32
四、 討論 34
1. 小鼠PTECs 在建議的培養條件下沒有出現複製性生長停滯 34
2. PTECs 中活化RXR 途徑不通過p53 但使SerpinB2 蛋白質表現增加 35
3. p21 增加與細胞週期 36
4. TGM2 在腎小管的分布 36
5. 未來可進行相關實驗 37
6. 結論與未來展望 38
五、 圖表 40
六、 參考文獻 62
-
dc.language.isozh_TW-
dc.subject類視網醇X受體zh_TW
dc.subjectSerpinB2zh_TW
dc.subject轉麩醯胺酸酶2zh_TW
dc.subject腎小管上皮細胞zh_TW
dc.subject細胞週期停滯zh_TW
dc.subject衰老相關分泌表型zh_TW
dc.subjectSerpinB2en
dc.subjectretinoid X receptor (RXR)en
dc.subjectsenescence-associated secretory phenotype (SASP)en
dc.subjectcell cycle arresten
dc.subjectprimary tubular epithelial cells (PTECs)en
dc.subjecttransglutaminase 2 (TGM2)en
dc.title了解RXR-SerpinB2-TGM2軸線在腎小管細胞衰老的作用zh_TW
dc.titleDecipher the RXR-SerpinB2-TGM2 axis in renal tubular cell senescenceen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林敬哲;王培育;張芳綺zh_TW
dc.contributor.oralexamcommitteeJing-Jerl Lin;Wang-Pei Yu;Fan-Chi Changen
dc.subject.keyword類視網醇X受體,SerpinB2,轉麩醯胺酸酶2,腎小管上皮細胞,細胞週期停滯,衰老相關分泌表型,zh_TW
dc.subject.keywordretinoid X receptor (RXR),SerpinB2,transglutaminase 2 (TGM2),primary tubular epithelial cells (PTECs),cell cycle arrest,senescence-associated secretory phenotype (SASP),en
dc.relation.page69-
dc.identifier.doi10.6342/NTU202403351-
dc.rights.note未授權-
dc.date.accepted2024-08-05-
dc.contributor.author-college醫學院-
dc.contributor.author-dept生理學研究所-
顯示於系所單位:生理學科所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
2.97 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved