Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 分子醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95102
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡欣祐zh_TW
dc.contributor.advisorHsin-Yue Tsaien
dc.contributor.author吳孟涵zh_TW
dc.contributor.authorMeng-Han Wuen
dc.date.accessioned2024-08-28T16:16:35Z-
dc.date.available2024-08-29-
dc.date.copyright2024-08-28-
dc.date.issued2024-
dc.date.submitted2024-07-25-
dc.identifier.citation[1] Liang J, Wang J, Azfer A, Song W, Tromp G, Kolattukudy PE, Fu M. A novel CCCH-zinc finger protein family regulates proinflammatory activation of macrophages. J Biol Chem 2008;283(10):6337-46.
[2] Fischer M, Weinberger T, Schulz C. The immunomodulatory role of Regnase family RNA-binding proteins. RNA Biol 2020;17(12):1721-1726.
[3] Xu J, Peng W, Sun Y, Wang X, Xu Y, Li X, Gao G, Rao Z. Structural study of MCPIP1 N-terminal conserved domain reveals a PIN-like RNase. Nucleic Acids Res 2012;40(14):6957-65.
[4] Zhou L, Azfer A, Niu J, Graham S, Choudhury M, Adamski FM, Younce C, Binkley PF, Kolattukudy PE. Monocyte chemoattractant protein-1 induces a novel transcription factor that causes cardiac myocyte apoptosis and ventricular dysfunction. Circ Res 2006;98(9):1177-85.
[5] Yokogawa M, Tsushima T, Noda NN, Kumeta H, Enokizono Y, Yamashita K, Standley DM, Takeuchi O, Akira S, Inagaki F. Structural basis for the regulation of enzymatic activity of Regnase-1 by domain-domain interactions. Sci Rep 2016;6:22324.
[6] Matsushita K, Takeuchi O, Standley DM, Kumagai Y, Kawagoe T, Miyake T, Satoh T, Kato H, Tsujimura T, Nakamura H and others. Zc3h12a is an RNase essential for controlling immune responses by regulating mRNA decay. Nature 2009;458(7242):1185-U124.
[7] Niu J, Shi Y, Xue J, Miao R, Huang S, Wang T, Wu J, Fu M, Wu ZH. USP10 inhibits genotoxic NF-kB activation by MCPIP1-facilitated deubiquitination of NEMO. EMBO J 2013;32(24):3206-19.
[8] Liang J, Saad Y, Lei T, Wang J, Qi D, Yang Q, Kolattukudy PE, Fu M. MCP-induced protein 1 deubiquitinates TRAF proteins and negatively regulates JNK and NF-kB signaling. J Exp Med 2010;207(13):2959-73.
[9] Huang S, Miao R, Zhou Z, Wang T, Liu J, Liu G, Chen YE, Xin HB, Zhang J, Fu M. MCPIP1 negatively regulates toll-like receptor 4 signaling and protects mice from LPS-induced septic shock. Cell Signal 2013;25(5):1228-34.
[10] Dhamija S, Doerrie A, Winzen R, Dittrich-Breiholz O, Taghipour A, Kuehne N, Kracht M, Holtmann H. IL-1-induced post-transcriptional mechanisms target overlapping translational silencing and destabilizing elements in IkBzeta mRNA. J Biol Chem 2010;285(38):29165-78.
[11] Mao R, Yang R, Chen X, Harhaj EW, Wang X, Fan Y. Regnase-1, a rapid response ribonuclease regulating inflammation and stress responses. Cell Mol Immunol 2017;14(5):412-422.
[12] Lin RJ, Chu JS, Chien HL, Tseng CH, Ko PC, Mei YY, Tang WC, Kao YT, Cheng HY, Liang YC and others. MCPIP1 suppresses hepatitis C virus replication and negatively regulates virus-induced proinflammatory cytokine responses. J Immunol 2014;193(8):4159-68.
[13] Wang GM, Zheng CF. Zinc finger proteins in the host-virus interplay: multifaceted functions based on their nucleic acid-binding property. Fems Microbiology Reviews 2021;45(3).
[14] Tan X, Gao J, Shi Z, Tai S, Chan LL, Yang Y, Peng DQ, Liao DF, Jiang ZS, Chang YZ and others. MG132 induces expression of monocyte chemotactic protein-induced protein 1 in vascular smooth muscle cells. J Cell Physiol 2017;232(1):122-8.
[15] Miekus K, Kotlinowski J, Lichawska-Cieslar A, Rys J, Jura J. Activity of MCPIP1 RNase in tumor associated processes. J Exp Clin Cancer Res 2019;38(1):421.
[16] Wang W, Huang X, Xin HB, Fu M, Xue A, Wu ZH. TRAF family member-associated NF-kB Activator (TANK) inhibits genotoxic nuclear factor kB activation by facilitating deubiquitinase USP10-dependent deubiquitination of TRAF6 ligase. J Biol Chem 2015;290(21):13372-85.
[17] Niu J, Azfer A, Zhelyabovska O, Fatma S, Kolattukudy PE. Monocyte chemotactic protein (MCP)-1 promotes angiogenesis via a novel transcription factor, MCP-1-induced protein (MCPIP). J Biol Chem 2008;283(21):14542-51.
[18] Marona P, Górka J, Mazurek Z, Wilk W, Rys J, Majka M, Jura J, Miekus K. MCPIP1 downregulation in clear cell renal cell carcinoma promotes vascularization and metastatic progression. Cancer Research 2017;77(18):4905-4920.
[19] Younce CW, Azfer A, Kolattukudy PE. MCP-1 (Monocyte Chemotactic Protein-1)-induced protein, a recently identified zinc finger protein, induces adipogenesis in 3T3-L1 pre-adipocytes without peroxisome proliferator-activated receptor γ. J Biol Chem 2009;284(40):27620-27628.
[20] Lipert B, Wegrzyn P, Sell H, Eckel J, Winiarski M, Budzynski A, Matlok M, Kotlinowski J, Ramage L, Malecki M and others. Monocyte chemoattractant protein-induced protein 1 impairs adipogenesis in 3T3-L1 cells. Biochim Biophys Acta 2014;1843(4):780-8.
[21] Wang R, Sun SC, Wang ZZ, Xu XX, Jiang T, Liu HZ, Li XH, Ren ZH. MCPIP1 promotes cell proliferation, migration and angiogenesis of glioma via VEGFA-mediated ERK pathway. Experimental Cell Research 2022;418(1).
[22] Qi DF, Huang SP, Miao RD, She ZG, Quinn T, Chang YZ, Liu JG, Fan DP, Chen YE, Fu MG. Monocyte chemotactic protein-induced protein 1 (MCPIP1) suppresses stress granule formation and determines apoptosis under stress. J Biol Chem 2011;286(48):41692-41700.
[23] Szukala W, Lichawska-Cieslar A, Pietrzycka R, Kulecka M, Rumienczyk I, Mikula M, Chlebicka I, Konieczny P, Dziedzic K, Szepietowski JC and others. Loss of epidermal MCPIP1 is associated with aggressive squamous cell carcinoma. Journal of Experimental & Clinical Cancer Research 2021;40(1).
[24] Roy A, Zhang MJ, Saad Y, Kolattukudy PE. Antidicer RNAse activity of monocyte chemotactic protein-induced protein-1 is critical for inducing angiogenesis. American Journal of Physiology-Cell Physiology 2013;305(10):C1021-C1032.
[25] Suzuki HI, Arase M, Matsuyama H, Choi YL, Ueno T, Mano H, Sugimoto K, Miyazono K. MCPIP1 ribonuclease antagonizes dicer and terminates microRNA biogenesis through precursor microRNA degradation. Molecular Cell 2011;44(3):424-436.
[26] Iwasaki H, Takeuchi O, Teraguchi S, Matsushita K, Uehata T, Kuniyoshi K, Satoh T, Saitoh T, Matsushita M, Standley DM and others. The IκB kinase complex regulates the stability of cytokine-encoding mRNA induced by TLR-IL-1R by controlling degradation of regnase-1. Nature Immunology 2011;12(12):1167-U57.
[27] Yao H, Ma R, Yang L, Hu G, Chen XF, Duan M, Kook Y, Niu F, Liao K, Fu MG and others. MiR-9 promotes microglial activation by targeting MCPIP1. Nature Communications 2014;5.
[28] Uehata T, Iwasaki H, Vandenbon A, Matsushita K, Hernandez-Cuellar E, Kuniyoshi K, Satoh T, Mino T, Suzuki Y, Standley DM and others. Malt1-Induced cleavage of regnase-1 in CD4 helper T cells regulates immune activation. Cell 2013;153(5):1036-1049.
[29] Uehata T, Takeuchi O. Regnase-1 is an endoribonuclease essential for the maintenance of immune homeostasis. Journal of Interferon and Cytokine Research 2017;37(5):220-229.
[30] Mino T, Murakawa Y, Fukao A, Vandenbon A, Wessels HH, Ori D, Uehata T, Tartey S, Akira S, Suzuki Y and others. Regnase-1 and Roquin regulate a common element in inflammatory mRNAs by spatiotemporally distinct mechanisms. Cell 2015;161(5):1058-1073.
[31] Fu MG, Blackshear PJ. RNA-binding proteins in immune regulation: a focus on CCCH zinc finger proteins. Nature Reviews Immunology 2017;17(2):130-143.
[32] Mizgalska D, Wegrzyn P, Murzyn K, Kasza A, Koj A, Jura J, Jarzab B, Jura J. Interleukin-1-inducible MCPIP protein has structural and functional properties of RNase and participates in degradation of IL-1β mRNA. Febs Journal 2009;276(24):7386-7399.
[33] Mino T, Iwai N, Endo M, Inoue K, Akaki K, Hia F, Uehata T, Emura T, Hidaka K, Suzuki Y and others. Translation-dependent unwinding of stem-loops by UPF1 licenses Regnase-1 to degrade inflammatory mRNAs. Nucleic Acids Research 2019;47(16):8838-8859.
[34] Behrens G, Winzen R, Rehage N, Dörrie A, Barsch M, Hoffmann A, Hackermüller J, Tiedje C, Heissmeyer V, Holtmann H. A translational silencing function of MCPIP1/Regnase-1 specified by the target site context. Nucleic Acids Research 2018;46(8):4256-4270.
[35] Huang SP, Liu SF, Fu JJ, Wang TT, Yao XL, Kumar A, Liu G, Fu MG. Monocyte chemotactic protein-induced protein 1 and 4 form a complex but act independently in regulation of interleukin-6 mRNA degradation. J Biol Chem 2015;290(34):20782-20792.
[36] Leppek K, Schott J, Reitter S, Poetz F, Hammond MC, Stoecklin G. Roquin promotes constitutive mRNA Decay via a conserved class of stem-loop recognition motifs. Cell 2013;153(4):869-881.
[37] Jeltsch KM, Hu DS, Brenner S, Zöller J, Heinz GA, Nagel D, Vogel KU, Rehage N, Warth SC, Edelmann SL and others. Cleavage of roquin and regnase-1 by the paracaspase MALT1 releases their cooperatively repressed targets to promote TH17 differentiation. Nature Immunology 2014;15(11):1079-1089.
[38] Umate P, Tuteja N, Tuteja R. Genome-wide comprehensive analysis of human helicases. Commun Integr Biol 2011;4(1):118-37.
[39] Ranji A, Boris-Lawrie K. RNA helicases: emerging roles in viral replication and the host innate response. RNA Biol 2010;7(6):775-87.
[40] Zheng HJ, Tsukahara M, Liu E, Ye LY, Xiong H, Noguchi S, Suzuki K, Ji ZS. The novel helicase helG (DHX30) is expressed during gastrulation in mice and has a structure similar to a human DExH box helicase. Stem Cells and Development 2015;24(3):372-383.
[41] Lessel D, Schob C, Kury S, Reijnders MRF, Harel T, Eldomery MK, Coban-Akdemir Z, Denecke J, Edvardson S, Colin E and others. De novo missense mutations in DHX30 impair global translation and cause a neurodevelopmental disorder. Am J Hum Genet 2017;101(5):716-724.
[42] Mannucci I, Dang NDP, Huber H, Murry JB, Abramson J, Althoff T, Banka S, Baynam G, Bearden D, Beleza-Meireles A and others. Genotype-phenotype correlations and novel molecular insights into the DHX30-associated neurodevelopmental disorders. Genome Medicine 2021;13(1).
[43] Wang YS, Bogenhagen DF. Human mitochondrial DNA nucleoids are linked to protein folding machinery and metabolic enzymes at the mitochondrial inner membrane. J Biol Chem 2006;281(35):25791-25802.
[44] Minczuk M, He JY, Duch AM, Ettema TJ, Chlebowski A, Dzionek K, Nijtmans LGJ, Huynen MA, Holt IJ. TEFM (c17orf42) is necessary for transcription of human mtDNA. Nucleic Acids Research 2011;39(10):4284-4299.
[45] Antonicka H, Shoubridge EA. Mitochondrial RNA granules are centers for posttranscriptional RNA processing and ribosome biogenesis. Cell Reports 2015;10(6):920-932.
[46] Rizzotto D, Zaccara S, Rossi A, Galbraith MD, Andrysik Z, Pandey A, Sullivan KD, Quattrone A, Espinosa JM, Dassi E and others. Nutlin-induced apoptosis Is specified by a translation program regulated by PCBP2 and DHX30. Cell Reports 2020;30(13):4355.
[47] Bosco B, Rossi A, Rizzotto D, Hamadou MH, Bisio A, Giorgetta S, Perzolli A, Bonollo F, Gaucherot A, Catez F and others. DHX30 coordinates cytoplasmic translation and mitochondrial function contributing to cancer cell survival. Cancers (Basel) 2021;13(17).
[48] Zhou YD, Ma J, Roy BB, Wu JYY, Pan QH, Rong LW, Liang C. The packaging of human immunodeficiency virus type 1 RNA is restricted by overexpression of an RNA helicase DHX30. Virology 2008;372(1):97-106.
[49] Ye PY, Liu SF, Zhu YP, Chen GF, Gao GX. DEXH-Box protein DHX30 is required for optimal function of the zinc-finger antiviral protein. Protein & Cell 2010;1(10):956-964.
[50] Gilbert LA, Horlbeck MA, Adamson B, Villalta JE, Chen Y, Whitehead EH, Guimaraes C, Panning B, Ploegh HL, Bassik MC and others. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 2014;159(3):647-61.
[51] Takimoto K, Wakiyama M, Yokoyama S. Mammalian GW182 contains multiple Argonaute-binding sites and functions in microRNA-mediated translational repression. RNA 2009;15(6):1078-89.
[52] Frohn A, Eberl HC, Stohr J, Glasmacher E, Rudel S, Heissmeyer V, Mann M, Meister G. Dicer-dependent and -independent Argonaute2 protein interaction networks in mammalian cells. Mol Cell Proteomics 2012;11(11):1442-56.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95102-
dc.description.abstractMonocyte chemotactic protein-1 induced protein 1 (MCPIP1),又稱RENASE-1,是一種參與發炎反應和血管新生等生理機制的鋅指核糖核酸酶。它能能夠與目標mRNA 3’UTR的莖-環結構結合,進而降解目標mRNA和抑制其轉譯,但對於MCPIP1如何選擇目標mRNA的機制仍不清楚。先前研究發現MCPIP1的交互作用蛋白up-frameshift protein 1 (UPF1)可促進MCPIP1辨認轉譯活躍的mRNA,強調交互作用的蛋白對MCPIP1選擇特定目標mRNA的重要性。我們實驗室先前透過質譜分析找到了一個潛在的MCPIP1交互作用蛋白-ATP-dependent RNA helicase-DHX30。為了探討DHX30對MCPIP1功能的重要性,我們先從兩個蛋白是否會互相影響彼此蛋白的量開始檢驗。
目前已知MCPIP1會參與血管新生,然而其是促進還是抑制血管新生仍存在爭議。因此,我們使用胰島內皮(MS1)細胞探討DHX30在MCPIP1功能中的角色,並研究與血管新生的關聯。初步的數據顯示調降Mcpip1不影響DHX30 mRNA和蛋白表現量,但調降Dhx30則會使MS1細胞中MCPIP1蛋白表現量上升。透過cycloheximide此蛋白合成抑制劑的實驗測試MCPIP1蛋白降解速率,我們觀察到在Dhx30調降的MS1細胞中,MCPIP1蛋白的降解速率較快,代表MCPIP1蛋白含量的增加可能是因其蛋白合成增加所致。由於MCPIP1的mRNA也是MCPIP1 的目標mRNA之一,因此我們推論DHX30與MCPIP1協同作用來抑制MCPIP1目標基因的表現。RNA免疫沉澱的實驗結果顯示調降Dhx30不影響MCPIP1和目標mRNA的結合能力,這表明DHX30抑制MCPIP1蛋白的表現應該發生在MCPIP1蛋白和降解目標mRNA的結合之後。儘管仍需要進一步的檢測,我們的研究結果顯示MCPIP1和DHX30之間存在功能性相互作用。這樣的研究結果也為MCPIP1在血管生成中潛在機制提供了一個新的視角。
zh_TW
dc.description.abstractMonocyte chemotactic protein-1 induced protein 1 (MCPIP1), also known as REGNASE-1, is a zinc finger ribonuclease involved in several physiological mechanisms, such as inflammation and angiogenesis. Although MCPIP1 is recognized for its ability to target the stem-loop structure of mRNA 3’UTR, resulting in both degradation of targeted mRNA and inhibition of targeted mRNA translation, the specificity in the selection of the targeted mRNA remains largely unknown. A previous study has shown that up-frameshift protein 1 (UPF1), a protein interactor of MCPIP1, facilitates MCPIP1 in recognizing translationally active mRNA, highlighting the importance of protein interactors in the targeted mRNA selection of MCPIP1. Our lab previously identified an ATP-dependent RNA helicase, DHX30, as a candidate interactor of MCPIP1 via mass spectrometry analysis. To investigate the role of DHX30 in MCPIP1 function, we aim to determine whether DHX30 and MCPIP1 mutually influence each other's protein expression.
While MCPIP1 is known to participate in angiogenesis, the question of whether MCPIP1 promotes or inhibits angiogenesis is still controversial. Thus, we utilize mouse pancreatic islet endothelial (MS1) cells with the goal of not only understanding the role of DHX30 in MCPIP1 function but also extrapolating our findings to angiogenesis. Despite our preliminary data show Mcpip1 knockdown has no effect on DHX30 mRNA and protein levels, we find Dhx30 knockdown results in up-regulated protein levels of MCPIP1 in MS1 cells. Measuring the decay rate of the MCPIP1 protein via cycloheximide treatment reveals a higher degradation rate in Dhx30 knockdown cells, suggesting that the increased steady-state level of MCPIP1 protein is contributed from increasing its protein synthesis. Since Mcpip1 mRNA is also a target of the MCPIP1 protein, we hypothesize that DHX30 works together with MCPIP1 to repress MCPIP1-targeted gene expression. The results of the RNA immunoprecipitation experiments showed that Dhx30 knockdown does not affect the binding ability of MCPIP1 to its target mRNA. This suggests that DHX30's role in repressing MCPIP1 protein expression occurs downstream of MCPIP1's recognition of its target mRNAs, potentially similar to how UPF1 regulates targeted mRNA decay. Although further testing is needed, our findings suggest a functional interaction between MCPIP1 and DHX30. It provides a new perspective to uncover the potential mechanism of MCPIP1 in angiogenesis.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-28T16:16:35Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-28T16:16:35Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
謝辭 ii
摘要 iii
Abstract iv
Table of contents vi
List of figures ix
List of tables x
List of appendix xi
Chapter 1 Introduction 1
1.1 Monocyte chemotactic protein-1 induced protein 1 (MCPIP1) 1
1.2 The regulation of MCPIP1 2
1.3 The role of MCPIP1 in targeted RNA regulation 3
1.4 Physical and functional protein interactor of MCPIP1 4
1.5 Introduction of DExH-box helicase 30 (DHX30) 6
1.6 The aim of this study 8
Chapter 2 Material and Methods 9
2.1 Cell culture conditions 9
2.2 Plasmids 9
2.3 siRNA transfection and cycloheximide treatment 11
2.4 Plasmid transfection 12
2.5 Lentivirus production and transduction 13
2.6 RNA quantification 14
2.7 Protein extraction and Western blot 16
2.8 Co-Immunoprecipitation (Co-IP) 18
2.9 RNA immunoprecipitation (RNA-IP) 20
2.10 Immunofluorescence staining (IF) 21
2.11 Statistical analysis 22
Chapter 3 Result 23
3.1 Examination of MCPIP1-DHX30 binding dynamics in MS1 cells 23
3.2 Increased MCPIP1 protein expression in MS1 with siDhx30 treatment 25
3.3 Enhanced MCPIP1 protein synthesis in MS1 with siDhx30 treatment 26
3.4 Slight preferential increase in MCPIP1 protein expression in dCas9 MS1 cells expressing DHX30 sgRNA stable cell lines 27
3.5 No engagement of DHX30 in MCPIP1-targeted mRNA recognition 29
Chapter 4 Discussion 32
4.1 Potential transient interaction between MCPIP1 and DHX30 32
4.2 Lower inhibition of Mcpip1 mRNA in MS1 cells with siMcpip1 treatment 33
4.3 Elevated protein levels of MCPIP1 in MS1 cells lacking DHX30 33
4.4 The functional interaction between DHX30 and MCPIP1 34
4.5 Limit of our study 35
4.6 Conclusion 36
Figures 37
Tables 57
References 60
Appendix 70
-
dc.language.isozh_TW-
dc.subject血管新生zh_TW
dc.subject內皮細胞zh_TW
dc.subjectCRISPR干擾技術zh_TW
dc.subjectMCPIP1zh_TW
dc.subjectDHX30zh_TW
dc.subjectMCPIP1en
dc.subjectDHX30en
dc.subjectEndothelial cellen
dc.subjectCRISPR interferenceen
dc.subjectAngiogenesisen
dc.titleDHX30對內皮細胞中MCPIP1的影響zh_TW
dc.titleThe Effect of DHX30 on MCPIP1 Expression in Endothelial Cellsen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee朱家瑩;詹世鵬zh_TW
dc.contributor.oralexamcommitteeChia-Ying Chu;Shih-Peng Chanen
dc.subject.keywordMCPIP1,DHX30,內皮細胞,CRISPR干擾技術,血管新生,zh_TW
dc.subject.keywordMCPIP1,DHX30,Endothelial cell,CRISPR interference,Angiogenesis,en
dc.relation.page73-
dc.identifier.doi10.6342/NTU202402258-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-07-26-
dc.contributor.author-college醫學院-
dc.contributor.author-dept分子醫學研究所-
dc.date.embargo-lift2029-07-25-
顯示於系所單位:分子醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
4.1 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved