請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95082
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳青錫 | zh_TW |
dc.contributor.advisor | Ching-Shyi Wu | en |
dc.contributor.author | 李祐維 | zh_TW |
dc.contributor.author | Yu-Wei Li | en |
dc.date.accessioned | 2024-08-28T16:10:21Z | - |
dc.date.available | 2024-08-29 | - |
dc.date.copyright | 2024-08-28 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-07-02 | - |
dc.identifier.citation | 1. Groelly, F.J., Fawkes, M., Dagg, R.A., Blackford, A.N. & Tarsounas, M. Targeting DNA damage response pathways in cancer. Nat Rev Cancer 23, 78-94 (2023).
2. Hahm, J.Y., Park, J., Jang, E.S. & Chi, S.W. 8-Oxoguanine: from oxidative damage to epigenetic and epitranscriptional modification. Exp Mol Med 54, 1626-1642 (2022). 3. Yimit, A., Adebali, O., Sancar, A. & Jiang, Y. Differential damage and repair of DNA-adducts induced by anti-cancer drug cisplatin across mouse organs. Nat Commun 10, 309 (2019). 4. Li, F., Jiang, T., Li, Q. & Ling, X. Camptothecin (CPT) and its derivatives are known to target topoisomerase I (Top1) as their mechanism of action: did we miss something in CPT analogue molecular targets for treating human disease such as cancer? Am J Cancer Res 7, 2350-2394 (2017). 5. Jackson, S.P. & Bartek, J. The DNA-damage response in human biology and disease. Nature 461, 1071-1078 (2009). 6. Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discov 12, 31-46 (2022). 7. Abraham, R.T. Mammalian target of rapamycin: immunosuppressive drugs uncover a novel pathway of cytokine receptor signaling. Curr Opin Immunol 10, 330-336 (1998). 8. Bannister, A.J., Gottlieb, T.M., Kouzarides, T. & Jackson, S.P. c-Jun is phosphorylated by the DNA-dependent protein kinase in vitro; definition of the minimal kinase recognition motif. Nucleic Acids Res 21, 1289-1295 (1993). 9. Kim, S.T., Lim, D.S., Canman, C.E. & Kastan, M.B. Substrate specificities and identification of putative substrates of ATM kinase family members. J Biol Chem 274, 37538-37543 (1999). 10. Gell, D. & Jackson, S.P. Mapping of protein-protein interactions within the DNA-dependent protein kinase complex. Nucleic Acids Res 27, 3494-3502 (1999). 11. Singleton, B.K., Torres-Arzayus, M.I., Rottinghaus, S.T., Taccioli, G.E. & Jeggo, P.A. The C terminus of Ku80 activates the DNA-dependent protein kinase catalytic subunit. Mol Cell Biol 19, 3267-3277 (1999). 12. Jette, N. & Lees-Miller, S.P. The DNA-dependent protein kinase: A multifunctional protein kinase with roles in DNA double strand break repair and mitosis. Prog Biophys Mol Biol 117, 194-205 (2015). 13. Falck, J., Coates, J. & Jackson, S.P. Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature 434, 605-611 (2005). 14. Shiloh, Y. & Ziv, Y. The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat Rev Mol Cell Biol 14, 197-210 (2013). 15. Bakkenist, C.J. & Kastan, M.B. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421, 499-506 (2003). 16. Savic, V., et al. Formation of dynamic gamma-H2AX domains along broken DNA strands is distinctly regulated by ATM and MDC1 and dependent upon H2AX densities in chromatin. Mol Cell 34, 298-310 (2009). 17. Meier, A., et al. Spreading of mammalian DNA-damage response factors studied by ChIP-chip at damaged telomeres. Embo J 26, 2707-2718 (2007). 18. Lavin, M.F. Ataxia-telangiectasia: from a rare disorder to a paradigm for cell signalling and cancer. Nat Rev Mol Cell Biol 9, 759-769 (2008). 19. Chehab, N.H., Malikzay, A., Appel, M. & Halazonetis, T.D. Chk2/hCds1 functions as a DNA damage checkpoint in G(1) by stabilizing p53. Genes Dev 14, 278-288 (2000). 20. Blasina, A., et al. A human homologue of the checkpoint kinase Cds1 directly inhibits Cdc25 phosphatase. Curr Biol 9, 1-10 (1999). 21. You, Z., et al. CtIP links DNA double-strand break sensing to resection. Mol Cell 36, 954-969 (2009). 22. Yazinski, S.A. & Zou, L. Functions, Regulation, and Therapeutic Implications of the ATR Checkpoint Pathway. Annu Rev Genet 50, 155-173 (2016). 23. Liu, M.Y., et al. ATR phosphorylates DHX9 at serine 321 to suppress R-loop accumulation upon genotoxic stress. Nucleic Acids Res 52, 204-222 (2024). 24. Delacroix, S., Wagner, J.M., Kobayashi, M., Yamamoto, K. & Karnitz, L.M. The Rad9-Hus1-Rad1 (9-1-1) clamp activates checkpoint signaling via TopBP1. Genes Dev 21, 1472-1477 (2007). 25. Liu, Q., et al. Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes Dev 14, 1448-1459 (2000). 26. Busino, L., et al. Degradation of Cdc25A by beta-TrCP during S phase and in response to DNA damage. Nature 426, 87-91 (2003). 27. Jin, J., et al. SCFbeta-TRCP links Chk1 signaling to degradation of the Cdc25A protein phosphatase. Genes Dev 17, 3062-3074 (2003). 28. Jazayeri, A., et al. ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks. Nat Cell Biol 8, 37-45 (2006). 29. Myers, J.S. & Cortez, D. Rapid activation of ATR by ionizing radiation requires ATM and Mre11. J Biol Chem 281, 9346-9350 (2006). 30. Yoo, H.Y., Kumagai, A., Shevchenko, A., Shevchenko, A. & Dunphy, W.G. Ataxia-telangiectasia mutated (ATM)-dependent activation of ATR occurs through phosphorylation of TopBP1 by ATM. J Biol Chem 282, 17501-17506 (2007). 31. Stiff, T., et al. ATR-dependent phosphorylation and activation of ATM in response to UV treatment or replication fork stalling. Embo J 25, 5775-5782 (2006). 32. Modrich, P. & Lahue, R. Mismatch repair in replication fidelity, genetic recombination, and cancer biology. Annu Rev Biochem 65, 101-133 (1996). 33. Krokan, H.E. & Bjørås, M. Base excision repair. Cold Spring Harb Perspect Biol 5, a012583 (2013). 34. Sancar, A. Mechanisms of DNA excision repair. Science 266, 1954-1956 (1994). 35. Tounekti, O., Kenani, A., Foray, N., Orlowski, S. & Mir, L.M. The ratio of single- to double-strand DNA breaks and their absolute values determine cell death pathway. Br J Cancer 84, 1272-1279 (2001). 36. Blackford, A.N. & Jackson, S.P. ATM, ATR, and DNA-PK: The Trinity at the Heart of the DNA Damage Response. Mol Cell 66, 801-817 (2017). 37. Chang, H.H.Y., Pannunzio, N.R., Adachi, N. & Lieber, M.R. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat Rev Mol Cell Biol 18, 495-506 (2017). 38. Mao, Z., Bozzella, M., Seluanov, A. & Gorbunova, V. Comparison of nonhomologous end joining and homologous recombination in human cells. DNA Repair (Amst) 7, 1765-1771 (2008). 39. Lescale, C., et al. Specific Roles of XRCC4 Paralogs PAXX and XLF during V(D)J Recombination. Cell Rep 16, 2967-2979 (2016). 40. Balmus, G., et al. Synthetic lethality between PAXX and XLF in mammalian development. Genes Dev 30, 2152-2157 (2016). 41. Li, X. & Heyer, W.D. Homologous recombination in DNA repair and DNA damage tolerance. Cell Res 18, 99-113 (2008). 42. Sung, P. & Klein, H. Mechanism of homologous recombination: mediators and helicases take on regulatory functions. Nat Rev Mol Cell Biol 7, 739-750 (2006). 43. Ashworth, A., Lord, C.J. & Reis-Filho, J.S. Genetic interactions in cancer progression and treatment. Cell 145, 30-38 (2011). 44. Bryant, H.E., et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434, 913-917 (2005). 45. Farmer, H., et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434, 917-921 (2005). 46. Ito, S., Koso, H., Sakamoto, K. & Watanabe, S. RNA helicase DHX15 acts as a tumour suppressor in glioma. Br J Cancer 117, 1349-1359 (2017). 47. Schwer, B. & Gross, C.H. Prp22, a DExH-box RNA helicase, plays two distinct roles in yeast pre-mRNA splicing. Embo J 17, 2086-2094 (1998). 48. Wilkinson, M.E., Charenton, C. & Nagai, K. RNA Splicing by the Spliceosome. Annu Rev Biochem 89, 359-388 (2020). 49. Teigelkamp, S., Newman, A.J. & Beggs, J.D. Extensive interactions of PRP8 protein with the 5' and 3' splice sites during splicing suggest a role in stabilization of exon alignment by U5 snRNA. Embo J 14, 2602-2612 (1995). 50. Zanini, I.M., Soneson, C., Lorenzi, L.E. & Azzalin, C.M. Human cactin interacts with DHX8 and SRRM2 to assure efficient pre-mRNA splicing and sister chromatid cohesion. J Cell Sci 130, 767-778 (2017). 51. English, M.A., et al. Incomplete splicing, cell division defects, and hematopoietic blockage in dhx8 mutant zebrafish. Dev Dyn 241, 879-889 (2012). 52. Kittler, R., et al. An endoribonuclease-prepared siRNA screen in human cells identifies genes essential for cell division. Nature 432, 1036-1040 (2004). 53. Xia, B., et al. Control of BRCA2 cellular and clinical functions by a nuclear partner, PALB2. Mol Cell 22, 719-729 (2006). 54. Pierce, A.J., Johnson, R.D., Thompson, L.H. & Jasin, M. XRCC3 promotes homology-directed repair of DNA damage in mammalian cells. Genes Dev 13, 2633-2638 (1999). 55. Adamson, B., Smogorzewska, A., Sigoillot, F.D., King, R.W. & Elledge, S.J. A genome-wide homologous recombination screen identifies the RNA-binding protein RBMX as a component of the DNA-damage response. Nat Cell Biol 14, 318-328 (2012). 56. Ramazi, S. & Zahiri, J. Posttranslational modifications in proteins: resources, tools and prediction methods. Database (Oxford) 2021(2021). 57. Myers, J.S., Zhao, R., Xu, X., Ham, A.J. & Cortez, D. Cyclin-dependent kinase 2 dependent phosphorylation of ATRIP regulates the G2-M checkpoint response to DNA damage. Cancer Res 67, 6685-6690 (2007). 58. Yarbro, J.W. Mechanism of action of hydroxyurea. Semin Oncol 19, 1-10 (1992). 59. Alam Khan, S. & Jawaid Akhtar, M. Structural modification and strategies for the enhanced doxorubicin drug delivery. Bioorg Chem 120, 105599 (2022). 60. de Sousa Cavalcante, L. & Monteiro, G. Gemcitabine: metabolism and molecular mechanisms of action, sensitivity and chemoresistance in pancreatic cancer. Eur J Pharmacol 741, 8-16 (2014). 61. Dardenne, E., et al. RNA helicases DDX5 and DDX17 dynamically orchestrate transcription, miRNA, and splicing programs in cell differentiation. Cell Rep 7, 1900-1913 (2014). 62. Nguyen, H.D., et al. Spliceosome Mutations Induce R Loop-Associated Sensitivity to ATR Inhibition in Myelodysplastic Syndromes. Cancer Res 78, 5363-5374 (2018). 63. Hsin, J.P. & Manley, J.L. The RNA polymerase II CTD coordinates transcription and RNA processing. Genes Dev 26, 2119-2137 (2012). 64. Ho, C.K. & Shuman, S. Distinct roles for CTD Ser-2 and Ser-5 phosphorylation in the recruitment and allosteric activation of mammalian mRNA capping enzyme. Mol Cell 3, 405-411 (1999). | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95082 | - |
dc.description.abstract | DHX8是一種首次在酵母菌中發現的DExH-box RNA解旋酶,在前體mRNA剪接的過程後期幫助mRNA從剪接體中脫離。研究表明,沒有DHX8表現的斑馬魚出現胚胎發育缺陷並死亡。然而,DHX8在人類中的確切功能仍然不清楚。
DNA損傷反應 (DDR) 在DNA損傷後被啟動,並由DDR激酶ATR、ATM和DNA-PK介導,它們調控下游生化路徑並促進DNA修復系統,其中包括同源重組修復(HR)。有研究發現若在人類癌細胞中敲除DHX8可能會影響HR的效率 ; 我們實驗室同仁之前的研究也表明,當癌細胞缺乏DHX8時會使細胞存活率降低,並且Chk1及RPA這兩個關鍵的ATR下游受質的磷酸化也會下降。這表明DHX8可能可以調控DDR及DNA修復系統。先前的蛋白質組學研究辨認了DHX8在紫外線照射後出現的兩個磷酸化位點 (S460 & T554) ,表明了DHX8的磷酸化可能在DDR或在正常情況下起作用。因此,我使用專一性抗體確認了DHX8的磷酸化位點,並發現S460的磷酸化是不會受DNA損傷而升高的,這表明DHX8的磷酸化可能涉及維持其正常功能。 於是在對正常細胞功能的研究中,我發現S460和T554的磷酸化對癌細胞的生長存活率並不是非常重要。根據數據庫預測的結果,我確認了S460的磷酸化是由細胞周期依賴性激酶 (CDKs) 調節的。考慮到細胞周期的調節在DDR中的重要性,我推測DHX8可能在有無DNA損傷的情況下皆能參與細胞周期的調節。 此外,基於DHX8與酵母菌中剪切活性的關聯,我發現抑制DHX8中S460的磷酸化不會影響特定基因的選擇性剪接 (Alternative splicing) 。然而抑制DHX8中S460和T554的磷酸化會影響其與RNA Pol II、PRP19和PRPF8等蛋白質的相互作用,而這些蛋白質參與了前體mRNA的剪切和RNA的加工。 綜上所述,DHX8的磷酸化在正常情況下可能在RNA的加工或其他生理功能中短暫地發揮作用。雖然取得了一些線索,但仍無法很好的闡明DHX8的生理功能。此外,DHX8在DNA損傷後調節DDR的相關機制仍需要進一步的研究。 | zh_TW |
dc.description.abstract | DHX8, a DExH-box RNA helicase first discovered in yeasts, helps mRNA detach from the spliceosome at the end of the pre-mRNA splicing process. Studies have shown that the loss of DHX8 in zebrafish led to embryo development defects and lethality. However, the exact function of DHX8 in humans remains largely unknown.
DNA damage response (DDR) is triggered after DNA damage and mediated by DDR kinases ATR, ATM, and DNA-PK, which regulate the downstream pathways that facilitate the DNA repair systems, including homologous recombination (HR). In human cancer cells, it was discovered that the loss of DHX8 might affect the efficiency of HR. Our previous research demonstrated that cancer cells lacking DHX8 exhibited reduced cell viability and decreased phosphorylation of the two critical ATR substrates, Chk1 and RPA. This suggests that DHX8 is likely to regulate the DDR and DNA repair. Proteomic data from previous studies identified two phosphorylation sites of DHX8 (S460 & T554) after exposure to UV radiation, indicating a potential role of DHX8 phosphorylation in DDR or normal function. Therefore, I confirmed the phosphorylation of DHX8 using specific antibodies and found that pS460 occurs independently of DNA damage, suggesting that the phosphorylation of DHX8 could be involved in its normal function. In my research on normal cellular function, I have discovered that phosphorylation at S460 and T554 is not essential for cancer cell viability. Based on the database prediction, I have confirmed that phosphorylation at S460 is regulated by Cyclin-dependent kinases (CDKs). Considering the significance of cell cycle regulation in DDR, DHX8 might be involved in cell cycle regulation with or without DNA damage. Furthermore, based on its association with splicing activities in yeast, I discovered that inhibiting DHX8 phosphorylation at S460 did not affect the alternative splicing of specific genes. However, inhibiting DHX8 pS460 and pT554 did affect its interaction with proteins such as RNA Pol II, PRP19, and PRPF8, which are involved in pre-mRNA splicing and RNA processing. DHX8 phosphorylation may be transient in RNA processing or other physiological functions under normal conditions. Although some clues were found, these findings still failed to elaborate on the exact function of DHX8. Besides, the function of DHX8 in regulating DDR after DNA damage requires further investigation. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-28T16:10:21Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-28T16:10:21Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 致謝 i
Abbreviation ii 中文摘要 iv Abstract vi Introduction 1 Aims 13 Material & Methods 14 Results 24 Discussions 37 Figures 42 Tables 75 Reference 80 | - |
dc.language.iso | en | - |
dc.title | 探討DHX8磷酸化在RNA加工及基因穩定性中的功能 | zh_TW |
dc.title | Investigation of the functions of DHX8 phosphorylation in RNA processing and genome stability | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 林敬哲;蔡欣祐 | zh_TW |
dc.contributor.oralexamcommittee | Jing-Jer Lin;Hsin-Yue Tsai | en |
dc.subject.keyword | DHX8,磷酸化,DNA損傷反應,細胞週期調控,替代性RNA剪切,RNA剪切相關因子,RNA 加工, | zh_TW |
dc.subject.keyword | DHX8,Phosphorylation,DNA damage response,The cell cycle regulation,Alternative splicing,Splicing factors,RNA processing, | en |
dc.relation.page | 84 | - |
dc.identifier.doi | 10.6342/NTU202401441 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2024-07-03 | - |
dc.contributor.author-college | 醫學院 | - |
dc.contributor.author-dept | 藥理學研究所 | - |
顯示於系所單位: | 藥理學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 目前未授權公開取用 | 3.36 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。