請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95094完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡坤憲 | zh_TW |
| dc.contributor.advisor | Kun-Hsien Tsai | en |
| dc.contributor.author | 林佳依 | zh_TW |
| dc.contributor.author | Chia-Yi Lin | en |
| dc.date.accessioned | 2024-08-28T16:14:10Z | - |
| dc.date.available | 2024-08-29 | - |
| dc.date.copyright | 2024-08-28 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-30 | - |
| dc.identifier.citation | Aiman, O., Ullah, S., Chitimia Dobler, L., Nijhof, A. M., & Ali, A. (2022). First report of Nosomma monstrosum ticks infesting Asian water buffaloes (Bubalus bubalis) in Pakistan. Ticks and tick-borne diseases, 13(2), 101899. https://doi.org/10.1016/j.ttbdis.2022.101899
Anderson, B., Sumner, J., Dawson, J., Tzianabos, T., Greene, C., Olson, J., Fishbein, D., Olsen-Rasmussen, M., Holloway, B., & George, E. (1992). Detection of the etiologic agent of human ehrlichiosis by polymerase chain reaction. Journal of Clinical Microbiology, 30(4), 775-780. https://doi.org/10.1128/jcm.30.4.775-780.1992 Beati, L., & Keirans, J. E. (2001). Analysis of the systematic relationships among ticks of the genera Rhipicephalus and Boophilus (Acari: Ixodidae) based on mitochondrial 12S ribosomal DNA gene sequences and morphological characters. Journal of Parasitology, 87(1), 32-48. https://doi.org/10.1645/0022-3395(2001)087[0032:AOTSRA]2.0.CO;2 Black, W., & Piesman, J. (1994). Phylogeny of hard-and soft-tick taxa (Acari: Ixodida) based on mitochondrial 16S rDNA sequences. Proceedings of the National Academy of Sciences, 91(21), 10034-10038. https://doi.org/10.1073/pnas.91.21.10034 Brendolan, A., Rosado, M. M., Carsetti, R., Selleri, L., & Dear, T. N. (2007). Development and function of the mammalian spleen. Bioessays, 29(2), 166-177. https://doi.org/10.1002/bies.20528 Burri, C., Schumann, O., Schumann, C., & Gern, L. (2014). Are Apodemus spp. mice and Myodes glareolus reservoirs for Borrelia miyamotoi, Candidatus Neoehrlichia mikurensis, Rickettsia helvetica, R. monacensis, and Anaplasma phagocytophilum? Ticks and tick-borne diseases, 5(3), 245-251. https://doi.org/10.1016/j.ttbdis.2013.11.007 Cao, W. C., Gao, Y. M., Zhang, P. H., Zhang, X. T., Dai, Q. H., Dumler, J. S., Fang, L. Q., & Yang, H. (2000). Identification of Ehrlichia chaffeensis by nested PCR in ticks from Southern China. Journal of Clinical Microbiology, 38(7), 2778-2780. https://doi.org/doi:10.1128/jcm.38.7.2778-2780.2000 Chang, F. Y., Wang, R. Y., Yen, T. Y., Shu, P. Y., & Yang, S. L. (2023). Human case of Anaplasma phagocytophilum infection in Eastern Taiwan. Journal of the Formosan Medical Association, 122(3), 286-289. https://doi.org/10.1016/j.jfma.2022.08.018 Chao, L. L., Robinson, M., Liang, Y. F., & Shih, C. M. (2022). First detection and molecular identification of Rickettsia massiliae, a human pathogen, in Rhipicephalus sanguineus ticks collected from Southern Taiwan. PLOS Neglected Tropical Diseases, 16(11), e0010917. https://doi.org/10.1371/journal.pntd.0010917 Chao, L. L., Wu, W. J., & Shih, C. M. (2009). First detection and molecular identification of Borrelia burgdorferi-like spirochetes in Ixodes granulatus ticks collected on Kinmen Island of Taiwan. The American journal of tropical medicine and hygiene, 80(3), 389-394. https://doi.org/10.4269/ajtmh.2009.80.389 Chen, S. M., Dumler, J. S., Bakken, J. S., & Walker, D. H. (1994). Identification of a granulocytotropic Ehrlichia species as the etiologic agent of human disease. Journal of Clinical Microbiology, 32(3), 589-595. https://doi.org/10.1128/jcm.32.3.589-595.1994 Chen, Z., Yang, X., Bu, F., Yang, X., Yang, X., & Liu, J. (2010). Ticks (acari: ixodoidea: argasidae, ixodidae) of China. Experimental and Applied Acarology, 51, 393-404. https://doi.org/10.1007/s10493-010-9335-2 Dawson, J., Anderson, B., Fishbein, D., Sanchez, J., Goldsmith, C., Wilson, K., & Duntley, C. (1991). Isolation and characterization of an Ehrlichia sp. from a patient diagnosed with human ehrlichiosis. Journal of Clinical Microbiology, 29(12), 2741-2745. https://doi.org/10.1128/jcm.29.12.2741-2745.1991 Dawson, J. E., Biggie, K. L., Warner, C. K., Cookson, K., Jenkins, S., Levine, J. F., & Olson, J. G. (1996). Polymerase chain reaction evidence of Ehrlichia chaffeensis, an etiologic agent of human ehrlichiosis, in dogs from southeast Virginia. American journal of veterinary research, 57(8), 1175-1179. https://doi.org/10.2460/ajvr.1996.57.08.1175 Dawson, J. E., Stallknecht, D. E., Howerth, E. W., Warner, C., Biggie, K., Davidson, W. R., Lockhart, J. M., Nettles, V. F., Olson, J. G., & Childs, J. E. (1994). Susceptibility of white-tailed deer (Odocoileus virginianus) to infection with Ehrlichia chaffeensis, the etiologic agent of human ehrlichiosis. Journal of Clinical Microbiology, 32(11), 2725-2728. https://doi.org/10.1128/jcm.32.11.2725-2728.1994 de la Fuente, J., Kocan, K. M., Blouin, E. F., Zivkovic, Z., Naranjo, V., Almazán, C., Esteves, E., Jongejan, F., Daffre, S., & Mangold, A. J. (2010). Functional genomics and evolution of tick–Anaplasma interactions and vaccine development. Veterinary parasitology, 167(2-4), 175-186. https://doi.org/10.1016/j.vetpar.2009.09.019 Dumler, J. S., Choi, K.-S., Garcia-Garcia, J. C., Barat, N. S., Scorpio, D. G., Garyu, J. W., Grab, D. J., & Bakken, J. S. (2005). Human granulocytic anaplasmosis and Anaplasma phagocytophilum. Emerging infectious diseases, 11(12), 1828. https://doi.org/10.3201%2Feid1112.050898 Dumler, J. S., Madigan, J. E., Pusterla, N., & Bakken, J. S. (2007). Ehrlichioses in humans: epidemiology, clinical presentation, diagnosis, and treatment. Clinical infectious diseases, 45(Supplement_1), S45-S51. Durden, L. A. (2006). Taxonomy, host associations, life cycles, and vectorial importance of ticks parasitizing small mammals. In Micromammals and macroparasites: From evolutionary ecology to management (pp. 91-102). Springer. Fehr, J. S., Bloemberg, G. V., Ritter, C., Hombach, M., Lüscher, T. F., Weber, R., & Keller, P. M. (2010). Septicemia caused by tick-borne bacterial pathogen Candidatus Neoehrlichia mikurensis. Emerging infectious diseases, 16(7), 1127. https://doi.org/10.3201/eid1607.091907 Gaff, H. D., Kocan, K. M., & Sonenshine, D. E. (2013). Tick-borne rickettsioses II (Anaplasmataceae). Biology of ticks, 2, 251-277. Ge, Y., Guo, G., Ge, B., Yin, H., & Yin, H. (2018). The spleen microbiota of small wild mammals reveals distinct patterns with tick-borne bacteria. PLOS Neglected Tropical Diseases, 12(7), e0006499. https://doi.org/10.1371/journal.pntd.0006499 Grankvist, A., Andersson, P. O., Mattsson, M., Sender, M., Vaht, K., Höper, L., Sakiniene, E., Trysberg, E., Stenson, M., & Fehr, J. (2014). Infections with the tick-borne bacterium “Candidatus Neoehrlichia mikurensis” mimic noninfectious conditions in patients with B cell malignancies or autoimmune diseases. Clinical infectious diseases, 58(12), 1716-1722. https://doi.org/10.1093/cid/ciu189 Grankvist, A., Jaén Luchoro, D., Wass, L., Sikora, P., & Wennerås, C. (2021). Comparative genomics of clinical isolates of the emerging tick-borne pathogen Neoehrlichia mikurensis. Microorganisms, 9(7), 1488. https://www.mdpi.com/2076-2607/9/7/1488 Heo, E. j., Park, J. h., Koo, J. r., Park, M. s., Park, M. y., Dumler, J. S., & Chae, J. s. (2002). Serologic and molecular detection of Ehrlichia chaffeensis and Anaplasma phagocytophila (human granulocytic ehrlichiosis agent) in Korean patients. Journal of Clinical Microbiology, 40(8), 3082-3085. https://doi.org/10.1128/jcm.40.8.3082-3085.2002 Heppner, D. G., Wongsrichanalai, C., Walsh, D. S., McDaniel, P., Eamsila, C., Hanson, B., & Paxton, H. (1997). Human ehrlichiosis in Thailand. The Lancet, 350(9080), 785-786. https://doi.org/10.1016/S0140-6736(05)62571-8 Horak, I. G., Camicas, J. L., & Keirans, J. E. (2003). The Argasidae, Ixodidae and Nuttalliellidae (Acari: Ixodida): a world list of valid tick names. Ticks and Tick-Borne Pathogens: Proceedings of the 4th International Conference on Ticks and Tick-Borne Pathogens The Banff Centre Banff, Alberta, Canada 21–26 July 2002, Inokuma, H., Beppu, T., Okuda, M., Shimada, Y., & Sakata, Y. (2003). Epidemiological survey of Anaplasma platys and Ehrlichia canis using ticks collected from dogs in Japan. Veterinary parasitology, 115(4), 343-348. https://doi.org/10.1016/S0304-4017(03)00238-3 Jahfari, S., Fonville, M., Hengeveld, P., Reusken, C., Scholte, E.-J., Takken, W., Heyman, P., Medlock, J. M., Heylen, D., & Kleve, J. (2012). Prevalence of Neoehrlichia mikurensis in ticks and rodents from North-west Europe. Parasites & vectors, 5, 1-10. https://doi.org/10.1186/1756-3305-5-74 Jones, K. E., Patel, N. G., Levy, M. A., Storeygard, A., Balk, D., Gittleman, J. L., & Daszak, P. (2008). Global trends in emerging infectious diseases. Nature, 451(7181), 990-993. Jongejan, F., & Uilenberg, G. (2004). The global importance of ticks. Parasitology, 129(S1), S3-S14. https://doi.org/10.1017/S0031182004005967 Kannan, R., & James, D. A. (2009). Effects of climate change on global biodiversity: a review of key literature. Tropical Ecology, 50(1), 31. Kawahara, M., Rikihisa, Y., Isogai, E., Takahashi, M., Misumi, H., Suto, C., Shibata, S., Zhang, C., & Tsuji, M. (2004). Ultrastructure and phylogenetic analysis of ‘Candidatus Neoehrlichia mikurensis' in the family Anaplasmataceae, isolated from wild rats and found in Ixodes ovatus ticks. International journal of systematic and evolutionary microbiology, 54(5), 1837-1843. https://doi.org/10.1099/ijs.0.63260-0 Kawahara, M., Rikihisa, Y., Lin, Q., Isogai, E., Tahara, K., Itagaki, A., Hiramitsu, Y., & Tajima, T. (2006). Novel genetic variants of Anaplasma phagocytophilum, Anaplasma bovis, Anaplasma centrale, and a novel Ehrlichia sp. in wild deer and ticks on two major islands in Japan. Applied and environmental microbiology, 72(2), 1102-1109. https://doi.org/10.1128/AEM.72.2.1102-1109.2006 Kelly, D. J., Fuerst, P. A., Ching, W. M., & Richards, A. L. (2009). Scrub typhus: the geographic distribution of phenotypic and genotypic variants of Orientia tsutsugamushi. Clinical infectious diseases, 48(Supplement_3), S203-S230. https://doi.org/10.1086/596576 Kim, K. H., Yi, J., Oh, W. S., Kim, N. H., Choi, S. J., Choe, P. G., Kim, N. J., Lee, J. K., & Oh, M. d. (2014). Human granulocytic anaplasmosis, South Korea, 2013. Emerging infectious diseases, 20(10), 1708. https://doi.org/10.3201%2Feid2010.131680 Kuno, G., Mackenzie, J. S., Junglen, S., Hubálek, Z., Plyusnin, A., & Gubler, D. J. (2017). Vertebrate reservoirs of arboviruses: Myth, synonym of amplifier, or reality? Viruses, 9(7), 185. https://doi.org/10.3390/v9070185 Kuo, C. C., Huang, J. L., Chien, C. H., Shih, H. C., & Wang, H. C. (2018). First molecular detection of Anaplasma phagocytophilum in the hard tick Rhipicephalus haemaphysaloides in Taiwan. Experimental and Applied Acarology, 75, 437-443. https://doi.org/10.1007/s10493-018-0283-6 Kuo, C. C., Huang, J. L., Shu, P. Y., Lee, P. L., Kelt, D. A., & Wang, H. C. (2012). Cascading effect of economic globalization on human risks of scrub typhus and tick‐borne rickettsial diseases. Ecological Applications, 22(6), 1803-1816. https://doi.org/10.1890/12-0031.1 Kuo, C. C., Lee, P. L., & Wang, H. C. (2020). Molecular detection of Rickettsia species and host associations of Laelaps mites (Acari: Laelapidae) in Taiwan. Experimental and Applied Acarology, 81(4), 547-559. https://doi.org/10.1007/s10493-020-00522-1 Kuo, C. C., Shu, P. Y., Mu, J. J., & Wang, H. C. (2015). High prevalence of Rickettsia spp. infections in small mammals in Taiwan. Vector-Borne and Zoonotic Diseases, 15(1), 13-20. Labruna, M. B., McBride, J. W., Camargo, L. M. A., Aguiar, D. M., Yabsley, M. J., Davidson, W. R., Stromdahl, E. Y., Williamson, P. C., Stich, R. W., & Long, S. W. (2007). A preliminary investigation of Ehrlichia species in ticks, humans, dogs, and capybaras from Brazil. Veterinary parasitology, 143(2), 189-195. https://doi.org/10.1016/j.vetpar.2006.08.005 Larsson, C., Hvidsten, D., Stuen, S., Henningsson, A. J., & Wilhelmsson, P. (2018). “Candidatus Neoehrlichia mikurensis” in Ixodes ricinus ticks collected near the Arctic Circle in Norway. Parasites & vectors, 11, 1-8. https://doi.org/10.1186/s13071-018-3168-y Lee, Y. H., Chang, S. F., Wang, H. C., Hsieh, J. W., Lin, M. C., & Yang, S. Y. (2012). Seroepidemiological investigation on hantavirus prevalence in rodent population at international ports in Taiwan, 2007–2009. Taiwan Epidemiol. Bull, 28, 148-159. Li, H., Jiang, J., Tang, F., Sun, Y., Li, Z., Zhang, W., Gong, Z., Liu, K., Yang, H., & Liu, W. (2013). Wide distribution and genetic diversity of “Candidatus Neoehrlichia mikurensis” in rodents from China. Applied and environmental microbiology, 79(3), 1024-1027. https://doi.org/10.1128/AEM.02917-12 Loewenich, F. D. v., Geißdörfer, W., Disqué, C., Matten, J., Schett, G., Sakka, S. G., & Bogdan, C. (2010). Detection of Candidatus Neoehrlichia mikurensis in two patients with severe febrile illnesses: evidence for a European sequence variant. Journal of Clinical Microbiology, 48(7), 2630-2635. https://doi.org/doi:10.1128/jcm.00588-10 Masuzawa, T., Uchishima, Y., Fukui, T., Okamoto, Y., Pan, M. J., Kadosaka, T., & Takada, N. (2014). Detection of Anaplasma phagocytophilum and Anaplasma bovis in small wild mammals from Taichung and Kinmen Island, Taiwan. Japanese Journal of Infectious Diseases, 67(2), 111-114. https://doi.org/10.7883/yoken.67.111 Minahan, N. T., Chao, C. C., & Tsai, K. H. (2017). The re-emergence and emergence of vector-borne rickettsioses in Taiwan. Tropical Medicine and Infectious Disease, 3(1), 1. https://doi.org/10.3390/tropicalmed3010001 Murphy, G. L., Ewing, S., Whitworth, L. C., Fox, J. C., & Kocan, A. A. (1998). A molecular and serologic survey of Ehrlichia canis, E. chaffeensis, and E. ewingii in dogs and ticks from Oklahoma. Veterinary parasitology, 79(4), 325-339. https://doi.org/10.1016/S0304-4017(98)00179-4 Ohashi, N., Kawamori, F., Wu, D., Yoshikawa, Y., Chiya, S., Fukunaga, K., Funato, T., Shiojiri, M., Nakajima, H., & Hamauzu, Y. (2013). Human granulocytic anaplasmosis, Japan. Emerging infectious diseases, 19(2), 289. https://doi.org/10.3201%2Feid1902.120855 Overzier, E., Pfister, K., Herb, I., Mahling, M., Böck Jr, G., & Silaghi, C. (2013). Detection of tick-borne pathogens in roe deer (Capreolus capreolus), in questing ticks (Ixodes ricinus), and in ticks infesting roe deer in southern Germany. Ticks and tick-borne diseases, 4(4), 320-328. https://doi.org/10.1016/j.ttbdis.2013.01.004 Panizza, M. M., Cutullé, C., Primo, M. E., Morel, N., Sebastian, P. S., & Nava, S. (2022). Assays to evaluate the transovarial transmission of Anaplasma marginale by Rhipicephalus microplus. Veterinary parasitology, 311, 109808. https://doi.org/10.1016/j.vetpar.2022.109808 Paris, D. H., & Dumler, J. S. (2016). State of the art of diagnosis of rickettsial diseases: the use of blood specimens for diagnosis of scrub typhus, spotted fever group rickettsiosis, and murine typhus. Current opinion in infectious diseases, 29(5), 433-439. 10.1097/QCO.0000000000000298 Parola, P., Roux, V., Camicas, J. L., Baradji, I., Brouqui, P., & Raoult, D. (2000). Detection of ehrlichiae in African ticks by polymerase chain reaction. Transactions of The Royal Society of Tropical Medicine and Hygiene, 94(6), 707-708. https://doi.org/10.1016/s0035-9203(00)90243-8 Peng, S. H., Yang, S. L., Ho, Y. N., Chen, H. F., & Shu, P. Y. (2019). Human case of Ehrlichia chaffeensis infection, Taiwan. Emerging infectious diseases, 25(11), 2141. https://doi.org/10.3201/eid2511.190665 Peng, Y., Lu, C., Yan, Y., Shi, K., Chen, Q., Zhao, C., Wang, R., Zhang, L., Jian, F., & Ning, C. (2021). The first detection of Anaplasma capra, an emerging zoonotic Anaplasma sp., in erythrocytes. Emerging Microbes & Infections, 10(1), 226-234. https://doi.org/10.1080/22221751.2021.1876532 Petrovec, M., Lotric Furlan, S., Zupanc, T. A., Strle, F., Brouqui, P., Roux, V., & Dumler, J. S. (1997). Human disease in Europe caused by a granulocytic Ehrlichia species. Journal of Clinical Microbiology, 35(6), 1556-1559. https://doi.org/10.1128/jcm.35.6.1556-1559.1997 Portillo, A., Santibáñez, P., Palomar, A., Santibáñez, S., & Oteo, J. (2018). ‘Candidatus Neoehrlichia mikurensis’ in Europe. New microbes and new infections, 22, 30-36. https://doi.org/10.1016/j.nmni.2017.12.011 Robins, J. H., Hingston, M., Matisoo Smith, E., & Ross, H. A. (2007). Identifying Rattus species using mitochondrial DNA. Molecular Ecology Notes, 7(5), 717-729. https://doi.org/10.1111/j.1471-8286.2007.01752.x Saito, T. B., & Walker, D. H. (2015). A tick vector transmission model of monocytotropic ehrlichiosis. The Journal of Infectious Diseases, 212(6), 968-977. https://doi.org/10.1093/infdis/jiv134 Satjanadumrong, J., Robinson, M. T., Hughes, T., & Blacksell, S. D. (2019). Distribution and ecological drivers of spotted fever group Rickettsia in Asia. Ecohealth, 16, 611-626. https://doi.org/10.1007/s10393-019-01409-3 Shih, C. M., Yang, P. W., & Chao, L. L. (2021). Molecular Detection and genetic identification of Rickettsia infection in Ixodes granulatus ticks, an incriminated vector for geographical transmission in Taiwan. Microorganisms, 9(6), 1309. https://doi.org/10.3390/microorganisms9061309 Silaghi, C., Beck, R., Oteo, J. A., Pfeffer, M., & Sprong, H. (2016). Neoehrlichiosis: an emerging tick-borne zoonosis caused by Candidatus Neoehrlichia mikurensis. Experimental and Applied Acarology, 68, 279-297. https://doi.org/10.1007/s10493-015-9935-y Silva Jr, J. V., Lopes, T. R., de Oliveira-Filho, E. F., Oliveira, R. A., Durães-Carvalho, R., & Gil, L. H. (2018). Current status, challenges and perspectives in the development of vaccines against yellow fever, dengue, Zika and chikungunya viruses. Acta tropica, 182, 257-263. https://doi.org/10.1016/j.actatropica.2018.03.009 Stuen, S., Granquist, E. G., & Silaghi, C. (2013). Anaplasma phagocytophilum—a widespread multi-host pathogen with highly adaptive strategies. Frontiers in cellular and infection microbiology, 3, 31. https://doi.org/10.3389/fcimb.2013.00031 Szczotko, M., Kubiak, K., Michalski, M. M., Moerbeck, L., Antunes, S., Domingos, A., & Dmitryjuk, M. (2023). Neoehrlichia mikurensis—A new emerging tick-borne pathogen in North-Eastern Poland? Pathogens, 12(2), 307. https://doi.org/10.3390/pathogens12020307 Takano, A., Ando, S., Kishimoto, T., Fujita, H., Kadosaka, T., Nitta, Y., Kawabata, H., & Watanabe, H. (2009). Presence of a novel Ehrlichia sp. in Ixodes granulatus found in Okinawa, Japan. Microbiology and immunology, 53(2), 101-106. https://doi.org/10.1111/j.1348-0421.2008.00093.x Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: molecular evolutionary genetics analysis version 11. Molecular biology and evolution, 38(7), 3022-3027. https://doi.org/10.1093/molbev/msab120 Teng, K., & Jiang, Z. (1991). Economic insect fauna of China Fasc 39 Acari: Ixodidae. Fauna Sinica Beijing: Science Press. Thomas, R. J., Dumler, J. S., & Carlyon, J. A. (2009). Current management of human granulocytic anaplasmosis, human monocytic ehrlichiosis and Ehrlichia ewingii ehrlichiosis. Expert review of anti-infective therapy, 7(6), 709-722. https://doi.org/10.1586/eri.09.44 Tsai, K. H., Chang, S. F., Yen, T. Y., Shih, W. L., Chen, W. J., Wang, H. C., Yu, X. J., Wen, T. H., Wu, W. J., & Shu, P. Y. (2016). Prevalence of antibodies against Ehrlichia spp. and Orientia tsutsugamushi in small mammals around harbors in Taiwan. Parasites & vectors, 9, 1-9. https://doi.org/10.1186/s13071-016-1318-7 Tsai, K. H., Chung, L. H., Chien, C. H., Tung, Y. J., Wei, H. Y., Yen, T. Y., Shu, P. Y., & Wang, H. C. (2019). Human granulocytic anaplasmosis in Kinmen, an offshore island of Taiwan. PLOS Neglected Tropical Diseases, 13(9), e0007728. https://doi.org/10.1371/journal.pntd.0007728 Tsai, Y. L., Chomel, B. B., Chang, C. C., Kass, P. H., Conrad, P. A., & Chuang, S. T. (2011). Bartonella and Babesia infections in cattle and their ticks in Taiwan. Comparative immunology, microbiology and infectious diseases, 34(2), 179-187. https://doi.org/10.1016/j.cimid.2010.11.003 Wang, H. C., Chung, C. L., Lin, T. H., Wang, C. H., & Wu, W. J. (2004). Studies on the vectors and pathogens of scrub typhus on murine-like animals in Kinmen County, Taiwan. Formosa Entomol, 24, 257-272. Wang, H. C., Lee, P. L., & Kuo, C. C. (2019). Fleas of Shrews and Rodents in Rural Lowland Taiwan. Journal of Medical Entomology, 57(2), 595-600. https://doi.org/10.1093/jme/tjz194 Wass, L., Grankvist, A., Bell Sakyi, L., Bergström, M., Ulfhammer, E., Lingblom, C., & Wennerås, C. (2019). Cultivation of the causative agent of human neoehrlichiosis from clinical isolates identifies vascular endothelium as a target of infection. Emerging Microbes & Infections, 8(1), 413-425. https://doi.org/10.1080/22221751.2019.1584017 Welinder Olsson, C., Kjellin, E., Vaht, K., Jacobsson, S., & Wennerås, C. (2010). First case of human “Candidatus Neoehrlichia mikurensis” infection in a febrile patient with chronic lymphocytic leukemia. Journal of Clinical Microbiology, 48(5), 1956-1959. https://doi.org/10.1128/jcm.02423-09 Weng, M. H., Lien, J. C., Tsai, H. P., Lin, P. R., Cheng, K. C., Guo, M. D., & Liu, W. T. (2013). Surveillance of Anaplasma phagocytophilum Infection in Rodents on Nangan Island, Matsu. Journal of Medical Sciences, 33(5), 279-284. https://doi.org/10.6136/jms.2013.33(5).279 Weng, M. H., Lien, J. C., Tsai, H. P., Lin, P. R., Guo, M. D., & Liu, W. T. (2010). Ehrlichia chaffeensis infection in rodent ticks-Kinmen, 2009. Epidemiology Bulletin, 26(9), 170-177. https://www.airitilibrary.com/Common/Click_DOI?DOI=10.6525%2fTEB.201005_26(9).0002 Weng, M. H., Tsai, H. P., Lin, P. R., Cheng, K. C., Guo, M., & Lin, C. C. (2015). Surveillance of Anaplasma phagocytophilum infections in murines in Kinmen area, 2014. Taiwan Epidemiol Bull, 31(14), 347-355. Weng, M. H., Tsai, H. P., Lin, P. R., Cheng, K. C., Guo, M. D., & Liu, W. T. (2014). Investigation of Ehrlichia chaffeensis infections in rodents in Kinmen Area, 2012. Taiwan Epi Bull, 30(7), 134-141. Wennerås, C. (2015). Infections with the tick-borne bacterium Candidatus Neoehrlichia mikurensis. Clinical Microbiology and Infection, 21(7), 621-630. https://doi.org/10.1016/j.cmi.2015.02.030 Wilson, N. (1970). New distributional records of ticks from Southeast Asia and the Pacific (Metastigmata: Argasidae, Ixodidae). Oriental Insects, 4(1), 37-46. https://doi.org/10.1080/00305316.1970.10433939 Yamaguti, N., Tipton, V. J., Keegan, H. L., & Toshioka, S. (1971). Ticks of Japan, Korea, and the Ryukyu islands. Brigham Young University Science Bulletin, Biological Series, 15(1), 1. Yang, J., Liu, Z., Niu, Q., Liu, J., Xie, J., Chen, Q., Chen, Z., Guan, G., Liu, G., & Luo, J. (2016). Evaluation of different nested PCRs for detection of Anaplasma phagocytophilum in ruminants and ticks. BMC Veterinary Research, 12, 1-6. https://doi.org/10.1186/s12917-016-0663-2 Yen, T. Y., Tung, Y. J., Wang, H. C., & Tsai, K. H. (2020). Detection of Ehrlichia chaffeensis in a febrile patient in Kinmen, an offshore island of Taiwan. Journal of the Formosan Medical Association, 119(8), 1329-1330. https://doi.org/10.1016/j.jfma.2019.11.019 Yin, X., Cao, M., Guo, S., Ding, C., Lu, Y., Luo, J., Kawabata, H., Ando, S., Su, H., & Shimada, M. (2018). Case of human infection with Anaplasma phagocytophilum in Inner Mongolia, China. Japanese Journal of Infectious Diseases, 71(2), 155-157. https://doi.org/10.7883/yoken.JJID.2017.450 Zhang, L., Liu, Y., Ni, D., Li, Q., Yu, Y., Yu, X.-j., Wan, K., Li, D., Liang, G., & Jiang, X. (2008a). Nosocomial transmission of human granulocytic anaplasmosis in China. Jama, 300(19), 2263-2270. doi:10.1001/jama.2008.626 Zhang, L., Shan, A., Mathew, B., Yin, J., Fu, X., Zhang, J., Lu, J., Xu, J., & Dumler, J. S. (2008b). Rickettsial seroepidemiology among farm workers, Tianjin, People’s Republic of China. Emerging infectious diseases, 14(6), 938. https://doi.org/10.3201%2Feid1406.071502 Zinsstag, J., Schelling, E., Waltner Toews, D., & Tanner, M. (2011). From “one medicine” to “one health” and systemic approaches to health and well-being. Preventive veterinary medicine, 101(3-4), 148-156. https://doi.org/10.1016/j.prevetmed.2010.07.003 Centers for Disease Control (2002). Identification and molecular typing of vector ticks in Taiwan. Centers for Disease Control, Ministry of Health and Welfare. http://at.cdc.gov.tw/v85mml (in Chinese) Centers for Disease Control (2013). Molecular epidemiological surveillance for tick-borne emerging and zoonotic diseases. Centers for Disease Control, Ministry of Health and Welfare. http://at.cdc.gov.tw/M8T3G0 (in Chinese) | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95094 | - |
| dc.description.abstract | 根據衛福部疾管署的統計數據,2013年至2022年間,全國通報為恙蟲病的疑似病例累積達2.7萬例,其中僅有4,100例確診,發生率為每10萬人年1.8例。值得注意的是,近七成確診病例來自花東及離島地區,其中金門縣發生率高達每10萬人年25.2例,確診率僅47%。此外,2019年一項回溯性研究提出,金門通報為疑似恙蟲病患者之血液樣本經分子診斷後,除確診為恙蟲病,還同時感染了由蜱蟲所傳播的嗜吞噬球無形體,這表明金門可能存在恙蟎以外的病媒和病原體。蜱蟲為吸血性體外寄生蟲,通過叮咬和吸食宿主血液,將病原體跨蟲期傳播給動物宿主,從而成為人類及人畜共通傳染病的重要病媒。金門的離島生態環境豐富多樣,棲地適合生物生長,加上其地理位置位於中國與台灣之間的重要交通樞紐,貿易與旅遊的來往頻繁,使得疾病傳播得更為迅速和廣泛。為了更全面了解金門地區小型哺乳動物和蜱蟲的地理分布、物種多樣性、蜱媒病原體的流行情況以及其與不明熱的關聯性,本研究於2018年8月至2022年6月在金門地區進行了小型哺乳動物誘捕之長期調查。所採集小型哺乳動物及蜱蟲以形態及分子檢驗鑑定物種,並檢測其所攜帶病原體包含嗜吞噬球無形體、艾利希氏體及新艾利希氏體的情況。調查期間於金門本島的金寧鄉、金城鎮及金湖鎮共捕獲了692 隻小型哺乳動物,涵蓋小黃腹鼠、亞洲家鼠、家鼷鼠、溝鼠、赤腹松鼠及臭鼩共六個物種,其中以小黃腹鼠為主要優勢種,並收集928隻外寄生蜱蟲,鑑定為粒形硬蜱及鐮形扇頭蜱共兩個物種。隨機挑選62隻小型哺乳動物的脾臟組織及其外寄生的200隻粒形硬蜱進行DNA萃取,利用聚合酶連鎖反應(PCR)技術增幅無形體科之16S rDNA片段基因。分子檢驗結果顯示,小型哺乳類動物脾臟組織無形體基因序列和過去於金門縣小黃腹鼠檢測出的嗜吞噬球無形體(Accession no.: MK394178.1) 100%相似(n=10)、99.67% 相似(n=1)、99.58% 相似(n=1),陽性率為19.4% (12/62),而新艾利希氏體基因序列和中國廣州市小黃腹鼠所檢測出的 Neoehrlichia mikurensis (Accession no.: MH722225.1) 100%相似(n=4)、99.67% 相似(n=1),陽性率為 8.1% (5/62),艾利希氏體則未檢測出。粒形硬蜱無形體基因序列和過去於金門縣小黃腹鼠檢測出的嗜吞噬細胞無形體(Accession no.: MK394178.1) 100%相似,陽性率為 2.0% (4/200),艾利希氏體基因序列和日本沖繩縣粒形硬蜱檢測出的Ehrlichia sp. 360 (Accession no.: AB428564.1)一致,陽性率為 42.5% (85/200),而新艾利希氏體基因序列和中國廣州市小黃腹鼠所檢測出Neoehrlichia mikurensis (Accession no.: MH722225.1) 100% 相似,陽性率為 8.5% (17/200)。綜合以上,在金門本島金寧鄉、金城鎮及金湖鎮三個城鎮中,小黃腹鼠脾臟檢測出致病性嗜吞噬球無形體之陽性率分別為,17.2%、27.3%、9.1%,另一病原體Neoehrlichia mikurensis之陽性率分別為13.8%、4.5%、0%。粒形硬蜱感染嗜吞噬球無形體之陽性率則分別為1.0%、3.8%、0%,Ehrlichia sp. 360 之陽性率分別44.6%、42.3%、33.3%,Neoehrlichia mikurensis之陽性率分別為9.9%、6.4%、9.5%。顯示金門地區的民眾具有可能感染蜱媒傳染病的風險。健康一體 (One Health) 涵蓋了人類、動物與環境健康的交互作用,透過長期、定期監測調查及病原體檢測,釐清不明熱症狀來源的潛在關係,將有助於評估金門地區流行情形並對於蜱媒不明熱流行病診斷之參考。 | zh_TW |
| dc.description.abstract | According to the statistics from the Taiwan Centers for Disease Control (CDC), from 2013 to 2022, there were 27,000 notified cases of suspected scrub typhus due to unknown fever symptoms nationwide, but only 4,100 cases were confirmed, resulting in an incidence rate of 1.8 cases per 100,000 person-years. Analyzing the distribution across various counties, the number of confirmed cases was concentrated in outlying island areas, with Kinmen County exhibiting a particularly high incidence rate of 25.2 cases per 100,000 person-years and a confirmation rate of only 47%. Additionally, a retrospective study in 2019 revealed that blood samples from suspected scrub typhus patients in Kinmen, when subjected to molecular diagnostics, showed co-infection with Anaplasma phagocytophilum, a pathogen transmitted by ticks, indicating the possible presence of vectors or pathogens other than chiggers in Kinmen area. Ticks are obligatory hematophagous ectoparasites and some pathogens can be transmitted through transstadial transmission making ticks significant vectors of zoonotic diseases and a major global public health threat. The diverse and rich ecological environment of Kinmen, coupled with its strategic geographic location as a major transportation hub between China and Taiwan, facilitates frequent trade and travel, thus accelerating the spread of diseases. To gain a comprehensive understanding of the geographic distribution, species diversity, prevalence of tick-borne pathogens, and their association with febrile illnesses in small mammals and ticks in Kinmen, a long-term survey was conducted from August 2018 to June 2022. Total genomic DNA was extracted from the spleen and individual ticks from captured small mammals. PCR with primer sets of 16S rDNA gene were used to detect Anaplasma, Ehrlichia, and Neoehrlichia spp. During the survey, 692 small mammals were captured across Jinning Township, Jincheng Township, and Jinhu Township around Kinmen area, belonging to five species of rodents (Callosciurus erythraeus, Mus musculus, Rattus losea, Rattus norvegicus, and Rattus tanezum) and one species of Suncus murinus were identified. Additionally, 928 ectoparasitic ticks were collected from 208 small mammals, and identified as two species: Ixodes granulatus and Rhipicephalus haemaphysaloides. A total of 62 spleen samples and 200 ticks from 89 small mammals were investigated for potential Anaplasmataceae pathogens by PCR. The sequencing results showed that Anaplasmataceae sequences from the spleen tissues of small mammals were 100% (n=10), 99.67% (n=1), and 99.58% (n=1) identical to Anaplasma phagocytophilum detected in Rattus losea from Kinmen County (Accession no.: MK394178.1), with the positive rate was 19.4% (12/62). The sequences of Neoehrlichia mikurensis were 100% (n=4) and 99.67% (n=1) identical to those detected in Rattus losea in Guangzhou, China (Accession no.: MH722225.1), with the positive rate was 8.1% (5/62), while no Ehrlichia species were detected from the spleen tissues of small mammals. For Ixodes granulatus ticks, the Anaplasmataceae sequences were 100% identical to Anaplasma phagocytophilum detected in Rattus losea in Kinmen County (Accession no.: MK394178.1), with a positive rate was 2.0% (4/200). The sequences of Ehrlichia were identical to Ehrlichia sp. 360 detected in Ixodes granulatus ticks in Okinawa, Japan (Accession no.: AB428564.1), with a positive rate was 42.5% (85/200). The sequences of Neoehrlichia mikurensis were 100% identical to those detected in Rattus losea in Guangzhou, China (Accession no.: MH722225.1), with a positive rate was 8.5% (17/200). In summary, the prevalence of pathogenic Anaplasma phagocytophilum in the spleen of Rattus losea from Jinning Township, Jincheng Township, and Jinhu Township was 17.2%, 27.3%, and 9.1%, respectively, while the prevalence of Neoehrlichia mikurensis was 13.8%, 4.5%, and 0%. The prevalence of Anaplasma phagocytophilum in Ixodes granulatus ticks was 1.0%, 3.8%, and 0%, respectively; for Ehrlichia sp. 360, it was 44.6%, 42.3%, and 33.3%; and for Neoehrlichia mikurensis, it was 9.9%, 6.4%, and 9.5%. These findings indicate a potential risk of tick-borne diseases for the residents of Kinmen. The One Health approach, which encompasses the interaction of human, animal, and environmental health, emphasizes the importance of long-term, regular surveillance and pathogen detection, which can help clarify the sources of unknown fever symptoms and provide valuable insights for the diagnosis of tick-borne febrile illnesses in Kinmen area. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-28T16:14:10Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-28T16:14:10Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgments i
摘要 ii Abstract iv List of Figures ix List of Tables xi Chapter 1 Introduction 1 1.1 One Health and zoonotic diseases 1 1.2 Tick and tick-borne diseases 2 1.3 The family Anaplasmataceae 3 1.3.1 Anaplasmosis 3 1.3.2 Ehrlichiosis 5 1.3.3 Neoehrlichiosis 6 1.4 Study area 8 1.5 Aim of the study 9 Chapter 2 Materials and Methods 11 2.1 Study area and small mammals trapping 11 2.2 Specimen collection 11 2.2.1 Tick 11 2.2.2 Spleen 12 2.3 DNA extraction 12 2.4 Polymerase chain reaction (PCR) analysis 14 2.5 DNA sequencing and phylogenetic analysis 15 Chapter 3 Results 17 3.1 Small mammals and spleen samples 17 3.2 Identification of ticks 17 3.3 Detection of pathogens 19 3.3.1 Small mammal spleens 19 3.3.2 Ixodes granulatus ticks 20 Chapter 4 Discussion 23 Chapter 5 Conclusion 28 References 29 | - |
| dc.language.iso | en | - |
| dc.subject | 小型哺乳動物 | zh_TW |
| dc.subject | 新艾利希氏體 | zh_TW |
| dc.subject | 艾利希氏體 | zh_TW |
| dc.subject | 無形體 | zh_TW |
| dc.subject | 蜱蟲 | zh_TW |
| dc.subject | Ticks | en |
| dc.subject | Ehrlichia | en |
| dc.subject | Small mammals | en |
| dc.subject | Neoehrlichia mikurensis | en |
| dc.subject | Anaplasma | en |
| dc.title | 台灣金門地區小型哺乳動物及外寄生蜱蟲攜帶無形體、艾利希氏體及其他蜱媒微生物之檢測 | zh_TW |
| dc.title | Detection of Anaplasma, Ehrlichia, and Neoehrlichia spp. in small mammals and ticks in Kinmen area in Taiwan | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 王錫杰;余品奐;吳尹文;顏采瑩 | zh_TW |
| dc.contributor.oralexamcommittee | Hsi-Chieh Wang;Pin-Huan Yu;Yin-Wen Wu;Tsai-Ying Yen | en |
| dc.subject.keyword | 小型哺乳動物,蜱蟲,無形體,艾利希氏體,新艾利希氏體, | zh_TW |
| dc.subject.keyword | Small mammals,Ticks,Anaplasma,Ehrlichia,Neoehrlichia mikurensis, | en |
| dc.relation.page | 83 | - |
| dc.identifier.doi | 10.6342/NTU202402597 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-07-30 | - |
| dc.contributor.author-college | 公共衛生學院 | - |
| dc.contributor.author-dept | 環境與職業健康科學研究所 | - |
| dc.date.embargo-lift | 2026-12-31 | - |
| 顯示於系所單位: | 環境與職業健康科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 3.96 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
