請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95084完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳政彰 | zh_TW |
| dc.contributor.advisor | Cheng-Chang Chen | en |
| dc.contributor.author | 張懿韊 | zh_TW |
| dc.contributor.author | Yi-Lan Chang | en |
| dc.date.accessioned | 2024-08-28T16:10:56Z | - |
| dc.date.available | 2024-08-29 | - |
| dc.date.copyright | 2024-08-28 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-05 | - |
| dc.identifier.citation | [1] Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019 Mar;17(3):181-192. doi: 10.1038/s41579-018-0118-9. PMID: 30531947; PMCID: PMC7097006.
[2] Drosten C, Günther S, Preiser W, van der Werf S, Brodt HR, Becker S, Rabenau H, Panning M, Kolesnikova L, Fouchier RA, Berger A, Burguière AM, Cinatl J, Eickmann M, Escriou N, Grywna K, Kramme S, Manuguerra JC, Müller S, Rickerts V, Stürmer M, Vieth S, Klenk HD, Osterhaus AD, Schmitz H, Doerr HW. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med. 2003 May 15;348(20):1967-76. doi: 10.1056/NEJMoa030747. Epub 2003 Apr 10. PMID: 12690091. [3] Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol. 2015;1282:1-23. doi: 10.1007/978-1-4939-2438-7_1. PMID: 25720466; PMCID: PMC4369385. [4] Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020 Apr;5(4):536-544. doi: 10.1038/s41564-020-0695-z. Epub 2020 Mar 2. PMID: 32123347; PMCID: PMC7095448. [5] Ge XY, Yang WH, Zhou JH, Li B, Zhang W, Shi ZL, Zhang YZ. Detection of alpha- and betacoronaviruses in rodents from Yunnan, China. Virol J. 2017 May 26;14(1):98. Doi: 10.1186/s12985-017-0766-9. PMID: 28549438; PMCID: PMC5446729. [6] Song Z, Xu Y, Bao L, Zhang L, Yu P, Qu Y, Zhu H, Zhao W, Han Y, Qin C. From SARS to MERS, Thrusting Coronaviruses into the Spotlight. Viruses. 2019 Jan 14;11(1):59. doi: 10.3390/v11010059. PMID: 30646565; PMCID: PMC6357155. [7] Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Wang W, Song H, Huang B, Zhu N, Bi Y, Ma X, Zhan F, Wang L, Hu T, Zhou H, Hu Z, Zhou W, Zhao L, Chen J, Meng Y, Wang J, Lin Y, Yuan J, Xie Z, Ma J, Liu WJ, Wang D, Xu W, Holmes EC, Gao GF, Wu G, Chen W, Shi W, Tan W. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020 Feb 22;395(10224):565-574. doi: 10.1016/S0140-6736(20)30251-8. Epub 2020 Jan 30. PMID: 32007145; PMCID: PMC7159086. [8] Imran M, Yasmeen R. SARS-CoV2 Outbreak: Emergence, transmission and clinical features of human coronaviruses. J Ayub Med Coll Abbottabad. 2020 Oct-Dec;32(Suppl 1)(4):S710-S713. PMID: 33754539. [9] Li X, Zai J, Zhao Q, Nie Q, Li Y, Foley BT, Chaillon A. Evolutionary history, potential intermediate animal host, and cross-species analyses of SARS-CoV-2. J Med Virol. 2020 Jun;92(6):602-611. doi: 10.1002/jmv.25731. Epub 2020 Mar 11. PMID: 32104911; PMCID: PMC7228310. [10] Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med. 2020 Apr;26(4):450-452. doi: 10.1038/s41591-020-0820-9. PMID: 32284615; PMCID: PMC7095063. [11] Shereen MA, Khan S, Kazmi A, Bashir N, Siddique R. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. J Adv Res. 2020 Mar 16;24:91-98. doi: 10.1016/j.jare.2020.03.005. PMID: 32257431; PMCID: PMC7113610. [12] Park WB, Kwon NJ, Choi SJ, Kang CK, Choe PG, Kim JY, Yun J, Lee GW, Seong MW, Kim NJ, Seo JS, Oh MD. Virus Isolation from the First Patient with SARS-CoV-2 in Korea. J Korean Med Sci. 2020 Feb 24;35(7):e84. Doi: 10.3346/jkms.2020.35.e84. PMID: 32080990; PMCID: PMC7036342. [13] Kumar S, Maurya VK, Prasad AK, Bhatt MLB, Saxena SK. Structural, glycosylation and antigenic variation between 2019 novel coronavirus (2019-nCoV) and SARS coronavirus (SARS-CoV). Virus disease. 2020 Mar;31(1):13-21. doi: 10.1007/s13337-020-00571-5. Epub 2020 Mar 5. PMID: 32206694; PMCID: PMC7085496. [14] Finlay BB, See RH, Brunham RC. Rapid response research to emerging infectious diseases: lessons from SARS. Nat Rev Microbiol. 2004 Jul;2(7):602-7. doi: 10.1038/nrmicro930. PMID: 15197395; PMCID: PMC7097457. [15] Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full length human ACE2. Science. 2020 Mar 27;367(6485):1444-1448. doi: 10.1126/science.abb2762. Epub 2020 Mar 4. PMID: 32132184; PMCID: PMC7164635. [16] Zhang L, Lin D, Sun X, Curth U, Drosten C, Sauerhering L, Becker S, Rox K, Hilgenfeld R. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science. 2020 Apr 24;368(6489):409-412. doi: 10.1126/science.abb3405. Epub 2020 Mar 20. PMID: 32198291; PMCID: PMC7164518. [17] Chan JF, Kok KH, Zhu Z, Chu H, To KK, Yuan S, Yuen KY. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect. 2020 Jan 28;9(1):221-236. Doi: 10.1080/22221751.2020.1719902. Erratum in: Emerg Microbes Infect. 2020 Dec;9(1):540. PMID: 31987001; PMCID: PMC7067204. [18] Kozak M. The scanning model for translation: an update. J Cell Biol. 1989 Feb;108(2):229-41. doi: 10.1083/jcb.108.2.229. PMID: 2645293; PMCID: PMC2115416. [19] Kelly JA, Woodside MT, Dinman JD. Programmed -1 Ribosomal Frameshifting in coronaviruses: A therapeutic target. Virology. 2021 Feb;554:75-82. doi: 10.1016/j.virol.2020.12.010. Epub 2020 Dec 25. PMID: 33387787; PMCID: PMC7833279. [20] de Breyne S, Vindry C, Guillin O, Condé L, Mure F, Gruffat H, Chavatte L, Ohlmann T. Translational control of coronaviruses. Nucleic Acids Res. 2020 Dec 16;48(22):12502-12522. doi: 10.1093/nar/gkaa1116. PMID: 33264393; PMCID: PMC7736815. [21] Saikatendu KS, Joseph JS, Subramanian V, Clayton T, Griffith M, Moy K, Velasquez J, Neuman BW, Buchmeier MJ, Stevens RC, Kuhn P. Structural basis of severe acute respiratory syndrome coronavirus ADP-ribose-1''-phosphate dephosphorylation by a conserved domain of nsP3. Structure. 2005 Nov;13(11):1665-75. doi: 10.1016/j.str.2005.07.022. PMID: 16271890; PMCID: PMC7126892. [22] Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Müller MA, Drosten C, Pöhlmann S. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020 Apr 16;181(2):271-280.e8. doi: 10.1016/j.cell.2020.02.052. Epub 2020 Mar 5. PMID: 32142651; PMCID: PMC7102627. [23] Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. 2020 Apr 16;181(2):281-292.e6. doi: 10.1016/j.cell.2020.02.058. Epub 2020 Mar 9. Erratum in: Cell. 2020 Dec 10;183(6):1735. PMID: 32155444; PMCID: PMC7102599. [24] Coutard B, Valle C, de Lamballerie X, Canard B, Seidah NG, Decroly E. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Res. 2020 Apr;176:104742. doi: 10.1016/j.antiviral.2020.104742. Epub 2020 Feb 10. PMID: 32057769; PMCID: PMC7114094. [25] Li J, Guo M, Tian X, Wang X, Yang X, Wu P, Liu C, Xiao Z, Qu Y, Yin Y, Wang C, Zhang Y, Zhu Z, Liu Z, Peng C, Zhu T, Liang Q. Virus-Host Interactome and Proteomic Survey Reveal Potential Virulence Factors Influencing SARS-CoV-2 Pathogenesis. Med. 2021 Jan 15;2(1):99-112.e7. doi: 10.1016/j.medj.2020.07.002. Epub 2020 Jul 21. PMID: 32838362; PMCID: PMC7373048. [26] Konno Y, Kimura I, Uriu K, Fukushi M, Irie T, Koyanagi Y, Sauter D, Gifford RJ; USFQ-COVID19 Consortium; Nakagawa S, Sato K. SARS-CoV-2 ORF3b Is a Potent Interferon Antagonist Whose Activity Is Increased by a Naturally Occurring Elongation Variant. Cell Rep. 2020 Sep 22;32(12):108185. doi: 10.1016/j.celrep.2020.108185. Epub 2020 Sep 4. PMID: 32941788; PMCID: PMC7473339. [27] Firth AE. A putative new SARS-CoV protein, 3c, encoded in an ORF overlapping ORF3a. J Gen Virol. 2020 Oct;101(10):1085-1089. doi: 10.1099/jgv.0.001469. Epub 2020 Jul 13. PMID: 32667280; PMCID: PMC7660454. [28] Matsuyama S, Taguchi F. Two-step conformational changes in a coronavirus envelope glycoprotein mediated by receptor binding and proteolysis. J Virol. 2009 Nov;83(21):11133-41. doi: 10.1128/JVI.00959-09. Epub 2009 Aug 12. PMID: 19706706; PMCID: PMC2772765. [29] Zheng HY, Zhang M, Yang CX, Zhang N, Wang XC, Yang XP, Dong XQ, Zheng YT. Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients. Cell Mol Immunol. 2020 May;17(5):541-543. doi: 10.1038/s41423-020-0401-3. Epub 2020 Mar 17. PMID: 32203186; PMCID: PMC7091621. [30] Kikkert M. Innate Immune Evasion by Human Respiratory RNA Viruses. J Innate Immun. 2020;12(1):4-20. doi: 10.1159/000503030. Epub 2019 Oct 14. PMID: 31610541; PMCID: PMC6959104. [31] Kopecky-Bromberg SA, Martínez-Sobrido L, Frieman M, Baric RA, Palese P. Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists. J Virol. 2007 Jan;81(2):548-57. doi: 10.1128/JVI.01782-06. Epub 2006 Nov 15. PMID: 17108024; PMCID: PMC1797484. [32] Frieman M, Yount B, Heise M, Kopecky-Bromberg SA, Palese P, Baric RS. Severe acute respiratory syndrome coronavirus ORF6 antagonizes STAT1 function by sequestering nuclear import factors on the rough endoplasmic reticulum/Golgi membrane. J Virol. 2007 Sep;81(18):9812-24. doi: 10.1128/JVI.01012-07. Epub 2007 Jun 27. PMID: 17596301; PMCID: PMC2045396. [33] Hassan SS, Choudhury PP, Basu P, Jana SS. Molecular conservation and differential mutation on ORF3a gene in Indian SARS-CoV2 genomes. Genomics. 2020 Sep;112(5):3226-3237. doi: 10.1016/j.ygeno.2020.06.016. Epub 2020 Jun 12. PMID: 32540495; PMCID: PMC7291963. [34] Ren Y, Shu T, Wu D, Mu J, Wang C, Huang M, Han Y, Zhang XY, Zhou W, Qiu Y, Zhou X. The ORF3a protein of SARS-CoV-2 induces apoptosis in cells. Cell Mol Immunol. 2020 Aug;17(8):881-883. doi: 10.1038/s41423-020-0485-9. Epub 2020 Jun 18. PMID: 32555321; PMCID: PMC7301057. [35] Hyser JM, Estes MK. Pathophysiological Consequences of Calcium-Conducting Viroporins. Annu Rev Virol. 2015 Nov;2(1):473-96. doi: 10.1146/annurev-virology-100114-054846. PMID: 26958925; PMCID: PMC6538290. [36] Issa E, Merhi G, Panossian B, Salloum T, Tokajian S. SARS-CoV-2 and ORF3a: Nonsynonymous Mutations, Functional Domains, and Viral Pathogenesis. mSystems. 2020 May 5;5(3):e00266-20. doi: 10.1128/mSystems.00266-20. PMID: 32371472; PMCID: PMC7205519. [37] Siu KL, Yuen KS, Castaño-Rodriguez C, Ye ZW, Yeung ML, Fung SY, Yuan S, Chan CP, Yuen KY, Enjuanes L, Jin DY. Severe acute respiratory syndrome coronavirus ORF3a protein activates the NLRP3 inflammasome by promoting TRAF3-dependent ubiquitination of ASC. FASEB J. 2019 Aug;33(8):8865-8877. doi: 10.1096/fj.201802418R. Epub 2019 Apr 29. PMID: 31034780; PMCID: PMC6662968. [38] Chan CM, Tsoi H, Chan WM, Zhai S, Wong CO, Yao X, Chan WY, Tsui SK, Chan HY. The ion channel activity of the SARS-coronavirus 3a protein is linked to its pro-apoptotic function. Int J Biochem Cell Biol. 2009 Nov;41(11):2232-9. doi: 10.1016/j.biocel.2009.04.019. Epub 2009 May 4. PMID: 19398035; PMCID: PMC7108357. [39] Padhan K, Tanwar C, Hussain A, Hui PY, Lee MY, Cheung CY, Peiris JSM, Jameel S. Severe acute respiratory syndrome coronavirus Orf3a protein interacts with caveolin. J Gen Virol. 2007 Nov;88(Pt 11):3067-3077. doi: 10.1099/vir.0.82856-0. PMID: 17947532. [40] Minakshi R, Padhan K. The YXXΦ motif within the severe acute respiratory syndrome coronavirus (SARS-CoV) 3a protein is crucial for its intracellular transport. Virol J. 2014 Apr 24;11:75. doi: 10.1186/1743-422X-11-75. PMID: 24762043; PMCID: PMC4004515. [41] Kern DM, Sorum B, Mali SS, Hoel CM, Sridharan S, Remis JP, Toso DB, Kotecha A, Bautista DM, Brohawn SG. Cryo-EM structure of SARS-CoV-2 ORF3a in lipid nanodiscs. Nat Struct Mol Biol. 2021 Jul;28(7):573-582. doi: 10.1038/s41594-021-00619-0. Epub 2021 Jun 22. Erratum in: Nat Struct Mol Biol. 2021 Aug;28(8):702. doi: 10.1038/s41594-021-00642-1. PMID: 34158638; PMCID: PMC8772433. [42] Lu W, Zheng BJ, Xu K, Schwarz W, Du L, Wong CK, Chen J, Duan S, Deubel V, Sun B. Severe acute respiratory syndrome-associated coronavirus 3a protein forms an ion channel and modulates virus release. Proc Natl Acad Sci U S A. 2006 Aug 15;103(33):12540-5. doi: 10.1073/pnas.0605402103. Epub 2006 Aug 7. PMID: 16894145; PMCID: PMC1567914. [43] Miller AN, Houlihan PR, Matamala E, Cabezas-Bratesco D, Lee GY, Cristofori-Armstrong B, Dilan TL, Sanchez-Martinez S, Matthies D, Yan R, Yu Z, Ren D, Brauchi SE, Clapham DE. The SARS-CoV-2 accessory protein Orf3a is not an ion channel, but does interact with trafficking proteins. Elife. 2023 Jan 25;12:e84477. doi: 10.7554/eLife.84477. PMID: 36695574; PMCID: PMC9910834. [44] Kolter T, Sandhoff K. Principles of lysosomal membrane digestion: stimulation of sphingolipid degradation by sphingolipid activator proteins and anionic lysosomal lipids. Annu Rev Cell Dev Biol. 2005;21:81-103. doi: 10.1146/annurev.cellbio.21.12230 3.120013. PMID: 16212488. [45] Saftig, P., & Klumperman, J. (2009). Lysosome biogenesis and lysosomal membrane proteins: Trafficking meets function. Nature Reviews Molecular Cell Biology, 10(9), 623-635. https://doi.org/10.1038/nrm2745 [46] Shen HM, Mizushima N. At the end of the autophagic road: an emerging understanding of lysosomal functions in autophagy. Trends Biochem Sci. 2014 Feb;39(2):61-71. doi: 10.1016/j.tibs.2013.12.001. Epub 2013 Dec 24. PMID: 24369758. [47] Settembre C, Fraldi A, Medina DL, Ballabio A. Signals from the lysosome: a control centre for cellular clearance and energy metabolism. Nat Rev Mol Cell Biol. 2013 May;14(5):283-96. doi: 10.1038/nrm3565. PMID: 23609508; PMCID: PMC4387238. [48] Perera RM, Zoncu R. The Lysosome as a Regulatory Hub. Annu Rev Cell Dev Biol. 2016 Oct 6;32:223-253. Doi: 10.1146/annurev-cellbio-111315-125125. Epub 2016 Aug 3. PMID: 27501449; PMCID: PMC9345128. [49] Zoncu R, Perera RM. Built to last: lysosome remodeling and repair in health and disease. Trends Cell Biol. 2022 Jul;32(7):597-610. doi: 10.1016/j.tcb.2021.12.009. Epub 2022 Feb 2. PMID: 35123838; PMCID: PMC9189017. [50] Li P, Gu M, Xu H. Lysosomal Ion Channels as Decoders of Cellular Signals. Trends Biochem Sci. 2019 Feb;44(2):110-124. doi: 10.1016/j.tibs.2018.10.006. Epub 2018 Nov 10. PMID: 30424907; PMCID: PMC6340733. [51] Xu H, Ren D. Lysosomal physiology. Annu Rev Physiol. 2015;77:57-80. doi: 10.1146/annurev-physiol-021014-071649. PMID: 25668017; PMCID: PMC4524569. [52] Yang J, Zhao Z, Gu M, Feng X, Xu H. Release and uptake mechanisms of vesicular Ca2+ stores. Protein Cell. 2019 Jan;10(1):8-19. doi: 10.1007/s13238-018-0523-x. Epub 2018 Mar 16. PMID: 29549599; PMCID: PMC6321814. [53] Oyarzún JE, Lagos J, Vázquez MC, Valls C, De la Fuente C, Yuseff MI, Alvarez AR, Zanlungo S. Lysosome motility and distribution: Relevance in health and disease. Biochim Biophys Acta Mol Basis Dis. 2019 Jun 1;1865(6):1076-1087. doi: 10.1016/j.bbadis.2019.03.009. Epub 2019 Mar 21. PMID: 30904612. [54] Pu J, Guardia CM, Keren-Kaplan T, Bonifacino JS. Mechanisms and functions of lysosome positioning. J Cell Sci. 2016 Dec 1;129(23):4329-4339. doi: 10.1242/jcs.196287. Epub 2016 Oct 31. PMID: 27799357; PMCID: PMC5201012. [55] Gautreau A, Oguievetskaia K, Ungermann C. Function and regulation of the endosomal fusion and fission machineries. Cold Spring Harb Perspect Biol. 2014 Mar 1;6(3):a016832. doi: 10.1101/cshperspect.a016832. PMID: 24591520; PMCID: PMC3949357. [56] Bonifacino JS, Glick BS. The mechanisms of vesicle budding and fusion. Cell. 2004 Jan 23;116(2):153-66. doi: 10.1016/s0092-8674(03)01079-1. PMID: 14744428. [57] Stefan CJ, Trimble WS, Grinstein S, Drin G, Reinisch K, De Camilli P, Cohen S, Valm AM, Lippincott-Schwartz J, Levine TP, Iaea DB, Maxfield FR, Futter CE, Eden ER, Judith D, van Vliet AR, Agostinis P, Tooze SA, Sugiura A, McBride HM. Membrane dynamics and organelle biogenesis-lipid pipelines and vesicular carriers. BMC Biol. 2017 Oct 31;15(1):102. doi: 10.1186/s12915-017-0432-0. PMID: 29089042; PMCID: PMC5663033. [58] Luzio JP, Bright NA, Pryor PR. The role of calcium and other ions in sorting and delivery in the late endocytic pathway. Biochem Soc Trans. 2007 Nov;35(Pt 5):1088-91. Doi: 10.1042/BST0351088. PMID: 17956286. [59] Samie M, Wang X, Zhang X, Goschka A, Li X, Cheng X, Gregg E, Azar M, Zhuo Y, Garrity AG, Gao Q, Slaugenhaupt S, Pickel J, Zolov SN, Weisman LS, Lenk GM, Titus S, Bryant-Genevier M, Southall N, Juan M, Ferrer M, Xu H. A TRP channel in the lysosome regulates large particle phagocytosis via focal exocytosis. Dev Cell. 2013 Sep 16;26(5):511-24. doi: 10.1016/j.devcel.2013.08.003. Epub 2013 Aug 29. PMID: 23993788; PMCID: PMC3794471. [60] Cisneros J, Belton TB, Shum GC, Molakal CG, Wong YC. Mitochondria-lysosome contact site dynamics and misregulation in neurodegenerative diseases. Trends Neurosci. 2022 Apr;45(4):312-322. doi: 10.1016/j.tins.2022.01.005. PMID: 35249745; PMCID: PMC8930467. [61] Kim S, Coukos R, Gao F, Krainc D. Dysregulation of organelle membrane contact sites in neurological diseases. Neuron. 2022 Aug 3;110(15):2386-2408. doi: 10.1016/j.neuron.2022.04.020. Epub 2022 May 12. PMID: 35561676; PMCID: PMC9357093. [62] Li X, Rydzewski N, Hider A, Zhang X, Yang J, Wang W, Gao Q, Cheng X, Xu H. A molecular mechanism to regulate lysosome motility for lysosome positioning and tubulation. Nat Cell Biol. 2016 Apr;18(4):404-17. doi: 10.1038/ncb3324. Epub 2016 Mar 7. PMID: 26950892; PMCID: PMC4871318. [63] Wenzel EM, Elfmark LA, Stenmark H, Raiborg C. ER as master regulator of membrane trafficking and organelle function. J Cell Biol. 2022 Oct 3;221(10):e202205135. doi: 10.1083/jcb.202205135. Epub 2022 Sep 15. PMID: 36108241; PMCID: PMC9481738. [64] Kilpatrick BS, Eden ER, Schapira AH, Futter CE, Patel S. Direct mobilisation of lysosomal Ca2+ triggers complex Ca2+ signals. J Cell Sci. 2013 Jan 1;126(Pt 1):60-6. doi: 10.1242/jcs.118836. Epub 2012 Oct 29. PMID: 23108667; PMCID: PMC4208295. [65] Garrity AG, Wang W, Collier CM, Levey SA, Gao Q, Xu H. The endoplasmic reticulum, not the pH gradient, drives calcium refilling of lysosomes. Elife. 2016 May 23;5:e15887. doi: 10.7554/eLife.15887. PMID: 27213518; PMCID: PMC4909396. [66] Raffaello A, Mammucari C, Gherardi G, Rizzuto R. Calcium at the Center of Cell Signaling: Interplay between Endoplasmic Reticulum, Mitochondria, and Lysosomes. Trends Biochem Sci. 2016 Dec;41(12):1035-1049. doi: 10.1016/j.tibs.2016.09.001. Epub 2016 Sep 28. PMID: 27692849; PMCID: PMC5123979. [67] Grimm C, Chen CC, Wahl-Schott C, Biel M. Two-Pore Channels: Catalyzers of Endolysosomal Transport and Function. Front Pharmacol. 2017 Feb 7;8:45. Doi: 10.3389/fphar.2017.00045. PMID: 28223936; PMCID: PMC5293812. [68] Plesch E, Chen CC, Butz E, Scotto Rosato A, Krogsaeter EK, Yinan H, Bartel K, Keller M, Robaa D, Teupser D, Holdt LM, Vollmar AM, Sippl W, Puertollano R, Medina D, Biel M, Wahl-Schott C, Bracher F, Grimm C. Selective agonist of TRPML2 reveals direct role in chemokine release from innate immune cells. Elife. 2018 Nov 27;7:e39720. doi: 10.7554/eLife.39720. PMID: 30479274; PMCID: PMC6257821. [69] Jinn S, Drolet RE, Cramer PE, Wong AH, Toolan DM, Gretzula CA, Voleti B, Vassileva G, Disa J, Tadin-Strapps M, Stone DJ. TMEM175 deficiency impairs lysosomal and mitochondrial function and increases α-synuclein aggregation. Proc Natl Acad Sci U S A. 2017 Feb 28;114(9):2389-2394. doi: 10.1073/pnas.1616332114. Epub 2017 Feb 13. PMID: 28193887; PMCID: PMC5338534. [70] Cao Q, Zhong XZ, Zou Y, Zhang Z, Toro L, Dong XP. BK Channels Alleviate Lysosomal Storage Diseases by Providing Positive Feedback Regulation of Lysosomal Ca2+ Release. Dev Cell. 2015 May 26;33(4):427-41. doi: 10.1016/j.devcel.2015.04.010. Epub 2015 May 14. PMID: 25982675. [71] Kanellopoulos JM, Almeida-da-Silva CLC, Rüütel Boudinot S, Ojcius DM. Structural and Functional Features of the P2X4 Receptor: An Immunological Perspective. Front Immunol. 2021 Mar 25;12:645834. doi: 10.3389/fimmu.2021.645834. PMID: 33897694; PMCID: PMC8059410. [72] Jentsch TJ, Pusch M. CLC Chloride Channels and Transporters: Structure, Function, Physiology, and Disease. Physiol Rev. 2018 Jul 1;98(3):1493-1590. doi: 10.1152/physrev.00047.2017. PMID: 29845874. [73] Lange I, Yamamoto S, Partida-Sanchez S, Mori Y, Fleig A, Penner R. TRPM2 functions as a lysosomal Ca2+-release channel in beta cells. Sci Signal. 2009 May 19;2(71):ra23. doi: 10.1126/scisignal.2000278. PMID: 19454650; PMCID: PMC2779714. [74] Weinert S, Gimber N, Deuschel D, Stuhlmann T, Puchkov D, Farsi Z, Ludwig CF, Novarino G, López-Cayuqueo KI, Planells-Cases R, Jentsch TJ. Uncoupling endosomal CLC chloride/proton exchange causes severe neurodegeneration. EMBO J. 2020 May 4;39(9):e103358. doi: 10.15252/embj.2019103358. Epub 2020 Mar 2. PMID: 32118314; PMCID: PMC7196918. [75] Atakpa P, Thillaiappan NB, Mataragka S, Prole DL, Taylor CW. IP3 Receptors Preferentially Associate with ER-Lysosome Contact Sites and Selectively Deliver Ca2+ to Lysosomes. Cell Rep. 2018 Dec 11;25(11):3180-3193.e7. doi: 10.1016/j.celrep.2018.11.064. PMID: 30540949; PMCID: PMC6302550. [76] Kilpatrick BS, Eden ER, Hockey LN, Yates E, Futter CE, Patel S. An Endosomal NAADP-Sensitive Two-Pore Ca2+ Channel Regulates ER-Endosome Membrane Contact Sites to Control Growth Factor Signaling. Cell Rep. 2017 Feb 14;18(7):1636-1645. doi: 10.1016/j.celrep.2017.01.052. PMID: 28199837; PMCID: PMC5318655. [77] Wang X, Zhang X, Dong XP, Samie M, Li X, Cheng X, Goschka A, Shen D, Zhou Y, Harlow J, Zhu MX, Clapham DE, Ren D, Xu H. TPC proteins are phosphoinositide- activated sodium-selective ion channels in endosomes and lysosomes. Cell. 2012 Oct 12;151(2):372-83. doi: 10.1016/j.cell.2012.08.036. PMID: 23063126; PMCID: PMC3475186. [78] Cang C, Bekele B, Ren D. The voltage-gated sodium channel TPC1 confers endolysosomal excitability. Nat Chem Biol. 2014 Jun;10(6):463-9. doi: 10.1038/nchembio.1522. Epub 2014 Apr 28. PMID: 24776928. [79] Lagostena L, Festa M, Pusch M, Carpaneto A. The human two-pore channel 1 is modulated by cytosolic and luminal calcium. Sci Rep. 2017 Mar 2;7:43900. doi: 10.1038/srep43900. PMID: 28252105; PMCID: PMC5333365. [80] She J, Guo J, Chen Q, Zeng W, Jiang Y, Bai XC. Structural insights into the voltage and phospholipid activation of the mammalian TPC1 channel. Nature. 2018 Apr 5;556(7699):130-134. doi: 10.1038/nature26139. Epub 2018 Mar 21. PMID: 29562233; PMCID: PMC5886804. [81]Boccaccio A, Scholz-Starke J, Hamamoto S, Larisch N, Festa M, Gutla PV, Costa A, Dietrich P, Uozumi N, Carpaneto A. The phosphoinositide PI(3,5)P₂ mediates activation of mammalian but not plant TPC proteins: functional expression of endolysosomal channels in yeast and plant cells. Cell Mol Life Sci. 2014 Nov;71(21):4275-83. doi: 10.1007/s00018-014-1623-2. Epub 2014 Apr 26. PMID: 24770793; PMCID: PMC11113638. [82] Guo J, Zeng W, Jiang Y. Tuning the ion selectivity of two-pore channels. Proc Natl Acad Sci U S A. 2017 Jan 31;114(5):1009-1014. doi: 10.1073/pnas.1616191114. Epub 2017 Jan 17. PMID: 28096396; PMCID: PMC5293054. [83] Penny CJ, Vassileva K, Jha A, Yuan Y, Chee X, Yates E, Mazzon M, Kilpatrick BS, Muallem S, Marsh M, Rahman T, Patel S. Mining of Ebola virus entry inhibitors identifies approved drugs as two-pore channel pore blockers. Biochim Biophys Acta Mol Cell Res. 2019 Jul;1866(7):1151-1161. doi: 10.1016/j.bbamcr.2018.10.022. Epub 2018 Nov 5. PMID: 30408544; PMCID: PMC7114365. [84] Malavasi F, Deaglio S, Funaro A, Ferrero E, Horenstein AL, Ortolan E, Vaisitti T, Aydin S. Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology. Physiol Rev. 2008 Jul;88(3):841-86. doi: 10.1152/physrev.00035.2007. PMID: 18626062. [85] Roggenkamp HG, Khansahib I, Hernandez C LC, Zhang Y, Lodygin D, Krüger A, Gu F, Möckl F, Löhndorf A, Wolters V, Woike D, Rosche A, Bauche A, Schetelig D, Werner R, Schlüter H, Failla AV, Meier C, Fliegert R, Walseth TF, Flügel A, Diercks BP, Guse AH. HN1L/JPT2: A signaling protein that connects NAADP generation to Ca2+ microdomain formation. Sci Signal. 2021 Mar 23;14(675):eabd5647. doi: 10.1126/scisignal.abd5647. PMID: 33758062. [86] Gunaratne GS, Brailoiu E, He S, Unterwald EM, Patel S, Slama JT, Walseth TF, Marchant JS. Essential requirement for JPT2 in NAADP-evoked Ca2+ signaling. Sci Signal. 2021 Mar 23;14(675):eabd5605. doi: 10.1126/scisignal.abd5605. PMID: 33758061; PMCID: PMC8315109. [87] Lee J, Yoo E, Lee H, Park K, Hur JH, Lim C. LSM12 and ME31B/DDX6 Define Distinct Modes of Posttranscriptional Regulation by ATAXIN-2 Protein Complex in Drosophila Circadian Pacemaker Neurons. Mol Cell. 2017 Apr 6;66(1):129-140.e7. doi: 10.1016/j.molcel.2017.03.004. PMID: 28388438. [88] Fleischer TC, Weaver CM, McAfee KJ, Jennings JL, Link AJ. Systematic identification and functional screens of uncharacterized proteins associated with eukaryotic ribosomal complexes. Genes Dev. 2006 May 15;20(10):1294-307. doi: 10.1101/gad.1422006. PMID: 16702403; PMCID: PMC1472904. [89] Zhang J, Guan X, Shah K, Yan J. Lsm12 is an NAADP receptor and a two-pore channel regulatory protein required for calcium mobilization from acidic organelles. Nat Commun. 2021 Aug 6;12(1):4739. doi: 10.1038/s41467-021-24735-z. PMID: 34362892; PMCID: PMC8346516. [90] Gerndt S, Chen CC, Chao YK, Yuan Y, Burgstaller S, Scotto Rosato A, Krogsaeter E, Urban N, Jacob K, Nguyen ONP, Miller MT, Keller M, Vollmar AM, Gudermann T, Zierler S, Schredelseker J, Schaefer M, Biel M, Malli R, Wahl-Schott C, Bracher F, Patel S, Grimm C. Agonist-mediated switching of ion selectivity in TPC2 differentially promotes lysosomal function. Elife. 2020 Mar 16;9:e54712. doi: 10.7554/eLife.54712. PMID: 32167471; PMCID: PMC7108868. [91] Zhang X, Chen W, Li P, Calvo R, Southall N, Hu X, Bryant-Genevier M, Feng X, Geng Q, Gao C, Yang M, Tang K, Ferrer M, Marugan JJ, Xu H. Agonist-specific voltage-dependent gating of lysosomal two-pore Na+ channels. Elife. 2019 Dec 11;8:e51423. doi: 10.7554/eLife.51423. PMID: 31825310; PMCID: PMC6905855. [92] Trindade E, Menon D, Topfer LA, Coloma C. Adverse effects associated with selective serotonin reuptake inhibitors and tricyclic antidepressants: a meta-analysis. CMAJ. 1998 Nov 17;159(10):1245-52. PMID: 9861221; PMCID: PMC1229819. [93] Shelton RC. Serotonin and Norepinephrine Reuptake Inhibitors. Handb Exp Pharmacol. 2019;250:145-180. doi: 10.1007/164_2018_164. PMID: 30838456. [94] Gillman PK. Tricyclic antidepressant pharmacology and therapeutic drug interactions updated. Br J Pharmacol. 2007 Jul;151(6):737-48. doi: 10.1038/sj.bjp.0707253. Epub 2007 Apr 30. PMID: 17471183; PMCID: PMC2014120. [95] Gerndt S, Krogsaeter E, Patel S, Bracher F, Grimm C. Discovery of lipophilic two-pore channel agonists. FEBS J. 2020 Dec;287(24):5284-5293. doi: 10.1111/febs.15432. Epub 2020 Jun 14. PMID: 32478984. [96] Bissaro M, Moro S. Rethinking to riluzole mechanism of action: the molecular link among protein kinase CK1δ activity, TDP-43 phosphorylation, and amyotrophic lateral sclerosis pharmacological treatment. Neural Regen Res. 2019 Dec;14(12):2083-2085. doi: 10.4103/1673-5374.262578. PMID: 31397342; PMCID: PMC6788255. [97] Liu J, Wang LN. The efficacy and safety of riluzole for neurodegenerative movement disorders: a systematic review with meta-analysis. Drug Deliv. 2018 Nov;25(1):43-48. doi: 10.1080/10717544.2017.1413446. PMID: 29226728; PMCID: PMC6058579. [98] Hubert JP, Delumeau JC, Glowinski J, Prémont J, Doble A. Antagonism by riluzole of entry of calcium evoked by NMDA and veratridine in rat cultured granule cells: evidence for a dual mechanism of action. Br J Pharmacol. 1994 Sep;113(1):261-7. doi: 10.1111/j.1476-5381.1994.tb16203.x. PMID: 7812619; PMCID: PMC1510058. [99] Debono MW, Le Guern J, Canton T, Doble A, Pradier L. Inhibition by riluzole of electrophysiological responses mediated by rat kainate and NMDA receptors expressed in Xenopus oocytes. Eur J Pharmacol. 1993 Apr 28;235(2-3):283-9. doi: 10.1016/0014-2999(93)90147-a. PMID: 7685290. [100] Song JH, Huang CS, Nagata K, Yeh JZ, Narahashi T. Differential action of riluzole on tetrodotoxin-sensitive and tetrodotoxin-resistant sodium channels. J Pharmacol Exp Ther. 1997 Aug;282(2):707-14. PMID: 9262334. [101] Naylor E, Arredouani A, Vasudevan SR, Lewis AM, Parkesh R, Mizote A, Rosen D, Thomas JM, Izumi M, Ganesan A, Galione A, Churchill GC. Identification of a chemical probe for NAADP by virtual screening. Nat Chem Biol. 2009 Apr;5(4):220-6. doi: 10.1038/nchembio.150. Epub 2009 Feb 22. PMID: 19234453; PMCID: PMC2659327. [102] Kelu JJ, Chan HL, Webb SE, Cheng AH, Ruas M, Parrington J, Galione A, Miller AL. Two-Pore Channel 2 activity is required for slow muscle cell-generated Ca2+ signaling during myogenesis in intact zebrafish. Int J Dev Biol. 2015;59(7-9):313-25. doi: 10.1387/ijdb.150206am. PMID: 26679948; PMCID: PMC6675607. [103] Nguyen ON, Grimm C, Schneider LS, Chao YK, Atzberger C, Bartel K, Watermann A, Ulrich M, Mayr D, Wahl-Schott C, Biel M, Vollmar AM. Two-Pore Channel Function Is Crucial for the Migration of Invasive Cancer Cells. Cancer Res. 2017 Mar 15;77(6):1427-1438. doi: 10.1158/0008-5472.CAN-16-0852. Epub 2017 Jan 20. PMID: 28108508. [104] Cang C, Zhou Y, Navarro B, Seo YJ, Aranda K, Shi L, Battaglia-Hsu S, Nissim I, Clapham DE, Ren D. mTOR regulates lysosomal ATP-sensitive two-pore Na+ channels to adapt to metabolic state. Cell. 2013 Feb 14;152(4):778-790. doi: 10.1016/j.cell.2013.01.023. Epub 2013 Feb 7. PMID: 23394946; PMCID: PMC3908667. [105] Sakurai Y, Kolokoltsov AA, Chen CC, Tidwell MW, Bauta WE, Klugbauer N, Grimm C, Wahl-Schott C, Biel M, Davey RA. Ebola virus. Two-pore channels control Ebola virus host cell entry and are drug targets for disease treatment. Science. 2015 Feb 27;347(6225):995-8. doi: 10.1126/science.1258758. PMID: 25722412; PMCID: PMC4550587. [106] Pafumi I, Festa M, Papacci F, Lagostena L, Giunta C, Gutla V, Cornara L, Favia A, Palombi F, Gambale F, Filippini A, Carpaneto A. Naringenin Impairs Two-Pore Channel 2 Activity And Inhibits VEGF-Induced Angiogenesis. Sci Rep. 2017 Jul 11;7(1):5121. doi: 10.1038/s41598-017-04974-1. PMID: 28698624; PMCID: PMC5505983. [107] Netcharoensirisuk P, Abrahamian C, Tang R, Chen CC, Rosato AS, Beyers W, Chao YK, Filippini A, Di Pietro S, Bartel K, Biel M, Vollmar AM, Umehara K, De-Eknamkul W, Grimm C. Flavonoids increase melanin production and reduce proliferation, migration and invasion of melanoma cells by blocking endolysosomal/melanosomal TPC2. Sci Rep. 2021 Apr 19;11(1):8515. doi: 10.1038/s41598-021-88196-6. PMID: 33875769; PMCID: PMC8055690. [108] Wang G, Lemos JR, Iadecola C. Herbal alkaloid tetrandrine: fron an ion channel blocker to inhibitor of tumor proliferation. Trends Pharmacol Sci. 2004 Mar;25(3):120-3. doi: 10.1016/j.tips.2004.01.009. PMID: 15058281. [109] Müller M, Gerndt S, Chao YK, Zisis T, Nguyen ONP, Gerwien A, Urban N, Müller C, Gegenfurtner FA, Geisslinger F, Ortler C, Chen CC, Zahler S, Biel M, Schaefer M, Grimm C, Bracher F, Vollmar AM, Bartel K. Gene editing and synthetically accessible inhibitors reveal role for TPC2 in HCC cell proliferation and tumor growth. Cell Chem Biol. 2021 Aug 19;28(8):1119-1131.e27. doi: 10.1016/j.chembiol.2021.01.023. Epub 2021 Feb 23. PMID: 33626324. [110] Chi G, Jaślan D, Kudrina V, Böck J, Li H, Pike ACW, Rautenberg S, Krogsaeter E, Bohstedt T, Wang D, McKinley G, Fernandez-Cid A, Mukhopadhyay SMM, Burgess-Brown NA, Keller M, Bracher F, Grimm C, Dürr KL. Structural basis for inhibition of the lysosomal two-pore channel TPC2 by a small molecule antagonist. Structure. 2024 May 23:S0969-2126(24)00182-5. doi: 10.1016/j.str.2024.05.005. Epub ahead of print. PMID: 38815576. [111] Straub I, Krügel U, Mohr F, Teichert J, Rizun O, Konrad M, Oberwinkler J, Schaefer M. Flavanones that selectively inhibit TRPM3 attenuate thermal nociception in vivo. Mol Pharmacol. 2013 Nov;84(5):736-50. doi: 10.1124/mol.113.086843. Epub 2013 Sep 4. PMID: 24006495. [112] Gumushan Aktas H, Akgun T. Naringenin inhibits prostate cancer metastasis by blocking voltage-gated sodium channels. Biomed Pharmacother. 2018 Oct;106:770-775. doi: 10.1016/j.biopha.2018.07.008. Epub 2018 Jul 11. PMID: 29990870. [113] Scholz EP, Zitron E, Kiesecker C, Lück S, Thomas D, Kathöfer S, Kreye VA, Katus HA, Kiehn J, Schoels W, Karle CA. Inhibition of cardiac HERG channels by grapefruit flavonoid naringenin: implications for the influence of dietary compounds on cardiac repolarisation. Naunyn Schmiedebergs Arch Pharmacol. 2005 Jun;371(6):516-25. doi: 10.1007/s00210-005-1069-z. Epub 2005 Jul 9. PMID: 16007460. [114] Lee SH, Park YB, Bae KH, Bok SH, Kwon YK, Lee ES, Choi MS. Cholesterol-lowering activity of naringenin via inhibition of 3-hydroxy-3-methyl- glutaryl coenzyme A reductase and acyl coenzyme A:cholesterol acyltransferase in rats. Ann Nutr Metab. 1999;43(3):173-80. doi: 10.1159/000012783. PMID: 10545673. [115] Hsu HT, Tseng YT, Lo YC, Wu SN. Ability of naringenin, a bioflavonoid, to activate M-type potassium current in motor neuron-like cells and to increase BKCa-channel activity in HEK293T cells transfected with α-hSlo subunit. BMC Neurosci. 2014 Dec 24;15:135. doi: 10.1186/s12868-014-0135-1. PMID: 25539574; PMCID: PMC4288500. [116] Zhou X, Dong XW, Priestley T. The neuroleptic drug, fluphenazine, blocks neuronal voltage-gated sodium channels. Brain Res. 2006 Aug 23;1106(1):72-81. doi: 10.1016/j.brainres.2006.05.076. Epub 2006 Jul 12. PMID: 16839522. [117] Müller M, De Weille JR, Lazdunski M. Chlorpromazine and related phenothiazines inhibit the ATP-sensitive K+ channel. Eur J Pharmacol. 1991 May 30;198(1):101-4. doi: 10.1016/0014-2999(91)90569-c. PMID: 1680711. [118] Divac N, Prostran M, Jakovcevski I, Cerovac N. Second-generation antipsychotics and extrapyramidal adverse effects. Biomed Res Int. 2014;2014:656370. doi: 10.1155/2014/656370. Epub 2014 Jun 3. PMID: 24995318; PMCID: PMC4065707. [119] Tsang SY, Yao X, Essin K, Wong CM, Chan FL, Gollasch M, Huang Y. Raloxifene relaxes rat cerebral arteries in vitro and inhibits L-type voltage-sensitive Ca2+ channels. Stroke. 2004 Jul;35(7):1709-14. doi: 10.1161/01.STR.0000131479.0800 5.ca. Epub 2004 May 20. PMID: 15155963. [120] Wang Q, Lu L, Gao X, Wang C, Wang J, Cheng J, Gao R, Xiao H. Effects of raloxifene on voltage-dependent T-type Ca2+ channels in mouse spermatogenic cells. Pharmacology. 2011;87(1-2):70-80. doi: 10.1159/000321726. Epub 2011 Jan 11. PMID: 21228613. [121] Chae YJ, Kim DH, Lee HJ, Sung KW, Kwon OJ, Hahn SJ. Raloxifene inhibits cloned Kv4.3 channels in an estrogen receptor-independent manner. Pflugers Arch. 2015 Aug;467(8):1663-76. doi: 10.1007/s00424-014-1602-3. Epub 2014 Sep 18. PMID: 25231973. [122] Grimm C, Butz E, Chen CC, Wahl-Schott C, Biel M. From mucolipidosis type IV to Ebola: TRPML and two-pore channels at the crossroads of endo-lysosomal trafficking and disease. Cell Calcium. 2017 Nov;67:148-155. doi: 10.1016/j.ceca.2017.04.003. Epub 2017 Apr 23. PMID: 28457591. [123] Chen CC, Keller M, Hess M, Schiffmann R, Urban N, Wolfgardt A, Schaefer M, Bracher F, Biel M, Wahl-Schott C, Grimm C. A small molecule restores function to TRPML1 mutant isoforms responsible for mucolipidosis type IV. Nat Commun. 2014 Aug 14;5:4681. doi: 10.1038/ncomms5681. PMID: 25119295. [124] Dong XP, Shen D, Wang X, Dawson T, Li X, Zhang Q, Cheng X, Zhang Y, Weisman LS, Delling M, Xu H. PI(3,5)P₂ controls membrane trafficking by direct activation of mucolipin Ca2+ release channels in the endolysosome. Nat Commun. 2010 Jul 13;1(4):38. doi: 10.1038/ncomms1037. PMID: 20802798; PMCID: PMC2928581. [125] Shen D, Wang X, Li X, Zhang X, Yao Z, Dibble S, Dong XP, Yu T, Lieberman AP, Showalter HD, Xu H. Lipid storage disorders block lysosomal trafficking by inhibiting a TRP channel and lysosomal calcium release. Nat Commun. 2012 Mar 13;3:731. doi: 10.1038/ncomms1735. PMID: 22415822; PMCID: PMC3347486. [126] Zhang X, Li X, Xu H. Phosphoinositide isoforms determine compartment-specific ion channel activity. Proc Natl Acad Sci U S A. 2012 Jul 10;109(28):11384-9. doi: 10.1073/pnas.1202194109. Epub 2012 Jun 25. PMID: 22733759; PMCID: PMC3396495. [127] Zhang X, Chen W, Gao Q, Yang J, Yan X, Zhao H, Su L, Yang M, Gao C, Yao Y, Inoki K, Li D, Shao R, Wang S, Sahoo N, Kudo F, Eguchi T, Ruan B, Xu H. Rapamycin directly activates lysosomal mucolipin TRP channels independent of mTOR. PLoS Biol. 2019 May 21;17(5):e3000252. doi: 10.1371/journal.pbio.3000252. PMID: 31112550; PMCID: PMC6528971. [128] Wang W, Zhang X, Gao Q, Xu H. TRPML1: an ion channel in the lysosome. Handb Exp Pharmacol. 2014;222:631-45. doi: 10.1007/978-3-642-54215-2_24. PMID: 24756723. [129] Lee JH, McBrayer MK, Wolfe DM, Haslett LJ, Kumar A, Sato Y, Lie PP, Mohan P, Coffey EE, Kompella U, Mitchell CH, Lloyd-Evans E, Nixon RA. Presenilin 1 Maintains Lysosomal Ca2+ Homeostasis via TRPML1 by Regulating vATPase-Mediated Lysosome Acidification. Cell Rep. 2015 Sep 1;12(9):1430-44. doi: 10.1016/j.celrep.2015.07.050. Epub 2015 Aug 20. PMID: 26299959; PMCID: PMC4558203. [130] Cai X, Xu Y, Cheung AK, Tomlinson RC, Alcázar-Román A, Murphy L, Billich A, Zhang B, Feng Y, Klumpp M, Rondeau JM, Fazal AN, Wilson CJ, Myer V, Joberty G, Bouwmeester T, Labow MA, Finan PM, Porter JA, Ploegh HL, Baird D, De Camilli P, Tallarico JA, Huang Q. PIKfyve, a class III PI kinase, is the target of the small molecular IL-12/IL-23 inhibitor apilimod and a player in Toll-like receptor signaling. Chem Biol. 2013 Jul 25;20(7):912-21. doi: 10.1016/j.chembiol.2013.05.010. PMID: 23890009; PMCID: PMC4878021. [131] Cerny J, Feng Y, Yu A, Miyake K, Borgonovo B, Klumperman J, Meldolesi J, McNeil PL, Kirchhausen T. The small chemical vacuolin-1 inhibits Ca2+-dependent lysosomal exocytosis but not cell resealing. EMBO Rep. 2004 Sep;5(9):883-8. doi: 10.1038/sj.embor.7400243. Erratum in: EMBO Rep. 2005 Sep;6(9):898. PMID: 15332114; PMCID: PMC1299144. [132] Chao, YK., Chang, SY., Grimm, C. (2020). Endo-Lysosomal Cation Channels and Infectious Diseases. In: Pedersen, S.H.F., Barber, D.L. (eds) Organelles in Disease. Reviews of Physiology, Biochemistry and Pharmacology, vol 185. Springer, Cham. https://doi.org/10.1007/112_2020_31. [133] Tai W, He L, Zhang X, Pu J, Voronin D, Jiang S, Zhou Y, Du L. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell Mol Immunol. 2020 Jun;17(6):613-620. doi: 10.1038/s41423-020-0400-4. Epub 2020 Mar 19. PMID: 32203189; PMCID: PMC7091888. [134] Kim GH, Dayam RM, Prashar A, Terebiznik M, Botelho RJ. PIKfyve inhibition interferes with phagosome and endosome maturation in macrophages. Traffic. 2014 Oct;15(10):1143-63. doi: 10.1111/tra.12199. Epub 2014 Aug 16. PMID: 25041080. [135] Dayam RM, Saric A, Shilliday RE, Botelho RJ. The Phosphoinositide-Gated Lysosomal Ca2+ Channel, TRPML1, Is Required for Phagosome Maturation. Traffic. 2015 Sep;16(9):1010-26. doi: 10.1111/tra.12303. Epub 2015 Jun 18. PMID: 26010303. [136] Li X, Saitoh S, Shibata T, Tanimura N, Fukui R, Miyake K. Mucolipin 1 positively regulates TLR7 responses in dendritic cells by facilitating RNA transportation to lysosomes. Int Immunol. 2015 Feb;27(2):83-94. doi: 10.1093/intimm/dxu086. Epub 2014 Sep 19. PMID: 25239130. [137] Bretou M, Sáez PJ, Sanséau D, Maurin M, Lankar D, Chabaud M, Spampanato C, Malbec O, Barbier L, Muallem S, Maiuri P, Ballabio A, Helft J, Piel M, Vargas P, Lennon-Duménil AM. Lysosome signaling controls the migration of dendritic cells. Sci Immunol. 2017 Oct 27;2(16):eaak9573. doi: 10.1126/sciimmunol.aak9573. PMID: 29079589. [138] Dayam RM, Sun CX, Choy CH, Mancuso G, Glogauer M, Botelho RJ. The Lipid Kinase PIKfyve Coordinates the Neutrophil Immune Response through the Activation of the Rac GTPase. J Immunol. 2017 Sep 15;199(6):2096-2105. doi: 10.4049/jimmunol.1601466. Epub 2017 Aug 4. PMID: 28779020. [139] Goodridge JP, Jacobs B, Saetersmoen ML, Clement D, Hammer Q, Clancy T, Skarpen E, Brech A, Landskron J, Grimm C, Pfefferle A, Meza-Zepeda L, Lorenz S, Wiiger MT, Louch WE, Ask EH, Liu LL, Oei VYS, Kjällquist U, Linnarsson S, Patel S, Taskén K, Stenmark H, Malmberg KJ. Remodeling of secretory lysosomes during education tunes functional potential in NK cells. Nat Commun. 2019 Jan 31;10(1):514. doi: 10.1038/s41467-019-08384-x. PMID: 30705279; PMCID: PMC6355880. [140] Lindvall JM, Blomberg KE, Wennborg A, Smith CI. Differential expression and molecular characterisation of Lmo7, Myo1e, Sash1, and Mcoln2 genes in Btk-defective B-cells. Cell Immunol. 2005 May;235(1):46-55. doi: 10.1016/j.cellimm.2005.07.001. Epub 2005 Aug 30. PMID: 16137664. [141] Song Y, Dayalu R, Matthews SA, Scharenberg AM. TRPML cation channels regulate the specialized lysosomal compartment of vertebrate B-lymphocytes. Eur J Cell Biol. 2006 Dec;85(12):1253-64. doi: 10.1016/j.ejcb.2006.08.004. Epub 2006 Oct 16. PMID: 17050035. [142] Sun L, Hua Y, Vergarajauregui S, Diab HI, Puertollano R. Novel Role of TRPML2 in the Regulation of the Innate Immune Response. J Immunol. 2015 Nov 15;195(10):4922-32. doi: 10.4049/jimmunol.1500163. Epub 2015 Oct 2. PMID: 26432893; PMCID: PMC4637233. [143] Cuajungco MP, Silva J, Habibi A, Valadez JA. The mucolipin-2 (TRPML2) ion channel: a tissue-specific protein crucial to normal cell function. Pflugers Arch. 2016 Feb;468(2):177-92. doi: 10.1007/s00424-015-1732-2. Epub 2015 Sep 4. PMID: 26336837; PMCID: PMC4715775. [144] Ruas M, Rietdorf K, Arredouani A, Davis LC, Lloyd-Evans E, Koegel H, Funnell TM, Morgan AJ, Ward JA, Watanabe K, Cheng X, Churchill GC, Zhu MX, Platt FM, Wessel GM, Parrington J, Galione A. Purified TPC isoforms form NAADP receptors with distinct roles for Ca2+ signaling and endolysosomal trafficking. Curr Biol. 2010 Apr 27;20(8):703-9. doi: 10.1016/j.cub.2010.02.049. Epub 2010 Mar 25. PMID: 20346675; PMCID: PMC2861162. [145] Grimm C, Hassan S, Wahl-Schott C, Biel M. Role of TRPML and two-pore channels in endolysosomal cation homeostasis. J Pharmacol Exp Ther. 2012 Aug;342(2):236-44. doi: 10.1124/jpet.112.192880. Epub 2012 Apr 19. PMID: 22518024. [146] Kiselyov KK, Ahuja M, Rybalchenko V, Patel S, Muallem S. The intracellular Ca²⁺ channels of membrane traffic. Channels (Austin). 2012 Sep-Oct;6(5):344-51. doi: 10.4161/chan.21723. Epub 2012 Aug 21. PMID: 22907062; PMCID: PMC3508773. [147] Bae M, Patel N, Xu H, Lee M, Tominaga-Yamanaka K, Nath A, Geiger J, Gorospe M, Mattson MP, Haughey NJ. Activation of TRPML1 clears intraneuronal Aβ in preclinical models of HIV infection. J Neurosci. 2014 Aug 20;34(34):11485-503. doi: 10.1523/JNEUROSCI.0210-14.2014. PMID: 25143627; PMCID: PMC4138351. [148] Favia A, Desideri M, Gambara G, D'Alessio A, Ruas M, Esposito B, Del Bufalo D, Parrington J, Ziparo E, Palombi F, Galione A, Filippini A. VEGF-induced neoangiogenesis is mediated by NAADP and two-pore channel-2-dependent Ca2+ signaling. Proc Natl Acad Sci U S A. 2014 Nov 4;111(44):E4706-15. doi: 10.1073/pnas.1406029111. Epub 2014 Oct 20. PMID: 25331892; PMCID: PMC4226099. [149] Grimm C, Holdt LM, Chen CC, Hassan S, Müller C, Jörs S, Cuny H, Kissing S, Schröder B, Butz E, Northoff B, Castonguay J, Luber CA, Moser M, Spahn S, Lüllmann-Rauch R, Fendel C, Klugbauer N, Griesbeck O, Haas A, Mann M, Bracher F, Teupser D, Saftig P, Biel M, Wahl-Schott C. High susceptibility to fatty liver disease in two-pore channel 2-deficient mice. Nat Commun. 2014 Aug 21;5:4699. doi: 10.1038/ncomms5699. PMID: 25144390. [150] Lin-Moshier Y, Keebler MV, Hooper R, Boulware MJ, Liu X, Churamani D, Abood ME, Walseth TF, Brailoiu E, Patel S, Marchant JS. The Two-pore channel (TPC) interactome unmasks isoform-specific roles for TPCs in endolysosomal morphology and cell pigmentation. Proc Natl Acad Sci U S A. 2014 Sep 9;111(36):13087-92. doi: 10.1073/pnas.1407004111. Epub 2014 Aug 25. PMID: 25157141; PMCID: PMC4246952. [151] Lin PH, Duann P, Komazaki S, Park KH, Li H, Sun M, Sermersheim M, Gumpper K, Parrington J, Galione A, Evans AM, Zhu MX, Ma J. Lysosomal two-pore channel subtype 2 (TPC2) regulates skeletal muscle autophagic signaling. J Biol Chem. 2015 Feb 6;290(6):3377-89. doi: 10.1074/jbc.M114.608471. Epub 2014 Dec 5. PMID: 25480788; PMCID: PMC4319008. [152] Ambrosio AL, Boyle JA, Aradi AE, Christian KA, Di Pietro SM. TPC2 controls pigmentation by regulating melanosome pH and size. Proc Natl Acad Sci U S A. 2016 May 17;113(20):5622-7. doi: 10.1073/pnas.1600108113. Epub 2016 May 2. PMID: 27140606; PMCID: PMC4878521. [153] Bellono NW, Escobar IE, Oancea E. A melanosomal two-pore sodium channel regulates pigmentation. Sci Rep. 2016 May 27;6:26570. doi: 10.1038/srep26570. Erratum in: Sci Rep. 2016 Aug 30;6:32274. doi: 10.1038/srep32274. PMID: 27231233; PMCID: PMC4882593. [154] Castonguay J, Orth JHC, Müller T, Sleman F, Grimm C, Wahl-Schott C, Biel M, Mallmann RT, Bildl W, Schulte U, Klugbauer N. The two-pore channel TPC1 is required for efficient protein processing through early and recycling endosomes. Sci Rep. 2017 Aug 30;7(1):10038. doi: 10.1038/s41598-017-10607-4. PMID: 28855648; PMCID: PMC5577145. [155] PJ, Ruas M, Pan Z, Cheng X, Arredouani A, Hao X, Tang J, Rietdorf K, Teboul L, Chuang KT, Lin P, Xiao R, Wang C, Zhu Y, Lin Y, Wyatt CN, Parrington J, Ma J, Evans AM, Galione A, Zhu MX. NAADP mobilizes calcium from acidic organelles through two-pore channels. Nature. 2009 May 28;459(7246):596-600. doi: 10.1038/nature08030. Epub 2009 Apr 22. PMID: 19387438; PMCID: PMC2761823. [156] Arredouani A, Ruas M, Collins SC, Parkesh R, Clough F, Pillinger T, Coltart G, Rietdorf K, Royle A, Johnson P, Braun M, Zhang Q, Sones W, Shimomura K, Morgan AJ, Lewis AM, Chuang KT, Tunn R, Gadea J, Teboul L, Heister PM, Tynan PW, Bellomo EA, Rutter GA, Rorsman P, Churchill GC, Parrington J, Galione A. Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) and Endolysosomal Two-pore Channels Modulate Membrane Excitability and Stimulus-Secretion Coupling in Mouse Pancreatic β Cells. J Biol Chem. 2015 Aug 28;290(35):21376-92. doi: 10.1074/jbc.M115.671248. Epub 2015 Jul 7. PMID: 26152717; PMCID: PMC4571866. [157] Ou X, Liu Y, Lei X, Li P, Mi D, Ren L, Guo L, Guo R, Chen T, Hu J, Xiang Z, Mu Z, Chen X, Chen J, Hu K, Jin Q, Wang J, Qian Z. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun. 2020 Mar 27;11(1):1620. doi: 10.1038/s41467-020-15562-9. Erratum in: Nat Commun. 2021 Apr 1;12(1):2144. doi: 10.1038/s41467-021-22614-1. PMID: 32221306; PMCID: PMC7100515. [158] Wahl-Schott C, Freichel M, Hennis K, Philippaert K, Ottenheijm R, Tsvilovskyy V, Varbanov H. Characterization of Endo-Lysosomal Cation Channels Using Calcium Imaging. Handb Exp Pharmacol. 2023;278:277-304. doi: 10.1007/164_2023_637. PMID: 36894791.. [159] Palmer AE, Jin C, Reed JC, Tsien RY. Bcl-2-mediated alterations in endoplasmic reticulum Ca2+ analyzed with an improved genetically encoded fluorescent sensor. Proc Natl Acad Sci U S A. 2004 Dec 14;101(50):17404-9. doi: 10.1073/pnas.0408030101. Epub 2004 Dec 7. PMID: 15585581; PMCID: PMC535104. [160] Brailoiu E, Churamani D, Cai X, Schrlau MG, Brailoiu GC, Gao X, Hooper R, Boulware MJ, Dun NJ, Marchant JS, Patel S. Essential requirement for two-pore channel 1 in NAADP-mediated calcium signaling. J Cell Biol. 2009 Jul 27;186(2):201-9. doi: 10.1083/jcb.200904073. Epub 2009 Jul 20. PMID: 19620632; PMCID: PMC2717647. [161] Morgan AJ, Davis LC, Galione A. Imaging approaches to measuring lysosomal calcium. Methods Cell Biol. 2015;126:159-95. doi: 10.1016/bs.mcb.2014.10.031. Epub 2015 Jan 19. PMID: 25665446. [162] Davis LC, Morgan AJ, Galione A. NAADP-regulated two-pore channels drive phagocytosis through endo-lysosomal Ca2+ nanodomains, calcineurin and dynamin. EMBO J. 2020 Jul 15;39(14):e104058. doi: 10.15252/embj.2019104058. Epub 2020 Jun 8. PMID: 32510172; PMCID: PMC7360967. [163] Gangavarapu K, Latif AA, Mullen JL, Alkuzweny M, Hufbauer E, Tsueng G, Haag E, Zeller M, Aceves CM, Zaiets K, Cano M, Zhou X, Qian Z, Sattler R, Matteson NL, Levy JI, Lee RTC, Freitas L, Maurer-Stroh S; GISAID Core and Curation Team; Suchard MA, Wu C, Su AI, Andersen KG, Hughes LD. Outbreak.info genomic reports: scalable and dynamic surveillance of SARS-CoV-2 variants and mutations. Nat Methods. 2023 Apr;20(4):512-522. doi: 10.1038/s41592-023-01769-3. Epub 2023 Feb 23. PMID: 36823332; PMCID: PMC10399614. [164] Madeira F, Madhusoodanan N, Lee J, Eusebi A, Niewielska A, Tivey ARN, Lopez R, Butcher S. The EMBL-EBI Job Dispatcher sequence analysis tools framework in 2024. Nucleic Acids Res. 2024 Apr 10:gkae241. doi: 10.1093/nar/gkae241. Epub ahead of print. PMID: 38597606. [165] Drozdetskiy A, Cole C, Procter J, Barton GJ. JPred4: a protein secondary structure prediction server. Nucleic Acids Res. 2015 Jul 1;43(W1):W389-94. doi: 10.1093/nar/gkv332. Epub 2015 Apr 16. PMID: 25883141; PMCID: PMC4489285. [166] Davis LC, Morgan AJ, Galione A. Optical profiling of autonomous Ca2+ nanodomains generated by lysosomal TPC2 and TRPML1. Cell Calcium. 2023 Dec;116:102801. doi: 10.1016/j.ceca.2023.102801. Epub 2023 Sep 18. PMID: 37742482. [167] Yuan Y, Jaślan D, Rahman T, Bolsover SR, Arige V, Wagner LE 2nd, Abrahamian C, Tang R, Keller M, Hartmann J, Rosato AS, Weiden EM, Bracher F, Yule DI, Grimm C, Patel S. Segregated cation flux by TPC2 biases Ca2+ signaling through lysosomes. Nat Commun. 2022 Aug 2;13(1):4481. doi: 10.1038/s41467-022-31959-0. PMID: 35918320; PMCID: PMC9346130. [168] Bolte S, Cordelières FP. A guided tour into subcellular colocalization analysis in light microscopy. J Microsc. 2006 Dec;224(Pt 3):213-32. doi: 10.1111/j.1365-2818.200 6.01706.x. PMID: 17210054. [169] Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012 Jul;9(7):671-5. doi: 10.1038/nmeth.2089. PMID: 22930834; PMCID: PMC5554542. [170] Torrens-Fontanals M, Peralta-García A, Talarico C, Guixà-González R, Giorgino T, Selent J. SCoV2-MD: a database for the dynamics of the SARS-CoV-2 proteome and variant impact predictions. Nucleic Acids Res. 2022 Jan 7;50(D1):D858-D866. doi: 10.1093/nar/gkab977. PMID: 34761257; PMCID: PMC8689960. [171] Vaser R, Adusumalli S, Leng SN, Sikic M, Ng PC. SIFT missense predictions for genomes. Nat Protoc. 2016 Jan;11(1):1-9. doi: 10.1038/nprot.2015.123. Epub 2015 Dec 3. PMID: 26633127. [172] Sapozhnikov Y, Patel JS, Ytreberg FM, Miller CR. Statistical modeling to quantify the uncertainty of FoldX-predicted protein folding and binding stability. BMC Bioinformatics. 2023 Nov 12;24(1):426. Doi: 10.1186/s12859-023-05537-0. PMID: 37953256; PMCID: PMC10642056. [173] Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph. 1996 Feb;14(1):33-8, 27-8. doi: 10.1016/0263-7855(96)00018-5. PMID: 8744570. [174] Chu DKW, Hui KPY, Gu H, Ko RLW, Krishnan P, Ng DYM, Liu GYZ, Wan CKC, Cheung MC, Ng KC, Nicholls JM, Tsang DNC, Peiris M, Chan MCW, Poon LLM. Introduction of ORF3a-Q57H SARS-CoV-2 Variant Causing Fourth Epidemic Wave of COVID-19, Hong Kong, China. Emerg Infect Dis. 2021 May;27(5):1492-1495. doi: 10.3201/eid2705.210015. PMID: 33900193; PMCID: PMC8084491. [175] Rout M, Mishra S, Panda S, Dehury B, Pati S. Lipid and cholesterols modulate the dynamics of SARS-CoV-2 viral ion channel ORF3a and its pathogenic variants. Int J Biol Macromol. 2024 Jan;254(Pt 3):127986. doi: 10.1016/j.ijbiomac.2023.127986. Epub 2023 Nov 8. PMID: 37944718. [178] Miao G, Zhao H, Li Y, Ji M, Chen Y, Shi Y, Bi Y, Wang P, Zhang H. ORF3a of the COVID-19 virus SARS-CoV-2 blocks HOPS complex-mediated assembly of the SNARE complex required for autolysosome formation. Dev Cell. 2021 Feb 22;56(4):427-442.e5. doi: 10.1016/j.devcel.2020.12.010. Epub 2020 Dec 16. PMID: 33422265; PMCID: PMC7832235. [179] Walia K, Sharma A, Paul S, Chouhan P, Kumar G, Ringe R, Sharma M, Tuli A. SARS-CoV-2 virulence factor ORF3a blocks lysosome function by modulating TBC1D5-dependent Rab7 GTPase cycle. Nat Commun. 2024 Mar 6;15(1):2053. doi: 10.1038/s41467-024-46417-2. PMID: 38448435; PMCID: PMC10918171. [180] Ghosh S, Dellibovi-Ragheb TA, Kerviel A, Pak E, Qiu Q, Fisher M, Takvorian PM, Bleck C, Hsu VW, Fehr AR, Perlman S, Achar SR, Straus MR, Whittaker GR, de Haan CAM, Kehrl J, Altan-Bonnet G, Altan-Bonnet N. β-Coronaviruses Use Lysosomes for Egress Instead of the Biosynthetic Secretory Pathway. Cell. 2020 Dec 10;183(6):1520-1535.e14. doi: 10.1016/j.cell.2020.10.039. Epub 2020 Oct 27. PMID: 33157038; PMCID: PMC7590812. [181] Pu J, Guardia CM, Keren-Kaplan T, Bonifacino JS. Mechanisms and functions of lysosome positioning. J Cell Sci. 2016 Dec 1;129(23):4329-4339. doi: 10.1242/jcs.196287. Epub 2016 Oct 31. PMID: 27799357; PMCID: PMC5201012. [182] Tancini B, Buratta S, Delo F, Sagini K, Chiaradia E, Pellegrino RM, Emiliani C, Urbanelli L. Lysosomal Exocytosis: The Extracellular Role of an Intracellular Organelle. Membranes (Basel). 2020 Dec 9;10(12):406. doi: 10.3390/membranes10120406. PMID: 33316913; PMCID: PMC7764620. [183] Rodríguez A, Webster P, Ortego J, Andrews NW. Lysosomes behave as Ca2+ -regulated exocytic vesicles in fibroblasts and epithelial cells. J Cell Biol. 1997 Apr 7;137(1):93-104. doi: 10.1083/jcb.137.1.93. PMID: 9105039; PMCID: PMC2139854. [184] Saftig P, Klumperman J. Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nat Rev Mol Cell Biol. 2009 Sep;10(9):623-35. doi: 10.1038/nrm2745. Epub 2009 Aug 12. PMID: 19672277. [185] Fam MS, Sedky CA, Turky NO, Breitinger HG, Breitinger U. Channel activity of SARS-CoV-2 viroporin ORF3a inhibited by adamantanes and phenolic plant metabolites. Sci Rep. 2023 Apr 1;13(1):5328. Doi: 10.1038/s41598-023-31764-9. PMID: 37005439; PMCID: PMC10067842. [186] Kang YL, Chou YY, Rothlauf PW, Liu Z, Soh TK, Cureton D, Case JB, Chen RE, Diamond MS, Whelan SPJ, Kirchhausen T. Inhibition of PIKfyve kinase prevents infection by Zaire ebolavirus and SARS-CoV-2. Proc Natl Acad Sci U S A. 2020 Aug 25;117(34):20803-20813. doi: 10.1073/pnas.2007837117. Epub 2020 Aug 6. PMID: 32764148; PMCID: PMC7456157. [187]Chen C, Sidransky E, Chen Y. Lyso-IP: Uncovering Pathogenic Mechanisms of Lysosomal Dysfunction. Biomolecules. 2022 Apr 21;12(5):616. doi: 10.3390/biom12050616. PMID: 35625544; PMCID: PMC9138597. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95084 | - |
| dc.description.abstract | 鈣離子在細胞內體系統中扮演關鍵角色。它們不僅透過內溶小體通道驅使內體融合、幫助溶小體重構,也參與鈣信號傳遞以及膜蛋白運輸。這些功能對維持細胞的調控、功能穩定與平衡非常重要。而當病毒感染細胞時,鈣離子訊號傳導成為病毒侵入到釋出的生命週期中的關鍵因子。
病毒通道蛋白會破壞膜電位梯度及細胞穩態,並影響胞內囊泡運輸及訊號傳導,達到大量複製繁衍的目的。透過微觀顯像工具的進步以及全球基因組即時比對的監測,現今已然能推測病毒蛋白質的功能性,並瞭解結構中錯義胺基酸取代對病毒感染致死力的影響。 SARS-CoV-2 ORF3a,依據 cryo-EM 結構和序列比對的相似性,被描述為一種多功能的病毒通道蛋白。ORF3a 蛋白在內溶小體系統的作用日益受到關注。Two pore segment channel 2 (TPC2) 則是表達在內溶小體膜上的的非選擇性陽離子通道,藉由調控內溶小體奈米域鈣離子的釋放,調節內溶小體的胞內運輸及生理功能。近期研究則指出利用 TPC2 拮抗劑能降低 SARS-CoV-2 病毒進入細胞的程度,然而其詳細機制仍不明。 在這裡,我們假設SARS-CoV-2 ORF3a會直接或間接影響內溶小體系統的奈米域鈣離子訊號。我們利用 SARS-CoV-2 ORF3a 錯義突變可能造成病毒膜蛋白功能的增益或喪失,觀察是否影響 TPC2 所介導內溶小體奈米域鈣離子訊號。透過活細胞影像,我們觀察到 SARS-CoV-2 ORF3a 與溶小體陽離子通道 TPC2 共表達,能夠影響細胞內奈米域鈣訊號的釋放。透過共軛焦顯微鏡和分子動力學模擬,來檢查 SARS-CoV-2 ORF3a 的細胞內分佈和蛋白結構的穩定性我們觀察到SARS-CoV-2 ORF3a 與TPC2 高度共定位,且Q57E突變導致的功能喪失與ORF3a蛋白構型的崩潰無關。 我們的結果闡明 SARS-CoV-2 ORF3a 極有可能造成內溶小體中鈣離子梯度的變化,從而影響內溶小體的通道對鈣離子的調控機制,間接揭示SARS-CoV-2 ORF3a 為一個鈣離子通道的可能性。因此,開發針對 ORF3a 的拮抗劑來影響病毒感染的調節機制可能是一種有效的治療策略。 | zh_TW |
| dc.description.abstract | Intracellular calcium ions play a crucial role in the intracellular system. They drive the process of endolysosomal fusion through endolysosomal channels, assist in the reconstruction of compartments, participate in calcium signalling pathways, and transport membrane proteins. These functions are vital for maintaining cellular regulation, functional stability, and balance. During viral infection, Ca2+ signalling becomes a critical factor in the viral life cycle, from entry to release.
Viroporins disrupt membrane potential gradients and cellular homeostasis, affecting intracellular vesicle transport and signalling to replicate themselves extensively. With advancements in microscopic imaging tools and real-time global genome alignment monitoring, it is now possible to infer the functional properties of viral protein subunits and understand the impact of missence amino acid substitutions on viral pathogenicity. SARS-CoV-2 ORF3a, based on cryo-EM structure and sequence alignment, is described as a multifunctional viral pore protein. The role of the ORF3a protein in the endolysosomal system has garnered increasing attention. Two pore segment channel 2 (TPC2) is a non-selective cation channel expressed on the endolysosomal membrane, regulating intracellular transport and physiological functions of endolysosomes by controlling the release of calcium ions within endolysosomal nanodomains. Recent studies have indicated that using TPC2 inhibitors can reduce the extent of SARS-CoV-2 viral entry into cells, though the detailed mechanism remains unclear. Here, we hypothesise that SARS-CoV-2 ORF3a directly or indirectly affects the calcium ion signalling within endolysosomal nanodomains. First, we investigate whether missence mutations in SARS-CoV-2 ORF3a, which may result in gain or loss of function in viral membrane proteins, influence TPC2-mediated endolysosomal calcium ion signalling. Through live-cell imaging, we observed that co-expression of SARS-CoV-2 ORF3a and the lysosomal cation channel TPC2 affects intracellular nanodomain calcium signalling. Using confocal microscopy and molecular dynamics simulations to examine the intracellular distribution and structural stability of SARS-CoV-2 ORF3a, we observed that SARS-CoV-2 ORF3a is highly co-localized with TPC2. Additionally, the loss of function caused by the Q57E mutation is not related to the collapse of the ORF3a protein conformation. Our results elucidate that SARS-CoV-2 ORF3a likely causes changes in calcium ion gradients within endolysosomes, thereby affecting the regulatory mechanisms of calcium ions in endolysosomal channels. This indirectly reveals the potential of SARS-CoV-2 ORF3a as a calcium ion channel. Therefore, developing antagonists targeting SARS-CoV-2 ORF3a to modulate viral infection mechanisms may be an effective therapeutic strategy. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-28T16:10:56Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-28T16:10:56Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii 英文摘要 iv 1 前言 1 1.1. SARS-CoV2 病毒 1 1.2. SARS-CoV2 ORF3a 蛋白 5 1.3. 溶小體 8 1.4. 雙孔通道 (TPCs) 以及瞬時受體電位陽離子通道粘脂蛋白亞族 (TRPMLs) 9 1.5. 病原體劫持溶小體系統 13 1.6. 透過溶小體鈣影像鑑定陽離子通道功能 15 1.7. 具體目標 17 2 材料和方法 18 2.1. 質體來源 18 2.2. 細菌轉型 18 2.3. 質體萃取 20 2.4. 限制性內切酶反應 21 2.5. 瓊脂凝膠電泳 21 2.6. 定點突變 22 2.7. 動物細胞培養步驟 24 2.8. 細胞計數及增殖檢測 25 2.9. 質體DNA的複轉染 26 2.10. 基因重組編碼 (GECI) 之鈣指示劑鈣影像技術 27 2.11. 共軛焦顯微影像技術 28 2.12. ORF3a 序列比對與結構分析 29 2.13. 分子動力學模擬 29 2.14. 統計分析 30 3 結果 31 3.1. 胺基酸突變顯著影響ORF3a 蛋白的結構穩定性 31 3.2. ORF3a確實影響透過TPC2通道的Ca2+的釋放 32 3.3. 辨識 ORF3a 突變體表現定位的變化 33 3.4. 透過分子動力學模擬闡明 ORF3a 突變體對結構穩定性的影響 34 4 討論 36 4.1. ORF3a蛋白之特定位點的突變影響其結構穩定性 36 4.2. ORF3a 蛋白影響 TPC2、Rab7 和鈣通量的相互間穩態 37 4.3. 已確定的潛在抑制劑化合物需要加緊臨床試驗 39 4.4. 結論與未來展望 39 參考文獻 41 圖 次 75 圖1 . SARS-CoV-2 ORF3a 蛋白的胺基酸突變可能影響功能域結構的穩定性。 76 圖2. ORF3a 影響 TPC2 介導的溶小體鈣濃度 78 圖3. ORF3a 突變體S58L-Q116L 與 TPC2 和 TRPML3 的 Z-Stack 共定位顯示出顯著差異 80 圖4. ORF3a 突變體S58L-Q116L 與 TPC2 和 TRPML3 的 2D 螢光強度圖顯示出顯著差異 83 圖5. ORF3a 突變體S58L-Q116L 與 TPC2 和 TRPML3的 3D 重建顯示面積和分佈的差異。 86 圖6. 分子動力學模擬顯示結構穩定性因特定位點的氨基酸突變而變化。 88 表 次 89 表1. 突變位點之分子動力學模擬的影響指數 89 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | TPC2 | zh_TW |
| dc.subject | MD trajectory | zh_TW |
| dc.subject | Colocalization | zh_TW |
| dc.subject | Lysosome | zh_TW |
| dc.subject | ORF3a | zh_TW |
| dc.subject | SARS-CoV2 | zh_TW |
| dc.subject | Calcium Imaging | zh_TW |
| dc.subject | MD trajectory | en |
| dc.subject | SARS-CoV2 | en |
| dc.subject | ORF3a | en |
| dc.subject | Lysosome | en |
| dc.subject | Calcium Imaging | en |
| dc.subject | Colocalization | en |
| dc.subject | TPC2 | en |
| dc.title | 研究 SARS-CoV-2 ORF3a 的錯義突變對溶小體鈣穩態的影響 | zh_TW |
| dc.title | Investigating Missense Mutations of SARS-CoV-2 ORF3a in Lysosomal Calcium Homeostasis | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 許豪仁;林靜宜;郭靜穎;趙苔伶 | zh_TW |
| dc.contributor.oralexamcommittee | Hao-Jen Hsu;JING-YI LIN;CHING-YING KUO;TAI-LING CHAO | en |
| dc.subject.keyword | SARS-CoV2,ORF3a,Lysosome,Calcium Imaging,MD trajectory,Colocalization,TPC2, | zh_TW |
| dc.subject.keyword | SARS-CoV2,ORF3a,Lysosome,Calcium Imaging,MD trajectory,Colocalization,TPC2, | en |
| dc.relation.page | 89 | - |
| dc.identifier.doi | 10.6342/NTU202403282 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-05 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 醫學檢驗暨生物技術學系 | - |
| dc.date.embargo-lift | 2029-08-04 | - |
| 顯示於系所單位: | 醫學檢驗暨生物技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 3.16 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
