請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95077完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳佳堃 | zh_TW |
| dc.contributor.advisor | Jia-Kun Chen | en |
| dc.contributor.author | 羅筠筑 | zh_TW |
| dc.contributor.author | Yun-Chu Lo | en |
| dc.date.accessioned | 2024-08-28T16:08:47Z | - |
| dc.date.available | 2024-08-29 | - |
| dc.date.copyright | 2024-08-28 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-06-18 | - |
| dc.identifier.citation | 衛生福利部疾病管制署, COVID-19後疫情時代防疫政策白皮書. 2024: 衛生福利部疾病管制署.
Morawska, L. and J.J. Cao, Airborne transmission of SARS-CoV-2: The world should face the reality. Environment International, 2020. 139: p. 3. Morawska, L. and D.K. Milton, It Is Time to Address Airborne Transmission of Coronavirus Disease 2019 (COVID-19). Clinical Infectious Diseases, 2020. 71(9): p. 2311-2313. Tang, J.W., et al., Covid-19 has redefined airborne transmission Improving indoor ventilation and air quality will help us all to stay safe. Bmj-British Medical Journal, 2021. 372: p. 2. Scientific brief : SARS-CoV-2 transmission. 2021. Stewart, E.J., et al., ASHRAE position document on infectious aerosols. ASHRAE: Atlanta, GA, USA, 2020. Shin, H.W. and D.H. Kang, Estimation of airborne infection risk in a school classroom according to operation of a floor-standing type ventilation system. Journal of Building Engineering, 2023. 78: p. 16. Ahmadzadeh, M., E. Farokhi, and M. Shams, Investigating the effect of air conditioning on the distribution and transmission of COVID-19 virus particles. J Clean Prod, 2021. 316: p. 128147. Rothamer, D.A., et al., Strategies to minimize SARS-CoV-2 transmission in classroom settings: combined impacts of ventilation and mask effective filtration efficiency. Science and Technology for the Built Environment, 2021. 27(9): p. 1181-1203. Su, W., et al., Infection probability under different air distribution patterns. Building and Environment, 2022. 207: p. 16. Riley, E.C., G. Murphy, and R.L. Riley, AIRBORNE SPREAD OF MEASLES IN A SUBURBAN ELEMENTARY-SCHOOL. American Journal of Epidemiology, 1978. 107(5): p. 421-432. 方仲穎, 長照機構住房換氣型態與空氣傳播疾病風險研究, in 環境與職業健康科學研究所. 2022, 國立臺灣大學: 台北市. p. 147. Mirzaie, M., et al., COVID-19 spread in a classroom equipped with partition - A CFD approach. J Hazard Mater, 2021. 420: p. 126587. Moeller, L., et al., Numerical Flow Simulation on the Virus Spread of SARS-CoV-2 Due to Airborne Transmission in a Classroom. Int J Environ Res Public Health, 2022. 19(10). ASHRAE, ANSI/ASHRAE Standard 62-2001-Ventilation for Acceptable Indoor Air Quality. 2001: Atlanta, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. 內政部營建署, 建築技術規則. 2020. Lv, Y., H.F. Wang, and S.S. Wei, The transmission characteristics of indoor particles under two ventilation modes. Energy and Buildings, 2018. 163: p. 1-9. Zabihi, M., R. Li, and J. Brinkerhoff, Influence of indoor airflow on airborne disease transmission in a classroom. Building Simulation, 2024. 17(3): p. 355-370. Pereira, M.L., et al., Determination of particle concentration in the breathing zone for four different types of office ventilation systems. Building and Environment, 2009. 44(5): p. 904-911. Rim, D. and A. Novoselac, Ventilation effectiveness as an indicator of occupant exposure to particles from indoor sources. Building and Environment, 2010. 45(5): p. 1214-1224. Zhang, K., et al., Review of underfloor air distribution technology. Energy and Buildings, 2014. 85: p. 180-186. Wei, J.J. and Y.G. Li, Airborne spread of infectious agents in the indoor environment. American Journal of Infection Control, 2016. 44(9): p. S102-S108. Ren, J., et al., Numerical study of three ventilation strategies in a prefabricated COVID-19 inpatient ward. Building and Environment, 2021. 188: p. 107467. Ugarte-Anero, A., et al., Numerical study of different ventilation schemes in a classroom for efficient aerosol control. Heliyon, 2023. 9(9): p. e19961. van Doremalen, N., et al., Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. New England Journal of Medicine, 2020. 382(16): p. 1564-1567. Wang, J. and G. Du, COVID-19 may transmit through aerosol. Irish Journal of Medical Science, 2020. 189(4): p. 1143-1144. Gralton, J., et al., The role of particle size in aerosolised pathogen transmission: a review. Journal of infection, 2011. 62(1): p. 1-13. Cole, E.C. and C.E. Cook, Characterization of infectious aerosols in health care facilities: An aid to effective engineering controls and preventive strategies. American Journal of Infection Control, 1998. 26(4): p. 453-464. McBride, W.J.H., Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases, 7th edition. Sexual Health, 2010. 7(2): p. 218-218. Chao, C.Y.H., et al., Characterization of expiration air jets and droplet size distributions immediately at the mouth opening. Journal of aerosol science, 2009. 40(2): p. 122-133. AEROSOL TECHNOLOGY PROPERTIES, BEHAVIOR, AND MEASUREMENT OF AIRBORNE PARTICLES - HINDS,WC. Textile Research Journal, 1983. 53(8): p. 514-514. Versteeg, H.K., An introduction to computational fluid dynamics the finite volume method, 2/E. 2007: Pearson Education India. Corp., D.S.S., SolidWork Flow Simulation培訓教材 (繁體中文版). 2019: 博碩文化股份有限公司. 李曙婷, et al., 改善教室內空氣品質和熱環境的負壓通風設計——在教室采用負壓通風的可行性. 城市建筑, 2021(02). Duguid, J., The size and the duration of air-carriage of respiratory droplets and droplet-nuclei. Epidemiology & Infection, 1946. 44(6): p. 471-479. Izadyar, N. and W. Miller, Ventilation strategies and design impacts on indoor airborne transmission: A review. Building and Environment, 2022. 218: p. 109158. 劉肇昀 and 曾昭衡, 室內空氣品質改善策略-通風換氣. 土木水利, 2017. 44(6): p. 24-26. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95077 | - |
| dc.description.abstract | 良好的通風換氣系統對於有效地稀釋與去除潛在有害氣膠扮演了至關重要的角色,進而降低封閉環境內病毒傳播之風險。本研究利用計算流體力學(CFD)模擬台北市某大學階梯教室內之穩態流場,旨在評估不同換氣模式、流量、教室佔用人數對流場結構以及氣膠傳播之影響。本研究基於現有教室之前方抽氣模式(Model 1),欲比較其與天花板進氣抽氣模式(Model 2)在不同條件下之流場結構以及對氣膠分布之影響。研究結果發現,適中的流量對於有效排除微粒方面最為理想,過高的流量反而會導致湍急和不均勻的氣流模式,除了降低通風效率,也可能對室內的舒適度造成影響。此外,我們發現兩模型在教室滿員情境下之微粒排除率皆比教室梅花座情境下還要高,人員本身對氣流的阻力和引導作用可能是造成這一現象的主要原因之一,教室滿員情境下,人員形成的阻力使得氣流被迫繞行,增加氣流的混合度,較大程度减少死角的形成;而梅花座情境下,氣流較能夠自由地穿梭空位區域,進而形成更大型的迴流區。本研究發現教室滿員情境下,Model 2在四種流量之微粒排除率均高於Model 1,且根據微粒最終流布結果發現,Model 1呼出之微粒隨氣流朝教室前方擴散,微粒從抽氣口排出之前,多數會經過座位區;而Model 2因抽氣口在天花板,呼出微粒較容易直接被往上吸,減少微粒在教室內的傳播範圍,這表明Model 2在控制氣膠傳播方面更為有效。 | zh_TW |
| dc.description.abstract | Effective ventilation is crucial for diluting and removing harmful aerosols, reducing virus transmission risk in enclosed spaces. Computational Fluid Dynamics (CFD) was used to simulate the steady-state flow field in a lecture hall at a university in Taipei, evaluating the impact of different ventilation modes, flow rates, and occupancy levels on flow field structure and aerosol transmission. This study compares the existing front exhaust mode (Model 1) with a ceiling exhaust mode (Model 2) under various conditions. The results indicate that moderate flow rates are most effective for particle removal, as high flow rates can cause turbulent, uneven airflow, reducing ventilation efficiency and indoor comfort. In the fully occupied scenario, the particle removal rate is higher than in the checkerboard seating scenario. This was likely because the personnel themselves create resistance and guide the airflow, forcing it to circulate more thoroughly and reducing the formation of dead zones. In a checkerboard seating scenario, airflow moves more freely through empty spaces, leading to larger recirculation zones. We also found that Model 2 represented a higher particle removal rate across all flow rates compared to Model 1. In Model 1, exhaled particles spread toward the front before being expelled, often passing through the seating area. In Model 2, particles were more easily drawn upward and out, reducing spread within the classroom. This indicates that Model 2 was more effective in controlling aerosol transmission. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-28T16:08:47Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-28T16:08:47Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iii 目次 iv 圖次 vi 表次 xiii 縮寫說明 xiv 符號說明 xv 第一章 前言 1 1.1 研究動機 1 1.2 文獻探討 2 1.2.1教室與空氣傳播疾病 2 1.2.2現行換氣設備 3 1.2.3氣膠傳播與粒徑特性之關聯 4 第二章 研究方法與材料 5 2.1 場地描述 5 2.2 模擬模型說明 5 2.2.1 模型一: 實地模擬模型(前方抽氣) 6 2.2.2 模型二: 上方抽氣 6 2.3 設定抽風口之抽氣速度 6 2.4 教室內佔用人數測試 8 2.5 模擬分析軟體 8 2.6 統御方程式 8 2.6.1 質量守恆定律 8 2.6.2 動量守恆定律 9 2.6.3 紊流模型 10 2.6.4 粒子軌跡方程式 10 2.7 邊界條件 11 2.7.1 進氣口與抽氣口設定 11 2.7.2 學生 11 2.7.3 其他邊界 12 2.8 網格獨立性 12 2.9 粒子研究(Particle study) 13 第三章 結果 15 3.1 模型一(前方抽氣)模擬結果 15 3.1.1 不同條件下之流場結構與速度分布 15 3.1.2 不同條件下之微粒分佈情形 22 3.1.3 微粒排除狀況 24 3.2 模型二(上方抽氣)模擬結果 24 3.2.1不同條件下之流場結構與速度分布 24 3.2.2 不同條件下之微粒分佈情形 30 3.2.3 微粒排除狀況 32 3.3 兩模型之微粒最終流布比較 32 第四章 討論 39 4.1 抽氣速度對微粒排除率及舒適度之影響分析 39 4.2 教室佔用人數對流場結構與微粒排除率之影響分析 40 4.3 兩模型對教室內微粒排除率與分布之影響 41 第五章 結論與建議 43 參考文獻 45 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 機械通風換氣 | zh_TW |
| dc.subject | 教室 | zh_TW |
| dc.subject | 氣膠傳播 | zh_TW |
| dc.subject | 流場 | zh_TW |
| dc.subject | 計算流體力學 | zh_TW |
| dc.subject | CFD | en |
| dc.subject | Flow field | en |
| dc.subject | Aerosol transmission | en |
| dc.subject | Mechanical ventilation | en |
| dc.subject | Classroom | en |
| dc.title | 基於計算流體力學評估教室內不同換氣型態對氣膠分布與傳播之影響-以台北某大學教室為例 | zh_TW |
| dc.title | Assessment of Different Ventilation Patterns on Aerosol Distribution and Transmission using Computational Fluid Dynamics: Take a University Classroom in Taipei for Example | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃耀輝;黃盛修;曾子彝 | zh_TW |
| dc.contributor.oralexamcommittee | Yaw-Huei Hwang;Sheng-Hsiu Huang;Tzu-I Tseng | en |
| dc.subject.keyword | 教室,機械通風換氣,計算流體力學,流場,氣膠傳播, | zh_TW |
| dc.subject.keyword | Classroom,Mechanical ventilation,CFD,Flow field,Aerosol transmission, | en |
| dc.relation.page | 176 | - |
| dc.identifier.doi | 10.6342/NTU202401206 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-06-18 | - |
| dc.contributor.author-college | 公共衛生學院 | - |
| dc.contributor.author-dept | 環境與職業健康科學研究所 | - |
| 顯示於系所單位: | 環境與職業健康科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 55.1 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
