Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 環境與職業健康科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95101
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃耀輝zh_TW
dc.contributor.advisorYaw-Huei Hwangen
dc.contributor.author林恒緖zh_TW
dc.contributor.authorHeng-Hsu Linen
dc.date.accessioned2024-08-28T16:16:16Z-
dc.date.available2024-08-29-
dc.date.copyright2024-08-28-
dc.date.issued2024-
dc.date.submitted2024-08-05-
dc.identifier.citation行政院勞動部職業安全衛生署:111年勞動檢查統計年報-職業災害統計。勞動部職業安全衛生署,臺北市,2023。引用:2024/06/10。Availabe from:https://www.osha.gov.tw/48110/48331/48333/48339/150732/post
Adlerton AK, Moritz U, Moe-Nilssen R. (2003). Forceplate and accelerometer measures for evaluating the effect of muscle fatigue on postural control during one‐legged stance. Physiotherapy Research International, 8(4), 187-199. doi: 10.1002/pri.289
Adlerton AK, Moritz U. (1996). Does calf‐muscle fatigue affect standing balance? Scandinavian Sournal of Medicine & Science in Sports, 6(4), 211-215.doi: 10.1111/j.1600-0838.1996.tb00093.x
Allum JHJ, Bloem BR, Carpenter MG, Hulliger M, Hadders-Algra M. (1998). Proprioceptive control of posture: a review of new concepts. Gait & Posture, 8(3), 214-242. doi:10.1016/S0966-6362(98)00027-7
Arar S. (2022) Filtering accelerometer output for noise suppression and bandwidth improvement. January 02, 2022. [cited 10 June 2024]. Available from: https://www.allaboutcircuits.com/technical-articles/filtering-accelerometer-output-for-noise-suppression-and-bandwidth-improvement/
Atallah L, Lo B, King R, Yang GZ. (2010). Sensor placement for activity detection using wearable accelerometers. In: 2010 International Conference on Body Sensor Networks (pp. 24-29). IEEE. doi: 10.1109/BSN.2010.23.
Bagalà F, Becker C, Cappello A, Chiari L, Aminian K, Hausdorf JM f, Zijlstra W,Klenk J. (2012). Evaluation of accelerometer-based fall detection algorithms on real-world falls. PloS One, 7(5), e37062. doi: 10.1371/journal.pone.0037062
Beaulieu M, Allard P, Simoneau M, Dalleau G, Hazime FA, Rivard CH. (2010). Relationship between oscillations about the vertical axis and center of pressure displacements in single and double leg upright stance. American Journal of Physical Medicine & Rehabilitation, 89(10), 809-816. doi: 10.1097/PHM.0b013e3181f1b4af
Chen KY, David R, Bassett JR. (2005). The technology of accelerometry-based activity monitors: current and future. Medicine & Science in Sports & Exercise, 37(11), S490-S500. doi: 10.1249/01.mss.0000185571.49104.82
Chikritzhs T, Livingston M. (2021). Alcohol and the risk of injury. Nutrients, 13(8), 2777. doi: 10.3390/nu13082777
Choi HS, Kim YH. (2008). The relationship among the center of pressure, the center of mass and the horizontal acceleration of the body in postural sway, falling and walking. In: Advanced nondestructive evaluation II: Volume 1 (pp. 133-138). doi:10.1142/9789812790194_0023
Christodoulakis G, Busawon K, Caplan N, Stewart S. (2010). On the filtering and smoothing of biomechanical data. In: 2010 7th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP 2010) (pp. 512-516). IEEE. doi: 10.1109/CSNDSP16145.2010.5580374.
Clifford AM, Holder-Powell H. (2010). Postural control in healthy individuals. Clinical Biomechanics, 25(6), 546-551. doi:10.1016/j.clinbiomech.2010.03.005
Cordo PJ, Nashner LM. (1982). Properties of postural adjustments associated with rapid arm movements. Journal of Neurophysiology, 47(2), 287-302. doi:10.1152/jn.1982.47.2.287
Czaja SJ, Rogers WA, Fisk AD, Charness N, Sharit J. (2009). Designing for older adults: principles and creative human factors approaches, CRC Press, Boca Raton. doi:10.1201/9781420080681
Duarte M, Zatsiorsky VM. (2002). Effects of body lean and visual information on the equilibrium maintenance during stance. Experimental Brain Research, 146, 60-69. doi: 10.1007/s00221-002-1154-1
Duysens J, Clarac F, Cruse H. (2000). Load-regulating mechanisms in gait and posture: comparative aspects. Physiological Reviews, 80(1), 83-133. doi:10.1152/physrev.2000.80.1.83
Finkbeiner S. (2013). MEMS for automotive and consumer electronics. In: 2013 Proceedings of the ESSCIRC (ESSCIRC) (pp. 9-14). IEEE.
doi: 10.1109/ESSCIRC.2013.6649059.
Fortune E, Lugade VA, Kaufman KR. (2014). Posture and movement classification: the comparison of tri-axial accelerometer numbers and anatomical placement. Journal of Biomechanical Engineering, 136(5), 051003. doi: 10.1115/1.4026230
Fridolfsson J, Börjesson M, Buck C, Ekblom Ö, Ekblom-Bak E, Hunsberger M, Lissner L, Arvidsson D. (2019). Effects of frequency filtering on intensity and noise in accelerometer-based physical activity measurements. Sensors (Basel).19(9):2186. doi: 10.3390/s19092186. PMID: 31083538; PMCID: PMC6539652.
Guccione A A, Avers D, Wong R. (2011). Geriatric physical therapy-ebook. Elsevier Health Sciences.USA.
Hasan SS, Robin DW, Szurkus DC, Ashmead DH, Peterson SW, Shiavi RG. (1996). Simultaneous measurement of body center of pressure and center of gravity during upright stance. Part II: Amplitude and frequency data. Gait & Posture, 4(1), 11-20. doi: 10.1016/0966-6362(95)01031-9
Higginson BK. (2009). Methods of running gait analysis. Current Sports Medicine Reports, 8(3), 136-141. doi: 10.1249/JSR.0b013e3181a6187a. PMID: 19436169
Hsieh KL, Roach KL, Wajda DA, Sosnoff JJ. (2019). Smartphone technology can measure postural stability and discriminate fall risk in older adults. Gait & Posture, 67, 160-165. doi:10.1016/j.gaitpost.2018.10.005
Huang X, HinzeJ. (2003). Analysis of construction worker fall accidents. Journal of Construction Engineering and Management, 129(3), 262-271. doi: 10.1061/(ASCE)0733-9364(2003)129:3(262)
Ibrahim A, Eltawil A, Na Y, El-Tawil S. (2020). Accuracy limits of embedded smart device accelerometer sensors. IEEE Transactions on Instrumentation and Measurement, 69(8), 5488-5496. doi: 10.1109/TIM.2020.2964912
Jahanbanifar S, Akhavian R. (2018). Evaluation of wearable sensors to quantify construction workers muscle force: An ergonomic analysis. In 2018 Winter Simulation Conference. IEEE. doi:10.1109/WSC.2018.8632419
Kang Y, Ahmad IU, Faria JA. (2014). US construction worker fall accidents: Their causes and influential factors. Florida International University. doi:10.25148/etd.FI14040808
Kang Y, Siddiqui S, Suk SJ, Chi S, Kim C. (2017). Trends of fall accidents in the US construction industry. Journal of Construction Engineering and Management, 143(8), 04017043. doi:10.1061/(ASCE)CO.1943-7862.0001332
Karlsson A, Frykberg G. (2000). Correlations between force plate measures for assessment of balance. Clinical Biomechanics, 15(5), 365-369. doi:10.1016/S0268-0033(99)00096-0
Kim SH, Wang C, Min SD, Lee SH. (2018). Safety helmet wearing management system for construction workers using three-axis accelerometer sensor. Applied Sciences, 8(12), 2400. doi: 10.3390/app8122400
Kuo JR, Hwang YH. (2024). Development of a device to monitor user’s compliance with the compulsory radiation badge-wearing regulation at workplace. [Thesis] National Taiwan University, Taipei. doi: 10.6342/NTU202400671
Kwapisz JR, Weiss GM, Moore SA. (2010). Cell phone-based biometric identification. In: 2010 Fourth IEEE International Conference on Biometrics: Theory, Applications and Systems (BTAS) (pp. 1-7). IEEE. doi: 10.1109/BTAS.2010.5634532.
Lauenroth A, Reinhardt L, Schulze S, Laudner KG, Delank KS, Schwesig R. (2021). Comparison of Postural Stability and Regulation among Female Athletes from Different Sports. Applied Sciences, 11(7), 3277. doi:10.3390/app11073277
LeVeau BF. (2010). Biomechanics of human motion: Basics and beyond for the health professions. Journal of Sports Science and Medicine, 9(4), 676-677.
ISBN: 978-1-55642-905-7
Lu SH, Shieh JS, HansenC. (2016). Applied a multi-scale entropy algorithm to analyze dynamic COP signal via accelerometer sensor. In: 2016 Intl IEEE Conferences on Ubiquitous Intelligence & Computing, Advanced and Trusted Computing, Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People, and Smart World Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld) (pp. 127-132). IEEE.doi: 10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0040
Mayagoitia RE, Lötters JC, Veltink PH, Hermens H. (2002). Standing balance evaluation using a triaxial accelerometer. Gait & Posture, 16(1):55-59. doi:10.1016/S0966-6362(01)00199-0
Mehata KM, Shankar SK, Karthikeyan N, Nandhinee K, Hedwig PR. (2019,). IoT based safety and health monitoring for construction workers. In 2019 1st International Conference on Innovations in Information and Communication Technology (ICIICT) (pp. 1-7). IEEE. doi: 10.1109/ICIICT1.2019.8741478.
Menz HB, Lord SR, Fitzpatrick RC. (2003). Acceleration patterns of the head and pelvis when walking on level and irregular surfaces. Gait & Posture, 18(1), 35-46. doi:10.1016/S0966-6362(02)00159-5
Merlo A, Zemp D, Zanda E, Rocchi S, Meroni F, Tettamanti M, Quadri P.(2012). Postural stability and history of falls in cognitively able older adults: The Canton Ticino study. Gait & Posture, 36(4), 662-666. doi: 10.1016/j.gaitpost.2012.06.016
Mignardot JB, Beauchet O, Annweiler C, Cornu C, Deschamps T. (2014). Postural sway, falls, and cognitive status: a cross-sectional study among older adults. Journal of Alzheimer's Disease, 41(2), 431-439. doi: 10.3233/JAD-132657
Montoye HJ, Washburn R, Servais S, Ertl A, Webster JG, Nagle FJ. (1983). Estimation of energy expenditure by a portable accelerometer. Medicine and Science in Sports and Exercise, 15(5), 403-407. PMID: 6645869
Morrison S, Rynders CA, Sosnoff JJ. (2016). Deficits in medio-lateral balance control and the implications for falls in individuals with multiple sclerosis. Gait & Posture, 49, 148-154. doi:10.1016/j.gaitpost.2016.06.036
Olsen S, Rashid U, Allerby C, Brown E, Leyser M, McDonnell G, Alder G, Barbado D, Shaikh N, Lord S, Niazi IK, Taylor D. (2023). Smartphone-based gait and balance accelerometry is sensitive to age and correlates with clinical and kinematic data. Gait & Posture, 100, 57-64. doi:10.1016/j.gaitpost.2022.11.014
Pasma JH, Engelhart D, Schouten AC, van der Kooij H, Maier AB, Meskers CG. (2014). Impaired standing balance: the clinical need for closing the loop. Neuroscience, 267, 157-165. doi:10.1016/j.neuroscience.2014.02.030
Pai YC, Patton J. (1997). Center of mass velocity-position predictions for balance control. Journal of Biomechanics, 30(4), 347-354. PubMed: 9075002doi: 10.1016/S0021-9290(96)00165-0
Peterka RJ. (2018) .Chapter 2 - Sensory integration for human balance control. Handbook of Clinical Neurology;159:27-42. doi:10.1016/B978-0-444-63916-5.00002-1
Pradhan A, Oladi S, Kuruganti U, Chester V. (2020). Classification of elderly fallers and non-fallers using force plate parameters from gait and balance tasks. In Computer Methods, Imaging and Visualization in Biomechanics and Biomedical Engineering: Selected Papers from the 16th International Symposium CMBBE and 4th Conference on Imaging and Visualization, August 14-16, 2019, New York City, USA (pp. 339-353). Springer International Publishing.
Quinn MM, Keuler NS, Lu Y, Faria ML, Muir P, Markel MD. (2007). Evaluation of agreement between numerical rating scales, visual analogue scoring scales, and force plate gait analysis in dogs. Veterinary Surgery, 36(4), 360-367. doi: 10.1111/j.1532-950X.2007.00276.x
Quijoux F, Nicolaï A, Chairi I, Bargiotas I, Ricard D, Yelnik A, Oudre L, Bertin-Hugault F, Vidal PP, Vayatis N, Buffat S, Audiffren J. (2021). A review of center of pressure (COP) variables to quantify standing balance in elderly people: Algorithms and open-access code. Physiol Rep. 2021 Nov;9(22):e15067.doi: 10.14814/phy2.15067
Rashid U, Barbado D, Olsen S, Alder G, Elvira JLL, Lord S, Niazi IK, Taylor D. (2021). Validity and reliability of a smartphone app for gait and balance assessment. Sensors, 22(1), 124. doi:10.3390/s22010124
Reinhardt L, Heilmann F, Teicher M, Lauenroth A, Delank KS, Schwesig R, Wollny R, Kurz E. (2019). Comparison of posturographic outcomes between two different devices. Journal of Biomechanics, 86, 218-224. doi: 10.1016/j.jbiomech.2019.02.013
Roeing KL, Hsieh KL, Sosnoff JJ. (2017). A systematic review of balance and fall risk assessments with mobile phone technology. Archives of Gerontology and Geriatrics, 73, 222-226. doi: 10.1016/j.archger.2017.08.002
Seimetz C, Tan D, Katayama R, Lockhart T. (2012). A comparison between methods of measuring postrual stability: force plates versus accelerometers. Biomedical Sciences Instrumentation, 48, 386. PMID: 22846310; PMCID: PMC3716367.
Seo JW, Kim JI, Kim T, Jang KM, Jeong Y, Do JH. (2022). Sensory Interaction and Balancing Ability Evaluation of the Elderly Using a Simplified Force Plate System. Sensors. 22(22):8883. doi: 10.3390/s22228883
Smith ML, Stevens JA, Ehrenreich H, Wilson AD, Schuster RJ, Cherry COB, Ory MG. (2015). Healthcare providers’ perceptions and self-reported fall prevention practices: findings from a large New York health system. Frontiers in Public Health, 3, 17. doi: 10.3389/fpubh.2015.00017
Sun R, Sosnoff JJ. (2018). Novel sensing technology in fall risk assessment in older adults: a systematic review. BMC geriatrics, 18, 1-10. doi: 10.1186/s12877-018-0706-6
Suffoletto B, Dasgupta P, Uymatiao R, Huber J, Flickinger K, Sejdic E. (2020). A preliminary study using smartphone accelerometers to sense gait impairments due to alcohol intoxication. Journal of Studies on Alcohol and Drugs, 81(4), 505-510. doi: 10.15288/jsad.2020.81.505
Szczepańska-Gieracha J, Chamela-Bilińska D, Kuczyński M (2012). Altered postural control in persons with cognitive impairment during visual feedback tasks. Gait & Posture, 35(2), 312-315. doi: 10.1016/j.gaitpost.2011.10.001
Troiano RP, McClain JJ, Brychta RJ, Chen KY. (2014). Evolution of accelerometer methods for physical activity research. British Journal of Sports Medicine, 48(13), 1019-1023.
Winter DA. (1995). Human balance and posture control during standing and walking. Gait & Posture, 3(4), 193-214. doi:10.1016/0966-6362(96)82849-9
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95101-
dc.description.abstract在營建工程業的作業環境中,導致跌倒與墜落意外事件的發生始終居高不下。本研究從評估個人姿勢穩定性的方向切入,試圖利用智慧型手機加速度計建立一套檢測預防系統,驗證智慧型手機加速度計對姿勢平衡量測的加速度資料是否具有可靠性。研究方法為將智慧型手機加速度計放置於受試者的軀幹上,同時受試者站立於力板上進行身體平衡的同步量測,在睜眼雙腳站姿、閉眼雙腳站姿、前後腳成直線站姿及單腳站姿等不同站立姿勢下,分別收集身體壓力中心(CoP)的量測數據,以進行身體平衡數據變化上的一致性比對。
實驗結果顯示,在智慧型手機加速度計與力板的受試者M-L方向同步量測數據中,大部分的相關係數皆可以達到0.7以上。另外在M-L方向的同步量測時序性變化曲線比較上,各受試者同步量測數據差異平均值在其他不同受試者的差異累積機率分佈(CDF)中均落在0.025~0.975之間的統計分析結果,顯示智慧型手機加速度計與力板同步量測數據之間時序性數據變化趨勢相似。而在身體壓力中心(CoP)相關參數的分析結果中,智慧型手機加速度計與力板量測結果對於受試者不同站立姿勢之間有相當的辨識能力,例如以重複量測ANOVA(repeated measures ANOVA)分析可檢視其能分辨睜眼雙腳站姿與單腳站姿之間的差異(p值 < 0.05)。另外智慧型手機加速度計所收集到的重複量測ANOVA(repeated measures ANOVA)分析數據足以區分前後腳成直線站姿及單腳站姿之間的差異(p值 < 0.05),而力板則不行,顯示智慧型手機加速度計的量測數據在部分情況下具備成為新姿勢穩定度量測方法的潛力。
本研究作為方法開發的先行研究,以上的實驗結果可以證明智慧型手機加速度計在量測身體姿勢穩定度具有可靠性,可作為未來的工人姿勢穩定性預防辨識系統設計的基礎,以開發實時量測工具應用於職業衛生領域。
zh_TW
dc.description.abstractIn the construction industry, the incidence of accidents due to falls remains persistently high. This study aims to evaluate the reliability of using smartphone accelerometers to measure postural stability by assessing individual posture. The research investigates whether accelerometer data from smartphone accelerometers can reliably measure postural balance. The methodology involves placing a smartphone accelerometer on the trunk of participants while they stand on a force plate to simultaneously measure body balance. Measurements of the center of pressure (CoP) are collected in various standing postures, including standing with eyes-open, standing with eyes-closed, tandem stance, and single-leg stance, to compare the consistency of body balance data.
The experimental results indicate that, in the M-L direction of the simultaneous measurements from the smartphone accelerometer and the force plate, most correlation coefficients reached 0.7 or higher. Additionally, in comparing the temporal changes in the M-L direction, the mean differences in simultaneous measurement data among different participants were within the cumulative distribution function (CDF) range of 0.025 to 0.975. This suggests a similar trend in temporal data changes between the smartphone accelerometer and force plate.
In the analysis of CoP parameters, the measurement results from the smartphone accelerometer and force plate demonstrated a considerable ability to differentiate between different standing postures. For example, repeated measures ANOVA analysis revealed significant differences between standing with eyes-open and single-leg stance (p < 0.05). Moreover, the repeated measures ANOVA data collected by the smartphone accelerometer could distinguish between tandem stance and single-leg stance (p < 0.05), whereas the force plate could not, indicating that the smartphone accelerometer data have the potential to serve as a novel method for measuring postural stability in certain conditions.
As a preliminary study for method development, the results demonstrate the reliability of smartphone accelerometers in measuring postural stability, providing a foundation for future development of worker postural stability prevention and identification systems. This can lead to the development of real-time measurement tools applicable in the field of occupational health.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-28T16:16:15Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-28T16:16:16Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents謝辭 i
摘要 ii
Abstract iii
圖次 ix
表次 xi
第一章 前言 1
1.1 研究背景 1
1.2 研究目的 4
第二章 文獻回顧 5
2.1 營建作業現場之危害 5
2.1.1 跌倒與墜落 5
2.1.2 平衡與穩定性 6
2.2 姿勢穩定性量測工具 9
2.2.1 力板(Force Plate) 9
2.2.2 三軸加速度計(Three-Axis Accelerometer) 10
2.2.3 加速度計之應用 11
2.2.4 三軸加速度計佩戴位置 12
2.2.5 智慧型手機加速度計 13
第三章 材料與方法 15
3.1 研究架構 15
3.2 研究對象 18
3.3 力板 19
3.4 智慧型手機加速度計 20
3.4.1 智慧型手機規格 20
3.4.2 加速度計應用程式 21
3.4.3 智慧型手機加速度計靜置時軸向定位實驗 22
3.4.4 加速度數據轉換 23
3.5 力板與智慧型手機加速度計量測結果相關性測試 25
3.5.1 特定測試動作定義 25
3.5.2 智慧型手機加速度計佩戴位置 28
3.5.3 智慧型手機加速度計量測數據分析頻率比較測試 29
3.5.4 智慧型手機加速度計與力板對身體平衡量測數據一致性比對 30
3.6 統計分析 32
3.6.1 描述性統計分析 32
3.6.1.1 智慧型手機加速度計靜置時軸向定位實驗 32
3.6.1.2 智慧型手機加速度計量測數據分析頻率比較 32
3.6.1.3 智慧型手機加速度計與力板對身體平衡量測數據一致性比對 33
3.6.2 身體壓力中心(CoP)參數分析 35
3.6.2.1 量測參數 35
3.6.2.2 統計分析方法 38
第四章 結果 40
4.1 智慧型手機加速度計靜置軸向定位實驗 40
4.2 智慧型手機加速度計量測數據分析頻率比較 44
4.3 智慧型手機加速度計與力板對身體平衡量測數據一致性比對 52
4.3.1 同步量測結果相關性分析 52
4.3.2 智慧型手機加速度計與力板的時序性同步量測數據差異分佈分析 59
4.4 重複量測實驗 67
4.4.1 同步量測結果相關性分析 67
4.5 身體壓力中心(CoP)參數分析 69
4.5.1 Wilcoxon signed-rank test 73
4.5.2 重複量測ANOVA(repeated measures ANOVA)分析 78
第五章 討論 85
5.1 智慧型手機加速度計量測數據分析頻率比較測試之探討 85
5.1.1 分析時間長短對智慧型手機加速度計與力板同步量測數據一致性的影響 85
5.1.2 分析時間解析度對智慧型手機加速度計與力板同步量測數據一致性的影響 86
5.2 智慧型手機加速度計與力板同步量測之數據一致性 87
5.3 影響智慧型手機加速度計與力板同步量測數據一致性之因素 92
5.3.1 智慧型手機加速度計與力板量測原理差異 92
5.3.2 人體生物力學特徵 93
5.3.3 特定測試動作之難易度 94
5.3.4 小結 95
5.4 智慧型手機加速度計作為新興姿勢穩定度量測工具的潛力 96
5.5 本研究之優勢與限制 102
5.6 未來應用 103
第六章 結論 104
第七章 參考文獻 106
-
dc.language.isozh_TW-
dc.subject姿勢穩定性zh_TW
dc.subject智慧型手機加速度計zh_TW
dc.subject跌倒與墜落zh_TW
dc.subject標準量測工具zh_TW
dc.subjectfallsen
dc.subjectsmartphone accelerometeren
dc.subjectstandard measurement toolen
dc.subjectpostural stabilityen
dc.title以智慧型手機加速度計評估工作前建築工人身體穩定性的方法開發zh_TW
dc.titleEstablishment of a Method Assessing the Construction Worker’s Physical Stability Prior to Work with Smartphone Accelerometeren
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee蕭朱杏;李永輝;梁蕙雯zh_TW
dc.contributor.oralexamcommitteeChu-Hsing Hsiao;Yung-Hui Lee ;Huey-Wen Liangen
dc.subject.keyword跌倒與墜落,智慧型手機加速度計,標準量測工具,姿勢穩定性,zh_TW
dc.subject.keywordfalls,smartphone accelerometer,standard measurement tool,postural stability,en
dc.relation.page111-
dc.identifier.doi10.6342/NTU202402955-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-05-
dc.contributor.author-college公共衛生學院-
dc.contributor.author-dept環境與職業健康科學研究所-
dc.date.embargo-lift2026-08-31-
顯示於系所單位:環境與職業健康科學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
5.08 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved