請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95090完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳佳堃 | zh_TW |
| dc.contributor.advisor | Jia-Kun Chen | en |
| dc.contributor.author | 林思妤 | zh_TW |
| dc.contributor.author | Lin-Szu Yu | en |
| dc.date.accessioned | 2024-08-28T16:12:55Z | - |
| dc.date.available | 2024-08-29 | - |
| dc.date.copyright | 2024-08-28 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-06-18 | - |
| dc.identifier.citation | 衛生福利部疾病管制署. 傳染病統計暨監視年報. 2018-2023; Available from: https://www.cdc.gov.tw/InfectionReport/List/DRiONFTwYxu8T162Hm6yFw.
NIOSH. How the hierarchy of control can help you fulfil your health and safety duties. 2012; Available from: https://archive.ph/20130114235809/http://ohshandbook.com.au/2012/01/20/how-the-hierarchy-of-control-can-help-you-fulfil-your-health-and-safety-duties/#selection-335.0-335.78. WHO. Coronavirus disease (COVID-19): How is it transmitted? 2021; Available from: https://www.who.int/news-room/questions-and-answers/item/coronavirus-disease-covid-19-how-is-it-transmitted. Izadyar, N. and W. Miller, Ventilation strategies and design impacts on indoor airborne transmission: A review. Building and Environment, 2022. 218: p. 109158. Setti, L., et al., Searching for SARS-COV-2 on Particulate Matter: A Possible Early Indicator of COVID-19 Epidemic Recurrence. International Journal of Environmental Research and Public Health, 2020. 17(9): p. 2986. Sun, W., et al., Influence of atmospheric environment on SARS-CoV-2transmission: A review. Chinese Science Bulletin, 2022. 67(21): p. 2509-2521. Lu, C.-Y., et al., Personal, Psychosocial and Environmental Factors Related to Sick Building Syndrome in Official Employees of Taiwan. International Journal of Environmental Research and Public Health, 2018. 15(1): p. 7. Chang, L.-Y. and T.-B. Chang, Air Conditioning Operation Strategies for Comfort and Indoor Air Quality in Taiwan’s Elementary Schools. Energies, 2023. 16(5): p. 2493. Schibuola, L., M. Scarpa, and C. Tambani, Natural Ventilation Level Assessment in a School Building by CO2 Concentration Measures. Energy Procedia, 2016. 101: p. 257-264. Asif, A. and M. Zeeshan, Indoor temperature, relative humidity and CO2 monitoring and air exchange rates simulation utilizing system dynamics tools for naturally ventilated classrooms. Building and Environment, 2020. 180: p. 106980. Asif, A., M. Zeeshan, and M. Jahanzaib, Indoor temperature, relative humidity and CO2 levels assessment in academic buildings with different heating, ventilation and air-conditioning systems. Building and Environment, 2018. 133: p. 83-90. Weng, T.-H., et al., Verification of fugitive emission of aeolian river dust and impact on air quality in central western Taiwan by observed evidence and simulation. Atmospheric Pollution Research, 2021. 12(8): p. 101139. Lee, Y.-Y., et al., Characterization of the Air Quality Index in Southwestern Taiwan. Aerosol and Air Quality Research, 2019. 19(4): p. 749-785. Chen, Y.-H., et al., A comprehensive analysis of the intervention of a fresh air ventilation system on indoor air quality in classrooms. Atmospheric Pollution Research, 2022. 13(4): p. 101373. Lu, C., et al., Outdoor air pollution, meteorological conditions and indoor factors in dwellings in relation to sick building syndrome (SBS) among adults in China. Science of The Total Environment, 2016. 560-561: p. 186-196. Kanazawa, A., et al., Association between indoor exposure to semi-volatile organic compounds and building-related symptoms among the occupants of residential dwellings. Indoor Air, 2010. 20(1): p. 72-84. WHO, Indoor Air Pollutants: Exposure and Health Effects. 1983, World Health Organization. Norbäck, D. and K. Nordström, Sick building syndrome in relation to air exchange rate, CO2, room temperature and relative air humidity in university computer classrooms: an experimental study. International Archives of Occupational and Environmental Health, 2008. 82(1): p. 21-30. Turanjanin, V., et al., Indoor CO2 measurements in Serbian schools and ventilation rate calculation. Energy, 2014. 77: p. 290-296. Riley, E.C., G. Murphy, and R.L. Riley, Airborne spread of measles in a suburban elementary school. Am J Epidemiol, 1978. 107(5): p. 421-32. Liao, C.-M., C.-F. Chang, and H.-M. Liang, A Probabilistic Transmission Dynamic Model to Assess Indoor Airborne Infection Risks. Risk Analysis, 2005. 25(5): p. 1097-1107. Kriegel, M., et al., Predicted Infection Risk for Aerosol Transmission of SARS-CoV-2. medRxiv, 2020: p. 2020.10.08.20209106. Park, S. and D. Song, CO2 concentration as an indicator of indoor ventilation performance to control airborne transmission of SARS-CoV-2. Journal of Infection and Public Health, 2023. 16(7): p. 1037-1044. Li, J., et al., Evaluation of infection risk for SARS-CoV-2 transmission on university campuses. Science and Technology for the Built Environment, 2021. 27(9): p. 1165-1180. Rudnick, S.N.a.M., D.K., Risk of indoor airborne infection transmission estimated from carbon dioxide concentration. Indoor Air, 2003. 13(3): p. 237-245. Dai, H. and B. Zhao, Association between the infection probability of COVID-19 and ventilation rates: An update for SARS-CoV-2 variants. Building Simulation, 2023. 16(1): p. 3-12. Mendell, M.J., et al., Association of classroom ventilation with reduced illness absence: a prospective study in California elementary schools. Indoor Air, 2013. 23(6): p. 515-528. Annesi-Maesano, I., et al., Indoor Air Quality and Sources in Schools and Related Health Effects. Journal of Toxicology and Environmental Health, Part B, 2013. 16(8): p. 491-550. Toyinbo, O., Indoor Environmental Quality, Pupils’ Health, and Academic Performance—A Literature Review. Buildings, 2023. 13(9): p. 2172. Hutter, H.-P., et al., Semivolatile compounds in schools and their influence on cognitive performance of children. International Journal of Occupational Medicine and Environmental Health, 2013. 26(4): p. 628-635. Ferreira, A.M.d.C. and M. Cardoso, Indoor air quality and health in schools. Jornal Brasileiro de Pneumologia, 2014. 40. Azuma, K., et al., Effects of low-level inhalation exposure to carbon dioxide in indoor environments: A short review on human health and psychomotor performance. Environment International, 2018. 121: p. 51-56. Fisk, W.J., The ventilation problem in schools: literature review. Indoor Air, 2017. 27(6): p. 1039-1051. Cui, S., et al., CO2 tracer gas concentration decay method for measuring air change rate. Building and Environment, 2015. 84: p. 162-169. Issarow, C.M., N. Mulder, and R. Wood, Modelling the risk of airborne infectious disease using exhaled air. Journal of Theoretical Biology, 2015. 372: p. 100-106. Richardson, E.T., et al., Shared Air: A Renewed Focus on Ventilation for the Prevention of Tuberculosis Transmission. PLOS ONE, 2014. 9(5): p. e96334. Wells, W.F., Airborne contagion and air hygiene: an ecological study of droplet infections. 1955: Commonwealth Fund. 行政院環境保護署. 空氣品質標準. 2012; Available from: https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=O0020007. Andrew, K.P., et al. ASHRAE's New Position Document on Indoor Carbon Dioxide. 2022. Indoor Air 2022 - 17th International Conference of the International Society of Indoor Air Quality & Climate, Kuopio, FI. WHO. Indoor Air Quality. 2010 2023; Available from: https://www.hibouair.com/blog/who-guidelines-on-indoor-air-quality-and-the-role-of-air-quality-monitors/. US-CDC. Improving Ventilation In Buildings. 2023; Available from: https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/improving-ventilation-in-buildings.html. Gwinn, M.R. and V. Vallyathan, Nanoparticles: health effects--pros and cons. Environ Health Perspect, 2006. 114(12): p. 1818-25. Pope III, C.A., et al., Lung Cancer, Cardiopulmonary Mortality, and Long-term Exposure to Fine Particulate Air Pollution. JAMA, 2002. 287(9): p. 1132-1141. Deng, S., et al., Associations between illness-related absences and ventilation and indoor PM2.5 in elementary schools of the Midwestern United States. Environment International, 2023. 176: p. 107944. Stabile, L., et al., The effect of the ventilation retrofit in a school on CO2, airborne particles, and energy consumptions. Building and Environment, 2019. 156: p. 1-11. WHO, WHO global air quality guidelines: particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. 2021. Batterman, S., Review and Extension of CO₂-Based Methods to Determine Ventilation Rates with Application to School Classrooms. Int J Environ Res Public Health, 2017. 14(2). Dai, H. and B. Zhao, Association of the infection probability of COVID-19 with ventilation rates in confined spaces. Build Simul, 2020. 13(6): p. 1321-1327. Tang, J., et al., Assessing the Impact of Vehicle Speed Limits and Fleet Composition on Air Quality Near a School. International Journal of Environmental Research and Public Health, 2019. 16(1): p. 149. Rivas, I., et al., Child exposure to indoor and outdoor air pollutants in schools in Barcelona, Spain. Environment International, 2014. 69: p. 200-212. Nunes, R.A.O., et al., Particulate matter in rural and urban nursery schools in Portugal. Environmental Pollution, 2015. 202: p. 7-16. Chen, C. and B. Zhao, Review of relationship between indoor and outdoor particles: I/O ratio, infiltration factor and penetration factor. Atmospheric Environment, 2011. 45(2): p. 275-288. Thornburg, J., et al., Penetration of Particles into Buildings and Associated Physical Factors. Part I: Model Development and Computer Simulations. Aerosol Science and Technology, 2001. 34(3): p. 284-296. Teleszewski, T. and K. Gładyszewska-Fiedoruk, Changes of Carbon Dioxide Concentrations in Classrooms: Simplified Model and Experimental Verification. Polish Journal of Environmental Studies, 2018. 27. de Crane D’Heysselaer, S., et al., Systematic Review of the Key Factors Influencing the Indoor Airborne Spread of SARS-CoV-2. Pathogens, 2023. 12(3): p. 382. Bazant, M.Z., et al., Monitoring carbon dioxide to quantify the risk of indoor airborne transmission of COVID-19. Flow, 2021. 1: p. E10. Hella, J., et al., Tuberculosis transmission in public locations in Tanzania: A novel approach to studying airborne disease transmission. Journal of Infection, 2017. 75(3): p. 191-197. Vignolo, A., et al., Quantitative Assessment of Natural Ventilation in an Elementary School Classroom in the Context of COVID-19 and Its Impact in Airborne Transmission. Applied Sciences, 2022. 12(18): p. 9261. Cabovská, B., et al., Ventilation strategies and indoor air quality in Swedish primary school classrooms. Building and Environment, 2022. 226: p. 109744. 方仲穎, 長照機構住房換氣型態與空氣傳播疾病風險研究. 2022. US-CDC. Ventilation in Schools and Childcare Programs. 2021; Available from: https://www.cdc.gov/coronavirus/2019-ncov/community/schools-childcare/ventilation.html. Yang, B., et al., A review of advanced air distribution methods - theory, practice, limitations and solutions. Energy and Buildings, 2019. 202: p. 109359. US-CDC. Ventilation in Buildings. 2023; Available from: https://www.cdc.gov/coronavirus/2019-ncov/community/ventilation.html#faq-21910-question. Panasonic. 全熱交換器規格表. 2023; Available from: https://www.panasonic.com/content/dam/Panasonic/tw/zh/pdf-download/2023-%E5%85%A8%E7%86%B1%E4%BA%A4%E6%8F%9B%E5%99%A8%E5%9E%8B%E9%8C%84.pdf. 經濟部能源署. 111年度電力排碳係數. 2024; Available from: https://www.moeaea.gov.tw/ecw/populace/content/ContentDesc.aspx?menu_id=23142. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95090 | - |
| dc.description.abstract | 自2020年9月以來,新冠肺炎疫情迅速蔓延全球。隨著疫情趨緩,台灣衛生福利部疾病管制署於2022年12月放寬各項防疫規定,例如室內強制佩戴口罩。然而,防疫規定的鬆綁導致人們逐漸忘記新冠肺炎帶來的後果,同時對其他空氣傳播疾病的警覺性下降。因此,本研究以台北市某大學教室為例探討室內二氧化碳濃度與PM2.5於不同情況之濃度,探討何者可以作為室內監測的首要指標。
在本研究中使用空氣品質偵測機監測教室內PM2.5與二氧化碳濃度並利用整體通風方程式與Wells-Riley方程式作為後續行政管理與工程介入的指標。研究結果發現室內PM2.5濃度主要受大氣環境與地理位置影響,二氧化碳濃度則主要受室內人數、排風扇使用與換氣量影響。教室不同課程間應有足夠的空堂時間並同時使用機械通風設備,以降低室內二氧化碳濃度。僅採用行政管理措施例如延長下課時間,在恢復上課後室內二氧化碳濃度仍超過建議值。在工程介入後可以使室內二氧化碳濃度降低至建議值以下,同時利用Wells-Riley計算結果得知使用機械通風後疾病傳播風險大幅降低。綜合上述,本研究得出的結論為建議室內環境監測應以二氧化碳濃度為首選指標,在考量行政管理與工程介入時,應以工程介入為主,行政管理為輔,可以有效地降低教室內老師與學生的感染風險。 | zh_TW |
| dc.description.abstract | Since September 2020, the COVID-19 pandemic has rapidly spread worldwide. As the pandemic eased, the Taiwan Centers for Disease Control relaxed various preventive measures in December 2022, such as the indoor mask mandate. However, the relaxation of these measures has led people to gradually forget the consequences of COVID-19 and to become less vigilant about other airborne transmission diseases. Therefore, this study uses a classroom at a university in Taipei as an example to investigate the concentrations of indoor CO2 and PM2.5 under different conditions. It aims to determine the primary indicator for indoor monitoring post-pandemic and to evaluate changes in CO2 and PM2.5 concentrations after the implementation of control measures.
This study used air quality monitors to measure PM2.5 and CO2 concentrations under various conditions in the classroom. The general ventilation exhaust equation and the Wells-Riley equation were used as indicators for subsequent administrative management and engineering interventions. The results showed that indoor PM2.5 concentrations were mainly influenced by atmospheric conditions and geographical location, while CO2 concentrations were primarily affected by the number of people indoors, the use of exhaust fans, and ventilation rates. It is recommended that there should be sufficient break time between different classes, and mechanical ventilation equipment should be used during these breaks to reduce indoor CO2 concentrations and the risk of airborne transmission disease. Solely relying on administrative measures, such as extending break times, is insufficient, as indoor CO2 concentrations would still exceed recommended levels once classes resume. Therefore, administrative management should not be the sole control measure. Engineering interventions can reduce indoor CO2 concentrations to below recommended levels. The Wells-Riley equation results indicate that mechanical ventilation significantly lowers the risk of disease transmission. In conclusion, this study suggests that CO2 concentration should be the primary indicator for indoor environment monitoring. When considering both administrative and engineering interventions, priority should be given to engineering solutions, with administrative measures as a supplement, to effectively reduce infection risk for teachers and students in classrooms. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-28T16:12:55Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-28T16:12:55Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 II
摘要 III Abstract IV 目次 VI 圖次 VII 表次 XI 縮寫說明 XII 符號說明 XIII 第一章 前言 1 1.1 研究動機 1 1.2 文獻探討 2 1.2.1 教室室內空氣品質 2 1.2.2 Wells-Riley model 3 1.2.3 二氧化碳 4 1.2.4 PM2.5 5 第二章 研究方法與材料 7 2.1 現場量測 7 2.2 研究使用儀器 7 2.3 整體通風方程式 8 2.4 Wells-Riley感染傳輸方程式 8 2.5 博202工程介入 9 第三章 結果 11 3.1 現場量測 11 3.1.1 公201的PM2.5與二氧化碳濃度結果 11 3.1.2 博202的PM2.5與二氧化碳濃度結果 13 3.1.3 公201與博202的PM2.5與二氧化碳濃度比較結果 13 3.2 風險評估 14 3.2.1 公201 Wells-Riley感染傳輸方程式計算結果 14 3.2.2 博202 Wells-Riley感染傳輸方程式計算結果 15 3.3 控制管理 16 3.3.1 行政管理 16 3.3.2 工程控制 17 第四章 討論 21 4.1 室內二氧化碳濃度應為疫情後監測的主要指標 21 4.1.1 PM2.5濃度 21 4.1.2 二氧化碳濃度 22 4.2 行政管理效果 23 4.3 工程介入效果 23 第五章 結論 27 參考文獻 29 附件一 每人二氧化碳平均產生率(G) 80 附件二 空氣品質偵測機比對實驗 81 附件三 公201室內二氧化碳濃度估算 82 附件四 博202室內二氧化碳濃度估算 83 附件五 博202工程介入碳排放量計算 84 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 教室 | zh_TW |
| dc.subject | 室內監測指標 | zh_TW |
| dc.subject | 行政管理 | zh_TW |
| dc.subject | 工程介入 | zh_TW |
| dc.subject | 空氣傳播疾病 | zh_TW |
| dc.subject | Administrative Management | en |
| dc.subject | Classroom | en |
| dc.subject | Airborne Transmission Disease | en |
| dc.subject | Engineering Intervention | en |
| dc.subject | Indoor Monitoring Indicator | en |
| dc.title | 室內二氧化碳與PM2.5濃度監測指標選擇與工程介入探討-以台北市某大學為例 | zh_TW |
| dc.title | Indoor Carbon Dioxide and PM2.5 Concentration Monitoring Indicators Selection and Engineering Intervention: Taking a University in Taipei City for Example | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃耀輝;黃盛修;曾子彝 | zh_TW |
| dc.contributor.oralexamcommittee | Yaw-Huei Hwang;Sheng-Hsiu Huang;Tzu-I Tseng | en |
| dc.subject.keyword | 教室,室內監測指標,行政管理,工程介入,空氣傳播疾病, | zh_TW |
| dc.subject.keyword | Classroom,Indoor Monitoring Indicator,Administrative Management,Engineering Intervention,Airborne Transmission Disease, | en |
| dc.relation.page | 107 | - |
| dc.identifier.doi | 10.6342/NTU202401214 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-06-18 | - |
| dc.contributor.author-college | 公共衛生學院 | - |
| dc.contributor.author-dept | 環境與職業健康科學研究所 | - |
| 顯示於系所單位: | 環境與職業健康科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 1.66 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
