請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95097完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳焜裕 | zh_TW |
| dc.contributor.advisor | Kuen-Yuh Wu | en |
| dc.contributor.author | 陳恩宇 | zh_TW |
| dc.contributor.author | En-Yu Chen | en |
| dc.date.accessioned | 2024-08-28T16:15:03Z | - |
| dc.date.available | 2024-08-29 | - |
| dc.date.copyright | 2024-08-28 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-08 | - |
| dc.identifier.citation | Baccarelli, A., Mocarelli, P., Patterson, D. G., Bonzini, M., Pesatori, A. C., Caporaso, N., & Landi, M. T. (2002). Immunologic effects of dioxin: new results from Seveso and comparison with other studies. Environmental Health Perspectives, 110(12), 1169-1173. https://doi.org/doi:10.1289/ehp.021101169
Barone, G., Storelli, A., Busco, A., Mallamaci, R., & Storelli, M. M. (2021). Polychlorinated dioxins, furans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (dl-PCBs) in food from Italy: Estimates of dietaryintake and assessment. Journal of Food Science, 86(10), 4741-4753. https://doi.org/https://doi.org/10.1111/1750-3841.15901 Bhavsar, S. P., Reiner, E. J., Hayton, A., Fletcher, R., & MacPherson, K. (2008). Converting Toxic Equivalents (TEQ) of dioxins and dioxin-like compounds in fish from one Toxic Equivalency Factor (TEF) scheme to another. Environment International, 34(7), 915-921. https://doi.org/https://doi.org/10.1016/j.envint.2008.02.001 Bonate, P. L. (2001). A Brief Introduction to Monte Carlo Simulation. Clinical Pharmacokinetics, 40(1), 15-22. https://doi.org/10.2165/00003088-200140010-00002 Brambilla, G., Fochi, I., Falce, M., De Filippis, S. P., Ubaldi, A., & di Domenico, A. (2008). PCDD and PCDF depletion in milk from dairy cows according to the herd metabolic scenario. Chemosphere, 73(1, Supplement), S216-S219. https://doi.org/https://doi.org/10.1016/j.chemosphere.2007.11.071 Budinsky, R. A., Schrenk, D., Simon, T., Van den Berg, M., Reichard, J. F., Silkworth, J. B., Aylward, L. L., Brix, A., Gasiewicz, T., Kaminski, N., Perdew, G., Starr, T. B., Walker, N. J., & Rowlands, J. C. (2014). Mode of action and dose–response framework analysis for receptor-mediated toxicity: The aryl hydrocarbon receptor as a case study. Critical Reviews in Toxicology, 44(1), 83-119. https://doi.org/10.3109/10408444.2013.835787 Cerlesi, S., Domenico, A. d., & Ratti, S. (1989). 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) persistence in the seveso (Milan, Italy) soil. Ecotoxicology and Environmental Safety, 18(2), 149-164. https://doi.org/https://doi.org/10.1016/0147-6513(89)90076-6 Consonni, D., Sindaco, R., & Bertazzi, P. A. (2012). Blood levels of dioxins, furans, dioxin-like PCBs, and TEQs in general populations: A review, 1989–2010. Environment International, 44, 151-162. https://doi.org/https://doi.org/10.1016/j.envint.2012.01.004 Cordeiro, A. R. R. d. A., Bezerra, T. K. A., & Madruga, M. S. (2022). Valuation of Goat and Sheep By-Products: Challenges and Opportunities for Their Use. Animals, 12(23), 3277. https://www.mdpi.com/2076-2615/12/23/3277 Covaci, A., Voorspoels, S., Schepens, P., Jorens, P., Blust, R., & Neels, H. (2008). The Belgian PCB/dioxin crisis—8 years later: An overview. Environmental Toxicology and Pharmacology, 25(2), 164-170. https://doi.org/https://doi.org/10.1016/j.etap.2007.10.003 Dalton, T. P., Kerzee, J. K., Wang, B., Miller, M., Dieter, M. Z., Lorenz, J. N., Shertzer, H. G., Nebert, D. W., & Puga, A. (2001). Dioxin exposure is an environmental risk factor for ischemic heart disease. Cardiovascular Toxicology, 1(4), 285-298. https://doi.org/10.1385/CT:1:4:285 Directive 2002/32/EC of the European Parliament and of the Council of 7 May 2002 on undesirable substances in animal feed, European Parliament and of the Council (2019). https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02002L0032-20191128 Directive 2002/32/EC, Undesirable substances in animal feed, European Parliament and of the Council (2002). https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32002L0032 Djien Liem, A. K., Furst, P., & Rappe, C. (2000). Exposure of populations to dioxins and related compounds. Food Additives & Contaminants, 17(4), 241-259. https://doi.org/10.1080/026520300283324 Dopico, M., & Gómez, A. (2015). Review of the current state and main sources of dioxins around the world. Journal of the Air & Waste Management Association, 65(9), 1033-1049. https://doi.org/10.1080/10962247.2015.1058869 DUJARDIN, M., NARBONNE, J.-F., & ALEXANDER, S. (2000). The Belgian dioxin crisis. Biomedical Research, 21(6), 337-343. EC. (2024). amending Annexes I and II to Directive 2002/32/EC of the European Parliament and of the Council as regards maximum levels and action thresholds for arsenic, cadmium, lead, nickel, rye ergot, delta-9-tetrahydrocannabinol, endosulfan, heptachlor, hexachlorbenzene, hexachlorohexane, dioxins and PCBs, Datura sp., certain coccidiostats and histomonostats and p-phenetidine in animal feed. https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=PI_COM%3AAres%282024%2963997 EFSA. (2015). Scientific statement on the health-based guidance values for dioxins and dioxin-like PCBs. EFSA Journal, 13(5), 4124. https://doi.org/https://doi.org/10.2903/j.efsa.2015.4124 EFSA. (2024). Dioxins and PCBs. https://www.efsa.europa.eu/en/topics/topic/dioxins-and-pcbs EFSA CONTAM Panel, Knutsen, H. K., Alexander, J., Barregård, L., Bignami, M., Brüschweiler, B., Ceccatelli, S., Cottrill, B., Dinovi, M., Edler, L., Grasl-Kraupp, B., Hogstrand, C., Nebbia, C. S., Oswald, I. P., Petersen, A., Rose, M., Roudot, A.-C., Schwerdtle, T., Vleminckx, C., . . . Hoogenboom, L. (2018). Risk for animal and human health related to the presence of dioxins and dioxin-like PCBs in feed and food. EFSA Journal, 16(11), e05333. https://doi.org/https://doi.org/10.2903/j.efsa.2018.5333 EPA, U. (2012). EPA’s Reanalysis of Key Issues Related to Dioxin Toxicity and Response to NAS Comments, Volume 1. https://cfpub.epa.gov/ncea/iris/iris_documents/documents/supdocs/dioxinv1sup.pdf EPA, U. (2022). Conducting a Human Health Risk Assessment. https://www.epa.gov/risk/conducting-human-health-risk-assessment EPA, U. (2023). Learn about Dioxin. https://www.epa.gov/dioxin/learn-about-dioxin EPA, U. S. (2006). An inventory of sources and environmental releases of dioxin-like compounds in the United States for the years 1987, 1995, and 2000. National Center for Environmental Assessment, OoRaD (Ed.), Washington, DC. Eurofins. (2024). Reduction of EU maximum levels for dioxins and dioxin-like PCBs in animal feed products planned. https://www.eurofins.de/food-analysis/food-news/food-testing-news/maximum-levels-for-dioxins-and-dioxin-like-pcbs-in-feed-products/ Feil, V. J., Huwe, J. K., Zaylskie, R. G., Davison, K. L., Anderson, V. L., Marchello, M., & Tiernan, T. O. (2000). Chlorinated Dibenzo-p-dioxin and Dibenzofuran Concentrations in Beef Animals from a Feeding Study. Journal of Agricultural and Food Chemistry, 48(12), 6163-6173. https://doi.org/10.1021/jf0003092 Ferrario, J., Byrne, C., Lorber, M., Saunders, P., Leese, W., Dupuy, A., Winters, D., Cleverly, D., Schaum, J., & Pinsky, P. (1997). A statistical survey of dioxin-like compounds in United States poultry fat. Organohalogen Compounds, 32, 245-251. Fiedler, H., Hutzinger, O., & Timms, C. W. (1990). Dioxins: Sources of environmental load and human exposure. Toxicological & Environmental Chemistry, 29(3), 157-234. https://doi.org/10.1080/02772249009357628 Fisher, J. W., Gearhart, J. M., & Lin, Z. (2020). Physiologically Based Pharmacokinetic (PBPK) Modeling: methods and applications in toxicology and risk assessment. Academic Press. Fournier, A., Rychen, G., Marchand, P., Toussaint, H., Le Bizec, B., & Feidt, C. (2013). Polychlorinated Biphenyl (PCB) Decontamination Kinetics in Lactating Goats (Capra hircus) Following a Contaminated Corn Silage Exposure. Journal of Agricultural and Food Chemistry, 61(29), 7156-7164. https://doi.org/10.1021/jf401048j Fries, G. F. (1995). A review of the significance of animal food products as potential pathways of human exposures to dioxins. J Anim Sci, 73(6), 1639-1650. https://doi.org/10.2527/1995.7361639x Gaspari, L., Paris, F., Kalfa, N., Soyer-Gobillard, M.-O., Sultan, C., & Hamamah, S. (2021). Experimental Evidence of 2,3,7,8-Tetrachlordibenzo-p-Dioxin (TCDD) Transgenerational Effects on Reproductive Health. International Journal of Molecular Sciences, 22(16), 9091. https://www.mdpi.com/1422-0067/22/16/9091 Govers, H. A. J., & Krop, H. B. (1998). Partition constants of chlorinated dibenzofurans and dibenzo-p-dioxins. Chemosphere, 37(9), 2139-2152. https://doi.org/https://doi.org/10.1016/S0045-6535(98)00276-8 Hernández, L. G., van Steeg, H., Luijten, M., & van Benthem, J. (2009). Mechanisms of non-genotoxic carcinogens and importance of a weight of evidence approach. Mutation Research/Reviews in Mutation Research, 682(2), 94-109. https://doi.org/https://doi.org/10.1016/j.mrrev.2009.07.002 Hoogenboom, L. A. P., Kan, C. A., Bovee, T. F. H., van der Weg, G., Onstenk, C., & Traag, W. A. (2004). Residues of dioxins and PCBs in fat of growing pigs and broilers fed contaminated feed. Chemosphere, 57(1), 35-42. https://doi.org/https://doi.org/10.1016/j.chemosphere.2004.04.057 Hoogenboom, L. A. P., Kan, C. A., Zeilmaker, M. J., Van Eijkeren, J., & Traag, W. A. (2006). Carry-over of dioxins and PCBs from feed and soil to eggs at low contamination levels – influence of mycotoxin binders on the carry-over from feed to eggs. Food Additives & Contaminants, 23(5), 518-527. https://doi.org/10.1080/02652030500512037 Hoogenboom, L. A. P., Van Eijkeren, J. C. H., Zeilmaker, M. J., Mengelers, M. J. B., Herbes, R., Immerzeel, J., & Traag, W. A. (2007). A novel source for dioxins present in recycled fat from gelatin production. Chemosphere, 68(5), 814-823. https://doi.org/https://doi.org/10.1016/j.chemosphere.2007.02.032 Hoogenboom, R., Zeilmaker, M., Eijkeren, J. v., Kan, K., Mengelers, M., Luykx, D., & Traag, W. (2010). Kaolinic clay derived PCDD/Fs in the feed chain from a sorting process for potatoes. Chemosphere, 78(2), 99-105. https://doi.org/https://doi.org/10.1016/j.chemosphere.2009.10.016 Hoogenboom, R. L. A. P., Klop, A., Herbes, R., van Eijkeren, J. C. H., Zeilmaker, M. J., van Vuuren, A. M., & Traag, W. A. (2015). Carry-over of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and polychlorinated biphenyls (PCBs) in dairy cows fed smoke contaminated maize silage or sugar beet pulp. Chemosphere, 137, 214-220. https://doi.org/https://doi.org/10.1016/j.chemosphere.2015.07.040 Hoogenboom, R. L. A. P., Stark, M. L., Spolders, M., Zeilmaker, M. J., Traag, W. A., ten Dam, G., & Schafft, H. A. (2015). Accumulation of polychlorinated dibenzo-p-dioxins, dibenzofurans, and biphenyls in livers of young sheep. Chemosphere, 122, 137-144. https://doi.org/https://doi.org/10.1016/j.chemosphere.2014.11.030 Humblet, O., Birnbaum, L., Rimm, E., Mittleman Murray, A., & Hauser, R. (2008). Dioxins and Cardiovascular Disease Mortality. Environmental Health Perspectives, 116(11), 1443-1448. https://doi.org/10.1289/ehp.11579 Huwe, J. K., & Smith, D. J. (2005). Laboratory and On-Farm Studies on the Bioaccumulation and Elimination of Dioxins from a Contaminated Mineral Supplement Fed To Dairy Cows. Journal of Agricultural and Food Chemistry, 53(6), 2362-2370. https://doi.org/10.1021/jf0480997 IARC. (1997). Polychlorinated dibenzo-para-dioxins and polychlorinated dibenzofurans. IARC monographs on the evaluation of carcinogenic risks to humans, 69. Jensen, D. J., Hummel, R. A., Mahle, N. H., Kocher, C. W., & Higgins, H. S. (1981). A residue study on beef cattle consuming 2,3,7,8-tetrachlorodibenzo-p-dioxin. Journal of Agricultural and Food Chemistry, 29(2), 265-268. https://doi.org/10.1021/jf00104a014 Joint, F., & Additives, W. E. C. o. F. (2001). Summary of the Fifty-seventh Meeting of the Joint FAO. WHO expert committee on food additives (JECFA), Rome, 514. Jokinen, M. P., Walker, N. J., Brix, A. E., Sells, D. M., Haseman, J. K., & Nyska, A. (2003). Increase in cardiovascular pathology in female Sprague-Dawley rats following chronic treatment with 2,3,7,8-tetrachlorodibenzo-p-dioxin and 3,3',4,4',5-pentachlorobiphenyl. Cardiovasc Toxicol, 3(4), 299-310. https://doi.org/10.1385/ct:3:4:299 Jüttner, I., Henkelmann, B., Schramm, K.-W., Steinberg, C. E. W., Winkler, R., & Kettrup, A. (1997). Occurrence of PCDD/F in Dated Lake Sediments of the Black Forest, Southwestern Germany. Environmental Science & Technology, 31(3), 806-812. https://doi.org/10.1021/es960503y Kerkvliet, N. I. (2002). Recent advances in understanding the mechanisms of TCDD immunotoxicity. International Immunopharmacology, 2(2), 277-291. https://doi.org/https://doi.org/10.1016/S1567-5769(01)00179-5 Kim, E.-J., Oh, J.-E., & Chang, Y.-S. (2003). Effects of forest fire on the level and distribution of PCDD/Fs and PAHs in soil. Science of The Total Environment, 311(1), 177-189. https://doi.org/https://doi.org/10.1016/S0048-9697(03)00095-0 Kim, M., Kim, D.-G., Choi, S.-W., Guerrero, P., Norambuena, J., & Chung, G.-S. (2011). Formation of polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs) from a refinery process for zinc oxide used in feed additives: A source of dioxin contamination in Chilean pork. Chemosphere, 82(9), 1225-1229. https://doi.org/https://doi.org/10.1016/j.chemosphere.2010.12.040 Krause, T., Moenning, J.-L., Lamp, J., Maul, R., Schenkel, H., Fürst, P., Pieper, R., & Numata, J. (2023). Transfer of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and polychlorinated biphenyls (PCBs) from oral exposure into cow’s milk – Part I: state of knowledge and uncertainties. Nutrition Research Reviews, 36(2), 448-470. https://doi.org/10.1017/S0954422422000178 Kutz, F. W., Barnes, D. G., Bottimore, D. P., Greim, H., & Bretthauer, E. W. (1990). The international toxicity equivalency factor (I-TEF) method of risk assessment for complex mixtures of dioxins and related compounds. Chemosphere, 20(7), 751-757. https://doi.org/https://doi.org/10.1016/0045-6535(90)90178-V LaFleur, L., Brunck, B., McDonough, T., Ramage, K., Gillespie, W., & Malcolm, E. (1990). Studies on the mechanism of PCDD/PCDF formation during the bleaching of pulp. Chemosphere, 20(10), 1731-1738. https://doi.org/https://doi.org/10.1016/0045-6535(90)90336-R Lautz, L. S., Dorne, J. L. C. M., Oldenkamp, R., Hendriks, A. J., & Ragas, A. M. J. (2020). Generic physiologically based kinetic modelling for farm animals: Part I. Data collection of physiological parameters in swine, cattle and sheep. Toxicology Letters, 319, 95-101. https://doi.org/https://doi.org/10.1016/j.toxlet.2019.10.021 Lee, C. C., Chang, W. H., Lin, H. T., & Chang, J. W. (2020). Spatiotemporal patterns of polychlorinated dibenzo-p-dioxins and dibenzofurans and dioxin-like polychlorinated biphenyls in foodstuffs in air quality regions in Taiwan. J Food Drug Anal, 28(3), 375-398. https://doi.org/10.38212/2224-6614.1216 Lerch, S., Siegenthaler, R., Numata, J., Moenning, J.-L., Dohme-Meier, F., & Zennegg, M. (2024). Accumulation Rate, Depuration Kinetics, and Tissue Distribution of Polychlorinated Dibenzo-p-Dioxins and Dibenzofurans (PCDD/Fs) in Suckler Ewes (Ovis aries). Journal of Agricultural and Food Chemistry. https://doi.org/10.1021/acs.jafc.4c02626 Li, M., Wang, Y.-S., Elwell-Cuddy, T., Baynes, R. E., Tell, L. A., Davis, J. L., Maunsell, F. P., Riviere, J. E., & Lin, Z. (2021). Physiological parameter values for physiologically based pharmacokinetic models in food-producing animals. Part III: Sheep and goat. Journal of Veterinary Pharmacology and Therapeutics, 44(4), 456-477. https://doi.org/https://doi.org/10.1111/jvp.12938 Lin, Z., Li, M., Wang, Y.-S., Tell, L. A., Baynes, R. E., Davis, J. L., Vickroy, T. W., & Riviere, J. E. (2020). Physiological parameter values for physiologically based pharmacokinetic models in food-producing animals. Part I: Cattle and swine. Journal of Veterinary Pharmacology and Therapeutics, 43(5), 385-420. https://doi.org/https://doi.org/10.1111/jvp.12861 Lorenzi, V., Angelone, B., Ferretti, E., Galli, A., Tonoli, M., Donati, M., Fusi, F., Zanardi, G., Ghidini, S., & Bertocchi, L. (2020). PCDD/Fs, DL-PCBs, and NDL-PCBs in Dairy Cows: Carryover in Milk from a Controlled Feeding Study. Journal of Agricultural and Food Chemistry, 68(7), 2201-2213. https://doi.org/10.1021/acs.jafc.9b08180 MacLachlan, D. (2009). Influence of physiological status on residues of lipophilic xenobiotics in livestock. Food Additives and Contaminants, 26(5), 692-712. MacLachlan, D. J. (2010). Physiologically based pharmacokinetic (PBPK) model for residues of lipophilic pesticides in poultry. Food Addit Contam Part A Chem Anal Control Expo Risk Assess, 27(3), 302-314. https://doi.org/10.1080/19440040903296683 Malisch, R. (2000). Increase of the PCDD/F-contamination of milk, butter and meat samples by use of contaminated citrus pulp. Chemosphere, 40(9-11), 1041-1053. Malisch, R., & Kotz, A. (2014). Dioxins and PCBs in feed and food — Review from European perspective. Science of The Total Environment, 491-492, 2-10. https://doi.org/https://doi.org/10.1016/j.scitotenv.2014.03.022 Mandal, P. K. (2005). Dioxin: a review of its environmental effects and its aryl hydrocarbon receptor biology. Journal of Comparative Physiology B, 175(4), 221-230. https://doi.org/10.1007/s00360-005-0483-3 Marinković, N., Pašalić, D., Ferenčak, G., Gršković, B., & Rukavina, A. (2010). Dioxins and human toxicity. Archives of Industrial Hygiene and Toxicology, 61(4), 445-453. McLachlan, M., & Richter, W. (1998). Uptake and Transfer of PCDD/Fs by Cattle Fed Naturally Contaminated Feedstuffs and Feed Contaminated as a Result of Sewage Sludge Application. 1. Lactating Cows. Journal of Agricultural and Food Chemistry, 46(3), 1166-1172. https://doi.org/10.1021/jf970922u Mínguez-Alarcón, L., Sergeyev, O., Burns, J. S., Williams, P. L., Lee, M. M., Korrick, S. A., Smigulina, L., Revich, B., & Hauser, R. (2017). A Longitudinal Study of Peripubertal Serum Organochlorine Concentrations and Semen Parameters in Young Men: The Russian Children’s Study. Environmental Health Perspectives, 125(3), 460-466. https://doi.org/doi:10.1289/EHP25 Monneret, C. (2017). What is an endocrine disruptor? Comptes Rendus. Biologies, 340(9-10), 403-405. Mudhoo, A., Thayalan, G., Muthoora, N. J., Muthoora, M. N., Oozeer, B. Z., Rago, Y. P., Ramphul, M. P., Valaydon, A. K., & Kumar, S. (2013). Dioxins and furans: sources, impacts and remediation. Pollutant diseases, remediation and recycling, 479-541. NRC. (1994). Nutrient Requirements of Poultry: Ninth Revised Edition, 1994. The National Academies Press. https://doi.org/doi:10.17226/2114 NRC. (2007). Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids. The National Academies Press. https://doi.org/doi:10.17226/11654 MUSTAFA, F. A. (1988). Moisture, Fat and Cholesterol Content of Some Raw; Barbecued and Cooked Organ Meats of Beef and Mutton. Journal of Food Science, 53(1), 270-271. https://doi.org/https://doi.org/10.1111/j.1365-2621.1988.tb10225.x OME. (1985). Scientific criteria document for standard development no. 4-84 : polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) Pajurek, M., Warenik-Bany, M., & Mikolajczyk, S. (2023). Dioxin transfer simulation from feed to animal tissues and risk assessment. Chemosphere, 313, 137379. https://doi.org/https://doi.org/10.1016/j.chemosphere.2022.137379 Panteleyev, A. A., & Bickers, D. R. (2006). Dioxin-induced chloracne – reconstructing the cellular and molecular mechanisms of a classic environmental disease. Experimental Dermatology, 15(9), 705-730. https://doi.org/https://doi.org/10.1111/j.1600-0625.2006.00476.x Papadopoulos, A., Vassiliadou, I., Costopoulou, D., Papanicolaou, C., & Leondiadis, L. (2004). Levels of dioxins and dioxin-like PCBs in food samples on the Greek market. Chemosphere, 57(5), 413-419. https://doi.org/https://doi.org/10.1016/j.chemosphere.2004.07.006 Paustenbach, D. J., Wenning, R. J., Lau, V., Harrington, N. W., Rennix, D. K., & Parsons, A. H. (1992). Recent developments on the hazards posed by 2,3,7,8-tetrachlorodibenzo-p-dioxin in soil: implications for setting risk-based cleanup levels at residential and industrial sites. J Toxicol Environ Health, 36(2), 103-149. https://doi.org/10.1080/15287399209531628 Pfuhl, R., Bellmann, O., Kühn, C., Teuscher, F., Ender, K., & Wegner, J. (2007). Beef versus dairy cattle: a comparison of feed conversion, carcass composition, and meat quality. Arch. Anim. Breed., 50(1), 59-70. https://doi.org/10.5194/aab-50-59-2007 Raamsdonk, L. W. D. v., Eijkeren, J. C. H. v., Meijer, G. A. L., Rennen, M. A. J., Zeilmaker, M. J., Hoogenboom, L. A. P., & Mengelers, M. J. B. (2009). Compliance of feed limits, does not mean compliance of food limits. Biotechnologie, Agronomie, Société et Environnement, 13, 51-57. Reddy, M., Yang, R., Andersen, M. E., & Clewell III, H. J. (2005). Physiologically based pharmacokinetic modeling: science and applications. John Wiley & Sons. Directive 2002/32/EC of the European Parliament and of the Council of 7 May 2002 on undesirable substances in animal feed, European Parliament and of the Council (2019). https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02002L0032-20191128 Directive 2002/32/EC, Undesirable substances in animal feed, European Parliament and of the Council (2002). https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32002L0032 Dujardin, M., Narbonne, J.-F., & Alexander, S. (2000). The Belgian Dioxin Crisis. Biomedical Research, 21(6), 337-343. https://doi.org/10.2220/biomedres.21.337 Regulation (EU) 2019/1869, Amending and correcting Annex I to Directive 2002/32/EC of the European Parliament and of the Council as regards maximum levels for certain undesirable substances in animal feed, EUROPEAN COMMISSION (2019). https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32019R1869 Regulation (EU) 2023/915, Maximum levels for certain contaminants in food and repealing Regulation (EC) No 1881/2006 (Text with EEA relevance)Text with EEA relevance, European Parliament and of the Council (2023). https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02023R0915-20230810 Regulation (EU) No 277/2012, Regards maximum levels and action thresholds for dioxins and polychlorinated biphenyls Text with EEA relevance, European Parliament and of the Council (2012). https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32012R0277 Regulation (EU) No 744/2012, Regards maximum levels for arsenic, fluorine, lead, mercury, endosulfan, dioxins, Ambrosia spp., diclazuril and lasalocid A sodium and action thresholds for dioxins Text with EEA relevance, European Parliament and of the Council (2012). https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32012R0744 RIVM, & WFSR. (2024). Feed-Food transfer models. https://www.feedfoodtransfer.nl/en Rose, M. D., Mortimer, D. N., Gem, M. G., Petch, R. G., Fernandes, A. R., & Livesey, C. T. (2010). Considerations for the regulation of polychlorinated dibenzodioxins, furans (PCDD/Fs) and biphenyls (PCBs) in liver. Quality Assurance and Safety of Crops & Foods, 2(2), 72-77. https://doi.org/https://doi.org/10.1111/j.1757-837X.2010.00058.x Savvateeva, D., Numata, J., Pieper, R., Schafft, H., Lahrssen-Wiederholt, M., & Bulik, S. (2020). Physiologically based toxicokinetic models and in silico predicted partition coefficients to estimate tetrachlorodibenzo-p-dioxin transfer from feed into growing pigs. Archives of Toxicology, 94(1), 187-196. https://doi.org/10.1007/s00204-019-02617-0 SCF. (2000). Opinion of the SCF on the Risk Assessment of Dioxins and Dioxin-like PCBs in Food. European Commission. https://ec.europa.eu/food/fs/sc/scf/out78_en.pdf SCF. (2001). Opinion of the SCF on the risk assessment of dioxins and dioxin-like PCBs in food. European Commission, Brussels, Update based on new scientific information available since the adoption of the SCF opinion of 22. European Commission. https://food.ec.europa.eu/system/files/2016-10/cs_contaminants_catalogue_dioxins_out90_en.pdf Services, L. L. (2021). Pig Nutrition Service NSW https://www.lls.nsw.gov.au/__data/assets/pdf_file/0005/1317902/Pig-Newsletter-13-Pig-Nutrition-.pdf Shen, H., Henkelmann, B., Rambeck, W. A., Mayer, R., Wehr, U., & Schramm, K.-W. (2012). The predictive power of the elimination of dioxin-like pollutants from pigs: An in vivo study. Environment International, 38(1), 73-78. https://doi.org/https://doi.org/10.1016/j.envint.2011.08.009 Shih, S.-I., Wang, I. C., Wu, K.-Y., Li, H.-W., Wang, L.-C., & Chang-Chien, G.-P. (2009). Uptake of polychlorinated dibenzo-p-dioxins and dibenzofurans in laying ducks. Journal of Environmental Science and Health, Part A, 44(8), 799-807. https://doi.org/10.1080/10934520902928644 Song, S., Chen, K., Huang, T., Ma, J., Wang, J., Mao, X., Gao, H., Zhao, Y., & Zhou, Z. (2023). New emission inventory reveals termination of global dioxin declining trend. Journal of Hazardous Materials, 443, 130357. https://doi.org/https://doi.org/10.1016/j.jhazmat.2022.130357 Spitaler, M., Iben, C., & Tausch, H. (2005). Dioxin residues in the edible tissue of finishing pigs after dioxin feeding. Journal of Animal Physiology and Animal Nutrition, 89(3-6), 65-71. https://doi.org/https://doi.org/10.1111/j.1439-0396.2005.00542.x Srogi, K. (2008). Levels and congener distributions of PCDDs, PCDFs and dioxin-like PCBs in environmental and human samples: a review. Environmental Chemistry Letters, 6(1), 1-28. https://doi.org/10.1007/s10311-007-0105-2 Stanmore, B. R. (2004). The formation of dioxins in combustion systems. Combustion and Flame, 136(3), 398-427. https://doi.org/https://doi.org/10.1016/j.combustflame.2003.11.004 UNEP, C. (2001). Stockholm convention on persistent organic pollutants (POPs). UNEP Chemicals, Geneva. Van den Berg, M., Birnbaum, L. S., Denison, M., De Vito, M., Farland, W., Feeley, M., Fiedler, H., Hakansson, H., Hanberg, A., Haws, L., Rose, M., Safe, S., Schrenk, D., Tohyama, C., Tritscher, A., Tuomisto, J., Tysklind, M., Walker, N., & Peterson, R. E. (2006). The 2005 World Health Organization Reevaluation of Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-Like Compounds. Toxicological Sciences, 93(2), 223-241. https://doi.org/10.1093/toxsci/kfl055 Van Eijkeren, J. C. H., Zeilmaker, M. J., Kan, C. A., Traag, W. A., & Hoogenboom, L. A. P. (2006). A toxicokinetic model for the carry-over of dioxins and PCBs from feed and soil to eggs. Food Additives & Contaminants, 23(5), 509-517. https://doi.org/10.1080/02652030500512045 van Leeuwen, F. X. R., Feeley, M., Schrenk, D., Larsen, J. C., Farland, W., & Younes, M. (2000). Dioxins: WHO’s tolerable daily intake (TDI) revisited. Chemosphere, 40(9), 1095-1101. https://doi.org/https://doi.org/10.1016/S0045-6535(99)00358-6 Varrà, M. O., Lorenzi, V., Zanardi, E., Menotta, S., Fedrizzi, G., Angelone, B., Gasparini, M., Fusi, F., Foschini, S., & Padovani, A. (2023). Safety Evaluation and Probabilistic Health Risk Assessment of Cow Milk Produced in Northern Italy According to Dioxins and PCBs Contamination Levels. Foods, 12(9), 1869. Wang, C., Dong, S., Wang, P., Hao, Y., Wang, R., Zhang, Q., & Jiang, G. (2022). Insights into the toxicokinetic, tissue distribution and maternal transfer of polychlorinated dibenzo-p-dioxins/dibenzofurans in laying hens fed with dioxin-associated dietary. Sci Total Environ, 816, 151664. https://doi.org/10.1016/j.scitotenv.2021.151664 Wang, C., Dong, S., Wang, P., Hao, Y., Wang, R., Zhang, S., Wang, Y., Fan, M., Zhang, Q., & Jiang, G. (2021). Reevaluation on accumulation and depletion of dioxin-like compounds in eggs of laying hens: Quantification on dietary risk from feed to egg. Science of The Total Environment, 801, 149690. https://doi.org/https://doi.org/10.1016/j.scitotenv.2021.149690 Wang, Y.-S., Li, M., Tell, L. A., Baynes, R. E., Davis, J. L., Vickroy, T. W., Riviere, J. E., & Lin, Z. (2021). Physiological parameter values for physiologically based pharmacokinetic models in food-producing animals. Part II: Chicken and turkey. Journal of Veterinary Pharmacology and Therapeutics, 44(4), 423-455. https://doi.org/https://doi.org/10.1111/jvp.12931 Wu, T.-W., Lee, J.-W., Liu, H.-Y., Lin, W.-H., Chu, C.-Y., Lin, S.-L., Chang-Chien, G. P., & Yu, C. (2014). Accumulation and elimination of polychlorinated dibenzo-p-dioxins and dibenzofurans in mule ducks. Science of The Total Environment, 497-498, 260-266. https://doi.org/https://doi.org/10.1016/j.scitotenv.2014.07.106 Zou, Y., Shahidi, F., Shi, H., Wang, J., Huang, Y., Xu, W., & Wang, D. (2021). Values-added utilization of protein and hydrolysates from animal processing by-product livers: A review. Trends in Food Science & Technology, 110, 432-442. https://doi.org/https://doi.org/10.1016/j.tifs.2021.02.033 化學知識地圖. (2024). 毒鴨蛋事件. 環境部化學物質管理署. https://topic.moenv.gov.tw/chemiknowledgemap/cp-452-9116-ee48b-5.html 王政宏. (1972). 肉牛如何飼養才能獲利?. 典藏豐年, 22(21). https://kmweb.moa.gov.tw/redirect_files.php?id=110458 吳焜裕. (2020). 健康風險評估:科學決策之基礎. 新文京. 宜蘭縣養鴨生產合作社. (2023). 宜蘭養鴨產業-產. https://www.ilanduck.com/article.php?lang=tw&tb=1&id=60 空氣品質改善維護資訊網. (2024). 戴奧辛與重金屬. 環境部. https://air.moenv.gov.tw/EnvTopics/StationarySource_12.aspx 邱皓政. (2020). 貝氏統計: 原理與應用. 雙葉書廊. 食品藥物管理署. (2024). 食品營養成分資料庫 https://consumer.fda.gov.tw/Food/TFND.aspx?nodeID=178 食農教育資訊整合平臺. (2024).臺灣農產地圖-雞肉-生產方式. 農業部. https://fae.moa.gov.tw/map/food_item.php?type=AS04&id=275 財團法人中央畜產會. (2022).肉牛-產業現況. https://www.naif.org.tw/pda/industrialDetail.aspx?forewordID=1828 陳盈豪, & 周繼發. (1995). 羔羊肉 歐美老饕的最愛. 鄉間小路, 21(11), 40-11. https://kmweb.moa.gov.tw/redirect_files.php?id=164088 黃明豐. (2020). 台灣食品中戴奧辛及多氯聯苯限值的演進. https://csucenter.com/Techs/Tech?ID=19 黃振芳. (2023). 蛋鴨之飼養管理. 農業部. https://kmweb.moa.gov.tw/subject/subject.php?id=13778 農業知識入口網. (2021). 乳牛生活史. 農業部. https://kmweb.moa.gov.tw/subject/subject.php?id=10481 農業知識入口網. (2024). 台灣乳用品種-撒能(Saanen). 農業部. https://kmweb.moa.gov.tw/subject/subject.php?id=10403 飼料管理法施行細則, (2017). https://law.moj.gov.tw/LawClass/LawHistory.aspx?pcode=M0060002 臺灣彰化地方檢察署. (2018). 彰檢偵辦戴奧辛蛋案件,說明如下 https://www.chc.moj.gov.tw/media/119956/832994628587.doc?mediaDL=true 豐年社. (2020). 你吃的蛋這樣來——從母雞到餐盤的蛋之旅. 鄉間小路. https://www.agriharvest.tw/archives/33309 豐年社. (2023). 使命必達,保種臺灣黑豬:屏東縣內埔鄉毛豬產銷班第3班. 豐年雜誌. https://www.agriharvest.tw/archives/111271 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95097 | - |
| dc.description.abstract | 戴奧辛為多種化合物之總稱,包含75種多氯二聯苯戴奧辛(Polychlorinated Dibenzo-p-Dioxins, PCDDs)以及135種多氯二聯苯呋喃(Polychlorinated Dibenzofurans, PCDFs),其中7種PCDDs以及10種PCDFs具有較高毒性會對健康造成危害,因此受到許多研究關注,而本研究所稱之戴奧辛為此17種PCDD/Fs。
人類暴露到戴奧辛的主要途徑為飲食,其中又以攝入動物源性食品貢獻最大。而動物暴露到戴奧辛的主要途徑是飼料,家禽家畜攝入受污染之飼料後,戴奧辛會累積於動物組織中,民眾再經由飲食暴露到戴奧辛。因此,了解飼料中戴奧辛轉移至動物組織中的濃度是相當重要的,過去研究使用轉移因子以及以生理學為基礎的藥物動力學作為估計飼料中戴奧辛轉移累積至動物組織中的方法,但這些方法具有侷限性以及不確定性,並且主要針對牛奶、雞蛋或雞、豬、牛的肉類進行評估。 考量台灣人的飲食習慣,本研究基於藥物動力學,建立不同情境下評估飼料中戴奧辛轉移至家禽家畜組織中濃度的模型,使用貝氏統計以描述群體的分佈,模擬台灣現行飼料中戴奧辛最大限量下五種畜禽組織濃度,包含牛、豬、羊、雞以及鴨。由於戴奧辛為非基因毒性致癌物質,藉由蒙地卡羅模擬,估計民眾經由攝入畜禽食品的戴奧辛平均每日暴露劑量以及危害指數,用以評估目前飼料標準是否可保護民眾免於暴露過高之風險。 基於藥物動力學進行推導,建構飼料轉移模型,推導結果顯示當半衰期小於五分之一飼養期時,有害物質於動物體內可達穩定狀態;當半衰期大於3.5倍飼養期,有害物質於動物體內累積濃度隨時間呈線性增加。依照五種物種各自符合之模型,模擬飼料濃度為0.75 ng TEQ/kg下,組織中殘留濃度,除雞以外,其餘四種物種之組織濃度高低順序皆為,脂肪、肝臟、肉、腎臟或其他器官。根據此濃度估算民眾經由飼料間接暴露戴奧辛的平均每日暴露劑量以及危害指數,結果顯示,所有年齡層之危害指數皆大於1,民眾面臨較高之風險,其中孩童相較於其他年齡層所面臨的風險更高,表示現行飼料標準並不足以保護民眾之健康。本研究針對飼料中不同戴奧辛濃度進行模擬,建議飼料中戴奧辛最大限量為2.0×10-3 ng TEQ/kg時,危害指數將低於1,可保護民眾之健康。 本研究建立多種情境的飼料中戴奧辛轉移評估方法,此方法可應用於評估其他有害物質在不同物種之轉移濃度,評估結果可作為未來訂定飼料中戴奧辛最大限量之參考。 | zh_TW |
| dc.description.abstract | Dioxins are a class of structurally and chemically related polychlorinated aromatic hydrocarbons, including 75 polychlorinated dibenzo-p-Dioxins (PCDDs) and 135 polychlorinated dibenzofurans (PCDFs). Among these analogs, 7 PCDDs and 10 PCDFs are considered toxic and lead to adverse health effects. In this study, the term “dioxin” refers to these 17 toxic PCDD/Fs.
More than 90% of human dioxin exposures were reported through dietary intakes, mainly via animal products. Animals are mainly exposed to dioxins through contaminated feed, accumulating dioxins in their tissues. Therefore, it is essential to estimate the concentration of dioxin transfer from feed to animal tissues. Previous studies have used transfer factors and physiologically based pharmacokinetic (PBPK) models to estimate the transfer of dioxin from feed to animal tissues. However, these methods have some limitations and uncertainties and primarily focus on milk, eggs, or meat from chickens, pigs, or cows. Considering Taiwanese eating habits, this study established a model based on pharmacokinetics to evaluate the concentration of dioxin transferred from feed to poultry and livestock tissues under different scenarios. Bayesian statistics were used to describe population distribution, simulating the dioxin concentration in tissues of five species under the current maximum limit of dioxin in feed in Taiwan. These five species included cows, pigs, sheep, chickens, and ducks. Since Dioxin is a non-genotoxic carcinogen, Monte Carlo simulation was used to estimate the average daily dose and hazard index of dioxin from animal products to assess whether the current feed standards can protect the public from excessive risk. Based on pharmacokinetic model, the derived results showed that when the half-life of compound is less than one-fifth of the feeding period, the compound can reach a steady state in the animal. When the half-life is more than 3.5 times feeding period, the concentration of the compound in the animal increases linearly over time. According to the models for the five species, concentration simulations were conducted for the feed concentration of 0.75 ng TEQ/kg. Except for chickens, the tissue concentrations in the other four species, in descending order, are fat, liver, meat, and kidney or other organs. Based on these concentrations, the average daily dose and hazard index of dioxin indirectly exposed through feed were estimated. The results show that the hazard index of all age groups is greater than 1, and children face higher risks than other age groups. This indicates that current feed standards are not sufficient to protect public health. This study simulated different dioxin concentrations in feed and suggests that when the maximum limit of dioxin in feed is 2.0×10-3 ng TEQ/kg, the hazard index would be below 1, ensuring the protection of public health. This study established methods for assessing the transfer of dioxin in feed under various scenarios. The method can be applied to assess the transfer of other hazard in different species. These results lay the foundation for setting the maximum residue limits of dioxins in animal feeds. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-28T16:15:03Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-28T16:15:03Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii Abstract v 目次 viii 圖次 xii 表次 xiii 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的 2 第二章 文獻回顧 3 2.1戴奧辛 3 2.1.1物化特性 4 2.1.2 來源與排放現況 4 2.1.3 暴露途徑與路徑 6 2.1.4 健康危害 6 2.1.4.1 毒性作用機制 6 2.1.4.2 人類已知致癌物 7 2.1.4.3 戴奧辛致癌作用模式 7 2.1.4.4. 不良健康效應 8 2.1.5 毒性當量 9 2.2 飼料及家禽家畜產品中戴奧辛污染事件 10 2.3 飼料中戴奧辛最大限量 11 2.3.1 歐盟 11 2.3.2 台灣 12 2.4 食品中戴奧辛最大限量 12 2.4.1 歐盟 12 2.4.2 台灣 13 2.5 戴奧辛耐受攝取量 13 2.6 飼料中戴奧辛健康風險評估 16 2.6.1轉移率和轉移因子 16 2.6.2 以生理學為基礎的藥物動力學 17 第三章 材料與方法 21 3.1 研究架構 21 3.2 研究目標物種及組織 21 3.3 建構飼料中戴奧辛轉移至家禽家畜組織中濃度評估方法 21 3.3.1 研究假設 21 3.3.2 基於以生理學為基礎的藥物動力學建立不同情境下轉移評估方法 24 3.3.3.1貝氏統計 26 3.3.3.1.1有害物質於動物體內達穩定狀態 27 3.3.3.1.2 有害物質於動物體內濃度隨時間呈線性增加 29 3.3.3.2 蒙地卡羅模擬 31 3.3.3.2.1組織隔間體積 31 3.3.3.2.2 血液至組織隔間流量 31 3.3.3.2.3 組織隔間/血液分配係數 32 3.3.3.2.4 動物平均每日飼料攝取量 32 3.3.3.2.5 家禽家畜飼養期 32 3.3.3.2.6 家禽家畜血液中戴奧辛半衰期 33 3.3.3.2.7 戴奧辛分佈於動物中的體積 33 3.3.3.2.8 蒙地卡羅模擬之應用 33 3.4 不同家禽家畜轉移評估方法 34 3.4.1 家禽家畜體內戴奧辛半衰期 35 3.4.2 選擇家禽家畜之轉移評估方法 35 3.5 模擬飼料中戴奧辛轉移至家禽家畜組織中濃度 36 3.5.1 動物實驗數據 36 3.5.1.1 雞 37 3.5.1.2 鴨 38 3.5.1.3 牛 38 3.5.1.4 羊 39 3.5.1.5 豬 39 3.6.1 暴露評估 40 3.6.1.1 每日食物攝取量 41 3.6.1.2 體重 41 3.6.1.3 家禽家畜組織中脂肪比例 42 3.6.1.4 蒙地卡羅模擬 42 第四章 結果 44 4.1 建立飼料中戴奧辛轉移至動物組織中貝氏方程式 44 4.2 模擬現有標準飼料中戴奧辛轉移至動物組織濃度 44 4.3 暴露評估 45 4.3.1 雞 46 4.3.2 鴨 47 4.3.3 牛 48 4.3.4 羊 48 4.3.5 豬 49 4.4 風險特性化 50 4.5 基於不同飼料中戴奧辛濃度模擬及風險特性化 51 第五章 討論 52 5.1 建構飼料中化合物轉移評估方法 52 5.2 使用線性方程式取代動力學之可行性 54 5.3.1影響不同組織間殘留濃度高低之因素 56 5.3.2 轉移評估方法之不確定性 56 5.3.3 與台灣食品含戴奧辛及多氯聯苯處理規範相比 57 5.4 台灣民眾經由飼料間接暴露戴奧辛的平均每日暴露劑量 58 5.5 台灣民眾經由飼料間接暴露戴奧辛的危害指數 60 5.6 建議飼料中戴奧辛最大限量 61 5.7 研究限制 61 第六章 結論 63 參考文獻 64 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 管制標準 | zh_TW |
| dc.subject | 健康風險評估 | zh_TW |
| dc.subject | 貝氏統計 | zh_TW |
| dc.subject | 飼料 | zh_TW |
| dc.subject | 戴奧辛 | zh_TW |
| dc.subject | 家禽家畜 | zh_TW |
| dc.subject | Regulatory standards | en |
| dc.subject | Dioxin | en |
| dc.subject | Feed | en |
| dc.subject | Poultry and Livestock | en |
| dc.subject | Health Risk Assessment | en |
| dc.subject | Bayesian statistics | en |
| dc.title | 飼料中戴奧辛之健康風險評估 | zh_TW |
| dc.title | Health Risk Assessment of Dioxin in Feed | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 蔡東湖;鄭尊仁;林榮信;王彥雯 | zh_TW |
| dc.contributor.oralexamcommittee | Tung-Hu Tsai ;Tsun-Jen Cheng;Rong-Shinn Lin;Charlotte Wang | en |
| dc.subject.keyword | 戴奧辛,飼料,家禽家畜,健康風險評估,貝氏統計,管制標準, | zh_TW |
| dc.subject.keyword | Dioxin,Feed,Poultry and Livestock,Health Risk Assessment,Bayesian statistics,Regulatory standards, | en |
| dc.relation.page | 137 | - |
| dc.identifier.doi | 10.6342/NTU202403373 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-08 | - |
| dc.contributor.author-college | 公共衛生學院 | - |
| dc.contributor.author-dept | 環境與職業健康科學研究所 | - |
| dc.date.embargo-lift | 2026-08-31 | - |
| 顯示於系所單位: | 環境與職業健康科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 3.79 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
