Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 分子醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95093
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳沛隆zh_TW
dc.contributor.advisorPei-Lung Chenen
dc.contributor.author沈淑華zh_TW
dc.contributor.authorShu-Hua Shenen
dc.date.accessioned2024-08-28T16:13:53Z-
dc.date.available2024-08-29-
dc.date.copyright2024-08-28-
dc.date.issued2024-
dc.date.submitted2024-07-19-
dc.identifier.citation1.Guilmette, J., & Nosé, V. (2018). Hereditary and familial thyroid tumours. Histopathology, 72(1), 70–81.
2.Chen, D. W., Lang, B. H. H., McLeod, D. S. A., Newbold, K., & Haymart, M. R. (2023). Thyroid cancer. Lancet (London, England), 401(10387), 1531–1544.
3.Pizzato, M., Li, M., Vignat, J., Laversanne, M., Singh, D., La Vecchia, C., & Vaccarella, S. (2022). The epidemiological landscape of thyroid cancer worldwide: GLOBOCAN estimates for incidence and mortality rates in 2020. The lancet. Diabetes & endocrinology, 10(4), 264–272.
4.Kim, J., Gosnell, J. E., & Roman, S. A. (2020). Geographic influences in the global rise of thyroid cancer. Nature reviews. Endocrinology, 16(1), 17–29.
5.Bogović Crnčić, T., Ilić Tomaš, M., Girotto, N., & Grbac Ivanković, S. (2020). Risk Factors for Thyroid Cancer: What Do We Know So Far?. Acta clinica Croatica, 59(Suppl 1), 66–72.
6.Gimm O. (2001). Thyroid cancer. Cancer letters, 163(2), 143–156.
7.Kamani, T., Charkhchi, P., Zahedi, A., & Akbari, M. R. (2022). Genetic susceptibility to hereditary non-medullary thyroid cancer. Hereditary cancer in clinical practice, 20(1), 9.
8.Gimm O. (2001). Thyroid cancer. Cancer letters, 163(2), 143–156.
9.Jayakody, S., Reagh, J., Bullock, M., Aniss, A., Clifton-Bligh, R., Learoyd, D., Robinson, B., Delbridge, L., Sidhu, S., Gill, A. J., & Sywak, M. (2018). Medullary Thyroid Carcinoma: Survival Analysis and Evaluation of Mutation-Specific Immunohistochemistry in Detection of Sporadic Disease. World journal of surgery, 42(5),
10.Wells, S. A., Jr, & Santoro, M. (2009). Targeting the RET pathway in thyroid cancer. Clinical cancer research : an official journal of the American Association for Cancer Research, 15(23), 7119–7123.
11.Moura, M. M., Cavaco, B. M., & Leite, V. (2015). RAS proto-oncogene in medullary thyroid carcinoma. Endocrine-related cancer, 22(5), R235–R252.
12.Diquigiovanni, C., & Bonora, E. (2021). Genetics of Familial Non-Medullary Thyroid Carcinoma (FNMTC). Cancers, 13(9), 2178.
13.Cameselle-Teijeiro, J. M., & Sobrinho-Simões, M. (2018). New WHO classification of thyroid tumors: a pragmatic categorization of thyroid gland neoplasms. Nueva clasificación de la OMS de los tumores tiroideos: una categorización pragmática de las neoplasias de la glándula tiroides. Endocrinologia, diabetes y nutricion, 65(3), 133–135.
14.Aschebrook-Kilfoy, B., Ward, M. H., Sabra, M. M., & Devesa, S. S. (2011). Thyroid cancer incidence patterns in the United States by histologic type, 1992-2006. Thyroid : official journal of the American Thyroid Association, 21(2), 125–134.
15.Coca-Pelaz, A., Shah, J. P., Hernandez-Prera, J. C., Ghossein, R. A., Rodrigo, J. P., Hartl, D. M., Olsen, K. D., Shaha, A. R., Zafereo, M., Suarez, C., Nixon, I. J., Randolph, G. W., Mäkitie, A. A., Kowalski, L. P., Vander Poorten, V., Sanabria, A., Guntinas-Lichius, O., Simo, R., Zbären, P., Angelos, P., … Ferlito, A. (2020). Papillary Thyroid Cancer-Aggressive Variants and Impact on Management: A Narrative Review. Advances in therapy, 37(7), 3112–3128.
16.Caria, P., & Vanni, R. (2010). Cytogenetic and molecular events in adenoma and well-differentiated thyroid follicular-cell neoplasia. Cancer genetics and cytogenetics, 203(1), 21–29.
17.Hundahl, S. A., Fleming, I. D., Fremgen, A. M., & Menck, H. R. (1998). A National Cancer Data Base report on 53,856 cases of thyroid carcinoma treated in the U.S., 1985-1995 [see commetns]. Cancer, 83(12), 2638–2648.
18.Bongiovanni, M., Sadow, P. M., & Faquin, W. C. (2009). Poorly differentiated thyroid carcinoma: a cytologic-histologic review. Advances in anatomic pathology, 16(5), 283–289.
19.Sobrinho-Simoes M, Albores-Saavedra J, Tallini G, et al. Poorly differentiated carcinoma. In: DeLellis R, Lloyd R, Heitz P, et al, eds. Pathology and Genetics of Tumors of Endocrine Organs. World Health Organization Classification of Tumors. Lyon: IARC Press; 2004:73–76.
20.Xu, B., & Ghossein, R. (2016). Genomic Landscape of poorly Differentiated and Anaplastic Thyroid Carcinoma. Endocrine pathology, 27(3), 205–212.
21.Cornett, W. R., Sharma, A. K., Day, T. A., Richardson, M. S., Hoda, R. S., van Heerden, J. A., & Fernandes, J. K. (2007). Anaplastic thyroid carcinoma: an overview. Current oncology reports, 9(2), 152–158.
22.Jannin, A., Escande, A., Al Ghuzlan, A., Blanchard, P., Hartl, D., Chevalier, B., Deschamps, F., Lamartina, L., Lacroix, L., Dupuy, C., Baudin, E., Do Cao, C., & Hadoux, J. (2022). Anaplastic Thyroid Carcinoma: An Update. Cancers, 14(4), 1061.
23.Xu, B., & Ghossein, R. (2018). Evolution of the histologic classification of thyroid neoplasms and its impact on clinical management. European journal of surgical oncology : the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology, 44(3), 338–347.
24.Sánchez-Ares, M., Cameselle-García, S., Abdulkader-Nallib, I., Rodríguez-Carnero, G., Beiras-Sarasquete, C., Puñal-Rodríguez, J. A., & Cameselle-Teijeiro, J. M. (2022). Susceptibility Genes and Chromosomal Regions Associated With Non-Syndromic Familial Non-Medullary Thyroid Carcinoma: Some Pathogenetic and Diagnostic Keys. Frontiers in endocrinology, 13, 829103.
25.Miasaki, F. Y., Fuziwara, C. S., Carvalho, G. A., & Kimura, E. T. (2020). Genetic Mutations and Variants in the Susceptibility of Familial Non-Medullary Thyroid Cancer. Genes, 11(11), 1364.
26.Bonora, E., Tallini, G., & Romeo, G. (2010). Genetic Predisposition to Familial Nonmedullary Thyroid Cancer: An Update of Molecular Findings and State-of-the-Art Studies. Journal of oncology, 2010, 385206.
27.Peiling Yang, S., & Ngeow, J. (2016). Familial non-medullary thyroid cancer: unraveling the genetic maze. Endocrine-related cancer, 23(12), R577–R595.
28.Cetta, F., Montalto, G., Gori, M., Curia, M. C., Cama, A., & Olschwang, S. (2000). Germline mutations of the APC gene in patients with familial adenomatous polyposis-associated thyroid carcinoma: results from a European cooperative study. The Journal of clinical endocrinology and metabolism, 85(1), 286–292.
29.Liaw, D., Marsh, D. J., Li, J., Dahia, P. L., Wang, S. I., Zheng, Z., Bose, S., Call, K. M., Tsou, H. C., Peacocke, M., Eng, C., & Parsons, R. (1997). Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nature genetics, 16(1), 64–67.
30.Stratakis, C. A., Courcoutsakis, N. A., Abati, A., Filie, A., Doppman, J. L., Carney, J. A., & Shawker, T. (1997). Thyroid gland abnormalities in patients with the syndrome of spotty skin pigmentation, myxomas, endocrine overactivity, and schwannomas (Carney complex). The Journal of clinical endocrinology and metabolism, 82(7), 2037–2043.
31.Yu, C. E., Oshima, J., Fu, Y. H., Wijsman, E. M., Hisama, F., Alisch, R., Matthews, S., Nakura, J., Miki, T., Ouais, S., Martin, G. M., Mulligan, J., & Schellenberg, G. D. (1996). Positional cloning of the Werner's syndrome gene. Science (New York, N.Y.), 272(5259), 258–262
32.Rio Frio, T., Bahubeshi, A., Kanellopoulou, C., Hamel, N., Niedziela, M., Sabbaghian, N., Pouchet, C., Gilbert, L., O'Brien, P. K., Serfas, K., Broderick, P., Houlston, R. S., Lesueur, F., Bonora, E., Muljo, S., Schimke, R. N., Bouron-Dal Soglio, D., Arseneau, J., Schultz, K. A., Priest, J. R., … Tischkowitz, M. (2011). DICER1 mutations in familial multinodular goiter with and without ovarian Sertoli-Leydig cell tumors. JAMA, 305(1), 68–77.
33.van Os, N. J., Roeleveld, N., Weemaes, C. M., Jongmans, M. C., Janssens, G. O., Taylor, A. M., Hoogerbrugge, N., & Willemsen, M. A. (2016). Health risks for ataxia-telangiectasia mutated heterozygotes: a systematic review, meta-analysis and evidence-based guideline. Clinical genetics, 90(2), 105–117.
34.Carbone, M., Arron, S. T., Beutler, B., Bononi, A., Cavenee, W., Cleaver, J. E., Croce, C. M., D'Andrea, A., Foulkes, W. D., Gaudino, G., Groden, J. L., Henske, E. P., Hickson, I. D., Hwang, P. M., Kolodner, R. D., Mak, T. W., Malkin, D., Monnat, R. J., Jr, Novelli, F., Pass, H. I., … Yang, H. (2020). Tumour predisposition and cancer syndromes as models to study gene-environment interactions. Nature reviews. Cancer, 20(9), 533–549.
35.Hagelstein-Rotman, M., Meier, M. E., Majoor, B. C. J., et al. (2021). Increased Prevalence of Malignancies in Fibrous Dysplasia/McCune-Albright Syndrome (FD/MAS): Data from a National Referral Center and the Dutch National Pathology Registry (PALGA). Calcified tissue international, 108(3), 346–353.
36.Lin, H. T., Liu, F. C., Lin, S. F., Kuo, C. F., Chen, Y. Y., & Yu, H. P. (2020). Familial Aggregation and Heritability of Nonmedullary Thyroid Cancer in an Asian Population: A Nationwide Cohort Study. The Journal of clinical endocrinology and metabolism, 105(7), dgaa191.
37.Xing M. (2013). Molecular pathogenesis and mechanisms of thyroid cancer. Nature reviews. Cancer, 13(3), 184–199.
38.Sarquis, M., Moraes, D. C., Bastos-Rodrigues, L., Azevedo, P. G., Ramos, A. V., Reis, F. V., Dande, P. V., Paim, I., Friedman, E., & De Marco, L. (2020). Germline Mutations in Familial Papillary Thyroid Cancer. Endocrine pathology, 31(1), 14–20.
39.Sanders, E. M., Jr, LiVolsi, V. A., Brierley, J., Shin, J., & Randolph, G. W. (2007). An evidence-based review of poorly differentiated thyroid cancer. World journal of surgery, 31(5), 934–945.
40.Health Promotion Administration, Ministry of Health and Welfare, Executive Yuan, Taiwan. 2016 Cancer Registry Annual Report, Taipei, Taiwan. December 2018.https://www.hpa.gov.tw/Pages/ashx/File.ashx?FilePath=~/File/Attach/10227/File_11644.pdf. Accessed December 5, 2019.
41.Richards, S., Aziz, N., Bale, S., Bick, D., Das, S., Gastier-Foster, J., Grody, W. W., Hegde, M., Lyon, E., Spector, E., Voelkerding, K., Rehm, H. L., & ACMG Laboratory Quality Assurance Committee (2015). Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in medicine : official journal of the American College of Medical Genetics, 17(5), 405–424.
42.McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M., & DePristo, M. A. (2010). The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome research, 20(9), 1297–1303.
43.Salvatore, D., Santoro, M., & Schlumberger, M. (2021). The importance of the RET gene in thyroid cancer and therapeutic implications. Nature reviews. Endocrinology, 17(5), 296–306.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95093-
dc.description.abstract甲狀腺癌(thyroid cancer)是內分泌系統中相對常見的惡性腫瘤之一,全球癌症發病率排名第九。在台灣,甲狀腺癌的發病率近年急速上升,特別是女性患者占比較高。甲狀腺癌可以分為髓質型甲狀腺癌(medullary thyroid carcinoma)和非髓質型甲狀腺癌(non-medullary thyroid carcinoma兩大類),其中非髓質型甲狀腺癌占絕大多數,包含乳突型甲狀腺癌(papillary thyroid carcinoma)、濾泡型甲狀腺癌(follicular thyroid carcinoma)、低分化型甲狀腺癌(poorly differentiated thyroid carcinoma)以及未分化型甲狀腺癌(anaplastic thyroid carcinoma)。家族性非髓質型甲狀腺癌(familial non-medullary thyroid cancer)的遺傳基礎複雜多樣,可能涉及單基因或多基因遺傳模式,但對其致病因素尚不完全了解。
Lin等人在2020年的文獻指出,在一般人群中,非髓質型甲狀腺癌的患病率為0.16%,然而在已有患者家族中的一等親屬中,患病率卻高達0.64%,顯示家族性患病風險比一般人群增加了5.47倍。此外,根據2022年的文獻報告,在有兩位受影響成員的家庭中,約有4.6%的家庭至少有一位成員患有甲狀腺癌;而在有三位或更多受影響成員的家庭中,這一比例增加到了22.7%。這突顯了家族性非髓質型甲狀腺癌的重要性及其對遺傳風險研究的重要意義。
本研究旨在探討家族性非髓質型甲狀腺癌中的致病基因。我們對11名家族性非髓質型甲狀腺癌的先證者的血液樣品進行了全基因組定序(whole genome sequencing),檢測了單核苷酸變異(single nucleotide variant)、小片段插入或缺失變異(small InDel)以及結構變異(SVs)。結果顯示,共鑑定出22個變異,其中包括6個良性變異,1個疑似致病變異。經過IGV審核後,該變異可能是實驗過程中的錯誤。其餘的15個變異具有不確定的臨床意義(VUS),其中13個位於目標基因的內含子區域,對基因功能影響有限。
研究中存在一些限制,可能影響了結果的全面性和準確性。因此,擴展血液樣品量和基因範圍,使用DRAGEN分析平台及長片段定序技術(如Nanopore和PacBio)將有助於進一步探索家族性非髓質型甲狀腺癌的遺傳基礎。
zh_TW
dc.description.abstractThyroid cancer is one of the relatively common malignancies in the endocrine system, ranking ninth in global cancer incidence. In Taiwan, the incidence of thyroid cancer has been rapidly increasing in recent years, particularly among females. Thyroid cancer can be categorized into medullary thyroid carcinoma (MTC) and non-medullary thyroid carcinoma (NMTC), with NMTC comprising the majority, including papillary thyroid carcinoma (PTC), follicular thyroid carcinoma (FTC), poorly differentiated thyroid carcinoma (PDTC), and anaplastic thyroid carcinoma (ATC). Familial non-medullary thyroid cancer (FNMTC) exhibits complex genetic underpinnings, potentially involving both monogenic and polygenic inheritance patterns, though its pathogenic factors remain incompletely understood.
Lin et al. highlighted in 2020 that the incidence of NMTC in the general population is 0.16%, whereas it rises to 0.64% among first-degree relatives of affected individuals, indicating a 5.47-fold increased familial risk. Furthermore, according to a 2022 report, approximately 4.6% of families with two affected members have at least one member diagnosed with thyroid cancer, rising to 22.7% in families with three or more affected members, underscoring the significance of studying familial risk in NMTC.
This study aims to explore the pathogenic genes involved in FNMTC. Whole genome sequencing was performed on blood samples from 11 probands with familial NMTC, detecting single nucleotide variants (SNVs), small insertion/deletion variants (InDels), and structural variants (SVs). The results identified a total of 22 variants, including 6 benign variants and 1 likely pathogenic variant. Following IGV scrutiny, this variant was deemed likely an experimental artifact. The remaining 15 variants exhibit uncertain clinical significance (VUS), with 13 located primarily in intronic regions of target genes, exerting limited impact on gene function.
The study faces limitations that may affect the comprehensiveness and accuracy of its findings. Therefore, expanding blood sample size and gene coverage, employing the DRAGEN analysis platform, and utilizing long-read sequencing technologies such as Nanopore and PacBio will facilitate further exploration of the genetic basis of familial non-medullary thyroid cancer.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-28T16:13:53Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-28T16:13:53Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
中文摘要 ii
英文摘要 iv
第一章 研究背景和研究動機 1
1.1疾病概述 1
1.2髓質型甲狀腺癌 2
1.3非髓質型甲狀腺癌 3
1.4家族性非髓質型甲狀腺癌 3
1.5研究動機 6
第二章 研究方法 9
2.1實驗設計 9
2.2受試者來源與血液樣品收集 9
2.3萃取DNA 11
2.4確認DNA品質 12
2.5文庫製備 14
2.6次世代定序 15
2.7數據分析 16
2.7.1 單核苷酸變異與小片段的核苷酸插入或缺失分析 16
2.7.2 結構變異分析 17
第三章 結果 19
3.1 單核苷酸變異與小片段的核苷酸插入或缺失結果 19
3.1.1 基因DUOX2 exon25:c.3329G>A,p.R1110Q 21
3.1.2 基因USF3 exon7:c.3047dupA,p.N1016Kfs*9 21
3.1.3 基因TSC2 exon2:c.138+5G>A 22
3.2 結構變異分析結果 29
3.2.1 DUP與DEL之變異 29
3.2.2 INV與INS之變異 30
第四章 討論 32
4.1 單核苷酸變異與小片段的核苷酸插入或缺失 32
4.2 結構變異 32
4.3 本研究的限制 33
4.4 進一步研究 33
第五章 結論 34
第六章 參考文獻 36
-
dc.language.isozh_TW-
dc.subject全基因組定序zh_TW
dc.subject家族性非髓質型甲狀腺癌zh_TW
dc.subject小片段插入或缺失變異zh_TW
dc.subject單核苷酸變異zh_TW
dc.subject結構變異zh_TW
dc.subjectStructural Variantsen
dc.subjectSingle Nucleotide Variantsen
dc.subjectSmall Insertion or Deletion Variantsen
dc.subjectWhole Genome Sequencingen
dc.subjectFamilial Non-Medullary Thyroid Canceren
dc.title以次世代定序尋找家族性非髓質型甲狀腺癌致病基因zh_TW
dc.titleUsing Next-Generation Sequencing to Identify Causative Genes of Familial Non-Medullary Thyroid Canceren
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee楊偉勛;施翔蓉zh_TW
dc.contributor.oralexamcommitteeWei-Shiung Yang;Shyang-Rong Shihen
dc.subject.keyword家族性非髓質型甲狀腺癌,全基因組定序,結構變異,單核苷酸變異,小片段插入或缺失變異,zh_TW
dc.subject.keywordFamilial Non-Medullary Thyroid Cancer,Whole Genome Sequencing,Structural Variants,Single Nucleotide Variants,Small Insertion or Deletion Variants,en
dc.relation.page42-
dc.identifier.doi10.6342/NTU202401952-
dc.rights.note未授權-
dc.date.accepted2024-07-22-
dc.contributor.author-college醫學院-
dc.contributor.author-dept分子醫學研究所-
顯示於系所單位:分子醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
2.63 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved