Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 分子醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95075
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳瑞華zh_TW
dc.contributor.advisorRuey-Hwa Chenen
dc.contributor.author張耕豪zh_TW
dc.contributor.authorKeng-Hao Changen
dc.date.accessioned2024-08-27T16:15:03Z-
dc.date.available2024-08-28-
dc.date.copyright2024-08-27-
dc.date.issued2024-
dc.date.submitted2024-07-03-
dc.identifier.citation1. Welfare, H.P.A.M.o.H.a. Incidence rate for the top 10 cancer in Taiwan. 2024,01,31; Available from: https://www.gender.ey.gov.tw/gecdb/Stat_Statistics_DetailData.aspx?sn=nLF9GdMD%2B%2Bv41SsobdVgKw%3D%3D&_trms=c9c5ff26bc2b0520.1699343881314.
2. International, W.C.R.F. Worldwide cancer data. 2022,03,23 2024,03,13]; Available from: https://www.wcrf.org/cancer-trends/worldwide-cancer-data/.
3. Yersal, O. and S. Barutca, Biological subtypes of breast cancer: Prognostic and therapeutic implications. World J Clin Oncol, 2014. 5(3): p. 412-24.
4. Harbeck, N., et al., Breast cancer. Nat Rev Dis Primers, 2019. 5(1): p. 66.
5. Goldhirsch, A., et al., Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Ann Oncol, 2013. 24(9): p. 2206-23.
6. Cai, S.L., et al., Characteristics of recurrence, predictors for relapse and prognosis of rapid relapse triple-negative breast cancer. Front Oncol, 2023. 13: p. 1119611.
7. AlFakeeh, A. and C. Brezden-Masley, Overcoming endocrine resistance in hormone receptor-positive breast cancer. Curr Oncol, 2018. 25(Suppl 1): p. S18-s27.
8. Uddin, M.S., et al., Estrogen Signaling in Alzheimer's Disease: Molecular Insights and Therapeutic Targets for Alzheimer's Dementia. Mol Neurobiol, 2020. 57(6): p. 2654-2670.
9. Teoh, J.P., et al., Estrogen-Mediated Gaseous Signaling Molecules in Cardiovascular Disease. Trends Endocrinol Metab, 2020. 31(10): p. 773-784.
10. Ikeda, K., K. Horie-Inoue, and S. Inoue, Functions of estrogen and estrogen receptor signaling on skeletal muscle. J Steroid Biochem Mol Biol, 2019. 191: p. 105375.
11. Clusan, L., et al., A Basic Review on Estrogen Receptor Signaling Pathways in Breast Cancer. Int J Mol Sci, 2023. 24(7).
12. Evinger, A.J., 3rd and E.R. Levin, Requirements for estrogen receptor alpha membrane localization and function. Steroids, 2005. 70(5-7): p. 361-3.
13. Shiau, A.K., et al., The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell, 1998. 95(7): p. 927-37.
14. Wang, D.Y., et al., Identification of estrogen-responsive genes by complementary deoxyribonucleic acid microarray and characterization of a novel early estrogen-induced gene: EEIG1. Mol Endocrinol, 2004. 18(2): p. 402-11.
15. Zelnak, A.B. and R.M. O'Regan, Optimizing Endocrine Therapy for Breast Cancer. J Natl Compr Canc Netw, 2015. 13(8): p. e56-64.
16. Kharb, R., et al., Aromatase inhibitors: Role in postmenopausal breast cancer. Arch Pharm (Weinheim), 2020. 353(8): p. e2000081.
17. Grimm, S.L., S.M. Hartig, and D.P. Edwards, Progesterone Receptor Signaling Mechanisms. J Mol Biol, 2016. 428(19): p. 3831-49.
18. Li, Z., et al., The Role of Progesterone Receptors in Breast Cancer. Drug Des Devel Ther, 2022. 16: p. 305-314.
19. Lakhtakia, R. and I. Burney, A Brief History of Breast Cancer: Part III - Tumour biology lays the foundation for medical oncology. Sultan Qaboos Univ Med J, 2015. 15(1): p. e34-8.
20. Krishnamurti, U. and J.F. Silverman, HER2 in breast cancer: a review and update. Adv Anat Pathol, 2014. 21(2): p. 100-7.
21. Linggi, B. and G. Carpenter, ErbB receptors: new insights on mechanisms and biology. Trends Cell Biol, 2006. 16(12): p. 649-56.
22. Tzahar, E., et al., A hierarchical network of interreceptor interactions determines signal transduction by Neu differentiation factor/neuregulin and epidermal growth factor. Mol Cell Biol, 1996. 16(10): p. 5276-87.
23. Lenferink, A.E., et al., Differential endocytic routing of homo- and hetero-dimeric ErbB tyrosine kinases confers signaling superiority to receptor heterodimers. Embo j, 1998. 17(12): p. 3385-97.
24. Worthylake, R., L.K. Opresko, and H.S. Wiley, ErbB-2 amplification inhibits down-regulation and induces constitutive activation of both ErbB-2 and epidermal growth factor receptors. J Biol Chem, 1999. 274(13): p. 8865-74.
25. Moasser, M.M., The oncogene HER2: its signaling and transforming functions and its role in human cancer pathogenesis. Oncogene, 2007. 26(45): p. 6469-87.
26. Citri, A. and Y. Yarden, EGF-ERBB signalling: towards the systems level. Nat Rev Mol Cell Biol, 2006. 7(7): p. 505-16.
27. Orphanos, G. and P. Kountourakis, Targeting the HER2 receptor in metastatic breast cancer. Hematol Oncol Stem Cell Ther, 2012. 5(3): p. 127-37.
28. Kerr, A.J., et al., Adjuvant and neoadjuvant breast cancer treatments: A systematic review of their effects on mortality. Cancer Treat Rev, 2022. 105: p. 102375.
29. Li, Y., et al., Recent advances in therapeutic strategies for triple-negative breast cancer. J Hematol Oncol, 2022. 15(1): p. 121.
30. Won, K.A. and C. Spruck, Triple‑negative breast cancer therapy: Current and future perspectives (Review). Int J Oncol, 2020. 57(6): p. 1245-1261.
31. National Comprehensive Cancer Network. Breast Cancer (version 5. 2023). January 19, 2023]; Available from: https://www.nccn.org/professionals/physician_gls/pdf/breast.pdf.
32. Deshpande, M., et al., Error-prone repair of stalled replication forks drives mutagenesis and loss of heterozygosity in haploinsufficient BRCA1 cells. Mol Cell, 2022. 82(20): p. 3781-3793.e7.
33. Semmler, L., C. Reiter-Brennan, and A. Klein, BRCA1 and Breast Cancer: a Review of the Underlying Mechanisms Resulting in the Tissue-Specific Tumorigenesis in Mutation Carriers. J Breast Cancer, 2019. 22(1): p. 1-14.
34. Rocha, C.R.R., et al., DNA repair pathways and cisplatin resistance: an intimate relationship. Clinics (Sao Paulo), 2018. 73(suppl 1): p. e478s.
35. Tassone, P., et al., Loss of BRCA1 function increases the antitumor activity of cisplatin against human breast cancer xenografts in vivo. Cancer Biol Ther, 2009. 8(7): p. 648-53.
36. Panzarino, N.J., et al., Replication Gaps Underlie BRCA Deficiency and Therapy Response. Cancer Res, 2021. 81(5): p. 1388-1397.
37. Vaitsiankova, A., et al., PARP inhibition impedes the maturation of nascent DNA strands during DNA replication. Nat Struct Mol Biol, 2022. 29(4): p. 329-338.
38. Li, H., et al., PARP inhibitor resistance: the underlying mechanisms and clinical implications. Mol Cancer, 2020. 19(1): p. 107.
39. D'Andrea, A.D., Mechanisms of PARP inhibitor sensitivity and resistance. DNA Repair (Amst), 2018. 71: p. 172-176.
40. Mateo, J., et al., A decade of clinical development of PARP inhibitors in perspective. Ann Oncol, 2019. 30(9): p. 1437-1447.
41. Pavese, F., et al., BRCA Mutation Status in Triple-Negative Breast Cancer Patients Treated with Neoadjuvant Chemotherapy: A Pivotal Role for Treatment Decision-Making. Cancers (Basel), 2022. 14(19).
42. Koumarianou, A., et al., ABREAST: a prospective, real-world study on the effect of nab-paclitaxel treatment on clinical outcomes and quality of life of patients with metastatic breast cancer. Breast Cancer Res Treat, 2020. 182(1): p. 85-96.
43. Gonçalves, H., Jr., et al., Survival Study of Triple-Negative and Non-Triple-Negative Breast Cancer in a Brazilian Cohort. Clin Med Insights Oncol, 2018. 12: p. 1179554918790563.
44. Bayraktar, S., et al., Outcome of triple-negative breast cancer in patients with or without deleterious BRCA mutations. Breast Cancer Res Treat, 2011. 130(1): p. 145-53.
45. Kaur, B.P. and E. Secord, Innate Immunity. Immunol Allergy Clin North Am, 2021. 41(4): p. 535-541.
46. Chen, C. and P. Xu, Cellular functions of cGAS-STING signaling. Trends Cell Biol, 2023. 33(8): p. 630-648.
47. Sun, Z. and V. Hornung, cGAS-STING signaling. Curr Biol, 2022. 32(13): p. R730-r734.
48. Abe, T. and G.N. Barber, Cytosolic-DNA-mediated, STING-dependent proinflammatory gene induction necessitates canonical NF-κB activation through TBK1. J Virol, 2014. 88(10): p. 5328-41.
49. Yum, S., et al., TBK1 recruitment to STING activates both IRF3 and NF-κB that mediate immune defense against tumors and viral infections. Proc Natl Acad Sci U S A, 2021. 118(14).
50. Balka, K.R., et al., TBK1 and IKKε Act Redundantly to Mediate STING-Induced NF-κB Responses in Myeloid Cells. Cell Rep, 2020. 31(1): p. 107492.
51. Hanahan, D., Hallmarks of Cancer: New Dimensions. Cancer Discov, 2022. 12(1): p. 31-46.
52. Wu, L., et al., KDM5 histone demethylases repress immune response via suppression of STING. PLoS Biol, 2018. 16(8): p. e2006134.
53. Kitajima, S., et al., Suppression of STING Associated with LKB1 Loss in KRAS-Driven Lung Cancer. Cancer Discov, 2019. 9(1): p. 34-45.
54. Xia, T., H. Konno, and G.N. Barber, Recurrent Loss of STING Signaling in Melanoma Correlates with Susceptibility to Viral Oncolysis. Cancer Res, 2016. 76(22): p. 6747-6759.
55. Falahat, R., et al., Epigenetic reprogramming of tumor cell-intrinsic STING function sculpts antigenicity and T cell recognition of melanoma. Proc Natl Acad Sci U S A, 2021. 118(15).
56. Lee, K.M., et al., Epigenetic Repression of STING by MYC Promotes Immune Evasion and Resistance to Immune Checkpoint Inhibitors in Triple-Negative Breast Cancer. Cancer Immunol Res, 2022. 10(7): p. 829-843.
57. Xia, T., et al., Deregulation of STING Signaling in Colorectal Carcinoma Constrains DNA Damage Responses and Correlates With Tumorigenesis. Cell Rep, 2016. 14(2): p. 282-97.
58. Ghosh, M., et al., p53 engages the cGAS/STING cytosolic DNA sensing pathway for tumor suppression. Mol Cell, 2023. 83(2): p. 266-280.e6.
59. Richardson, R.B., p53 mutations associated with aging-related rise in cancer incidence rates. Cell Cycle, 2013. 12(15): p. 2468-78.
60. Ho, W.S., et al., PP2Ac/STRN4 negatively regulates STING-type I IFN signaling in tumor-associated macrophages. J Clin Invest, 2023. 133(6).
61. Tian, Z., et al., Cancer immunotherapy strategies that target the cGAS-STING pathway. Front Immunol, 2022. 13: p. 996663.
62. Xie, Y., et al., Co-delivery of doxorubicin and STING agonist cGAMP for enhanced antitumor immunity. Int J Pharm, 2024. 654: p. 123955.
63. Li, J.Y., et al., TRIM21 inhibits irradiation-induced mitochondrial DNA release and impairs antitumour immunity in nasopharyngeal carcinoma tumour models. Nat Commun, 2023. 14(1): p. 865.
64. Morad, G., et al., Hallmarks of response, resistance, and toxicity to immune checkpoint blockade. Cell, 2021. 184(21): p. 5309-5337.
65. Gu, L., et al., The IKKβ-USP30-ACLY Axis Controls Lipogenesis and Tumorigenesis. Hepatology, 2021. 73(1): p. 160-174.
66. Xiang, W., et al., Inhibition of ACLY overcomes cancer immunotherapy resistance via polyunsaturated fatty acids peroxidation and cGAS-STING activation. Sci Adv, 2023. 9(49): p. eadi2465.
67. Sears, R.M. and K.J. Roux, Diverse cellular functions of barrier-to-autointegration factor and its roles in disease. J Cell Sci, 2020. 133(16).
68. Crick, F., Central dogma of molecular biology. Nature, 1970. 227(5258): p. 561-3.
69. Fu, D., J.A. Calvo, and L.D. Samson, Balancing repair and tolerance of DNA damage caused by alkylating agents. Nat Rev Cancer, 2012. 12(2): p. 104-20.
70. Tubbs, J.L., A.E. Pegg, and J.A. Tainer, DNA binding, nucleotide flipping, and the helix-turn-helix motif in base repair by O6-alkylguanine-DNA alkyltransferase and its implications for cancer chemotherapy. DNA Repair (Amst), 2007. 6(8): p. 1100-15.
71. Pegg, A.E., Multifaceted roles of alkyltransferase and related proteins in DNA repair, DNA damage, resistance to chemotherapy, and research tools. Chem Res Toxicol, 2011. 24(5): p. 618-39.
72. Xu-Welliver, M. and A.E. Pegg, Degradation of the alkylated form of the DNA repair protein, O(6)-alkylguanine-DNA alkyltransferase. Carcinogenesis, 2002. 23(5): p. 823-30.
73. Hindi, N.N., N. Elsakrmy, and D. Ramotar, The base excision repair process: comparison between higher and lower eukaryotes. Cell Mol Life Sci, 2021. 78(24): p. 7943-7965.
74. Wallace, S.S., Base excision repair: a critical player in many games. DNA Repair (Amst), 2014. 19: p. 14-26.
75. Gohil, D., A.H. Sarker, and R. Roy, Base Excision Repair: Mechanisms and Impact in Biology, Disease, and Medicine. Int J Mol Sci, 2023. 24(18).
76. Eustermann, S., et al., Structural Basis of Detection and Signaling of DNA Single-Strand Breaks by Human PARP-1. Mol Cell, 2015. 60(5): p. 742-754.
77. Krokan, H.E. and M. Bjørås, Base excision repair. Cold Spring Harb Perspect Biol, 2013. 5(4): p. a012583.
78. Zhang, X., M. Yin, and J. Hu, Nucleotide excision repair: a versatile and smart toolkit. Acta Biochim Biophys Sin (Shanghai), 2022. 54(6): p. 807-819.
79. Scrima, A., et al., Structural basis of UV DNA-damage recognition by the DDB1-DDB2 complex. Cell, 2008. 135(7): p. 1213-23.
80. Nishi, R., et al., Centrin 2 stimulates nucleotide excision repair by interacting with xeroderma pigmentosum group C protein. Mol Cell Biol, 2005. 25(13): p. 5664-74.
81. Spivak, G., Nucleotide excision repair in humans. DNA Repair (Amst), 2015. 36: p. 13-18.
82. Staresincic, L., et al., Coordination of dual incision and repair synthesis in human nucleotide excision repair. Embo j, 2009. 28(8): p. 1111-20.
83. Tsodikov, O.V., et al., Structural basis for the recruitment of ERCC1-XPF to nucleotide excision repair complexes by XPA. Embo j, 2007. 26(22): p. 4768-76.
84. Ogi, T., et al., Three DNA polymerases, recruited by different mechanisms, carry out NER repair synthesis in human cells. Mol Cell, 2010. 37(5): p. 714-27.
85. Schärer, O.D., Nucleotide excision repair in eukaryotes. Cold Spring Harb Perspect Biol, 2013. 5(10): p. a012609.
86. Pray, L.A., DNA Replication and Causes of Mutation. Nature Education, 2008.
87. Reyes, G.X., et al., New insights into the mechanism of DNA mismatch repair. Chromosoma, 2015. 124(4): p. 443-62.
88. Li, G.M., Mechanisms and functions of DNA mismatch repair. Cell Res, 2008. 18(1): p. 85-98.
89. Pećina-Šlaus, N., et al., Mismatch Repair Pathway, Genome Stability and Cancer. Front Mol Biosci, 2020. 7: p. 122.
90. Fishel, R., Mismatch repair. J Biol Chem, 2015. 290(44): p. 26395-403.
91. Liu, D., G. Keijzers, and L.J. Rasmussen, DNA mismatch repair and its many roles in eukaryotic cells. Mutat Res Rev Mutat Res, 2017. 773: p. 174-187.
92. Caldecott, K.W., Causes and consequences of DNA single-strand breaks. Trends Biochem Sci, 2024. 49(1): p. 68-78.
93. Hakem, R., DNA-damage repair; the good, the bad, and the ugly. Embo j, 2008. 27(4): p. 589-605.
94. Mao, Z., et al., DNA repair by nonhomologous end joining and homologous recombination during cell cycle in human cells. Cell Cycle, 2008. 7(18): p. 2902-6.
95. Oh, J.M. and K. Myung, Crosstalk between different DNA repair pathways for DNA double strand break repairs. Mutat Res Genet Toxicol Environ Mutagen, 2022. 873: p. 503438.
96. McCarthy-Leo, C., F. Darwiche, and M.A. Tainsky, DNA Repair Mechanisms, Protein Interactions and Therapeutic Targeting of the MRN Complex. Cancers (Basel), 2022. 14(21).
97. Maréchal, A. and L. Zou, DNA damage sensing by the ATM and ATR kinases. Cold Spring Harb Perspect Biol, 2013. 5(9).
98. Mah, L.J., A. El-Osta, and T.C. Karagiannis, gammaH2AX: a sensitive molecular marker of DNA damage and repair. Leukemia, 2010. 24(4): p. 679-86.
99. Wu, S., et al., Molecular Mechanisms of PALB2 Function and Its Role in Breast Cancer Management. Front Oncol, 2020. 10: p. 301.
100. Bunting, S.F., et al., 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell, 2010. 141(2): p. 243-54.
101. Xu, Y. and D. Xu, Repair pathway choice for double-strand breaks. Essays Biochem, 2020. 64(5): p. 765-777.
102. Ranjha, L., S.M. Howard, and P. Cejka, Main steps in DNA double-strand break repair: an introduction to homologous recombination and related processes. Chromosoma, 2018. 127(2): p. 187-214.
103. Demeyer, A., et al., Inhibiting homologous recombination by targeting RAD51 protein. Biochim Biophys Acta Rev Cancer, 2021. 1876(2): p. 188597.
104. Bonilla, B., et al., RAD51 Gene Family Structure and Function. Annu Rev Genet, 2020. 54: p. 25-46.
105. Sebesta, M., et al., Reconstitution of DNA repair synthesis in vitro and the role of polymerase and helicase activities. DNA Repair (Amst), 2011. 10(6): p. 567-76.
106. Goetz, J.D., et al., Reduced repair of DNA double-strand breaks by homologous recombination in a DNA ligase I-deficient human cell line. DNA Repair (Amst), 2005. 4(6): p. 649-54.
107. Song, Q., et al., DNA Holliday Junction: History, Regulation and Bioactivity. Int J Mol Sci, 2022. 23(17).
108. Young, S.J. and S.C. West, Coordinated roles of SLX4 and MutSβ in DNA repair and the maintenance of genome stability. Crit Rev Biochem Mol Biol, 2021. 56(2): p. 157-177.
109. Mao, Z., et al., Comparison of nonhomologous end joining and homologous recombination in human cells. DNA Repair (Amst), 2008. 7(10): p. 1765-71.
110. Panier, S. and S.J. Boulton, Double-strand break repair: 53BP1 comes into focus. Nat Rev Mol Cell Biol, 2014. 15(1): p. 7-18.
111. Pannunzio, N.R., G. Watanabe, and M.R. Lieber, Nonhomologous DNA end-joining for repair of DNA double-strand breaks. J Biol Chem, 2018. 293(27): p. 10512-10523.
112. Escribano-Díaz, C., et al., A cell cycle-dependent regulatory circuit composed of 53BP1-RIF1 and BRCA1-CtIP controls DNA repair pathway choice. Mol Cell, 2013. 49(5): p. 872-83.
113. Walker, J.R., R.A. Corpina, and J. Goldberg, Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature, 2001. 412(6847): p. 607-14.
114. Stinson, B.M. and J.J. Loparo, Repair of DNA Double-Strand Breaks by the Nonhomologous End Joining Pathway. Annu Rev Biochem, 2021. 90: p. 137-164.
115. Zhao, B., et al., The molecular basis and disease relevance of non-homologous DNA end joining. Nat Rev Mol Cell Biol, 2020. 21(12): p. 765-781.
116. Ramsden, D.A. and K. Asagoshi, DNA polymerases in nonhomologous end joining: are there any benefits to standing out from the crowd? Environ Mol Mutagen, 2012. 53(9): p. 741-51.
117. Chang, H.H.Y., et al., Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat Rev Mol Cell Biol, 2017. 18(8): p. 495-506.
118. Huang, R. and P.K. Zhou, DNA damage repair: historical perspectives, mechanistic pathways and clinical translation for targeted cancer therapy. Signal Transduct Target Ther, 2021. 6(1): p. 254.
119. Taylor, B.J., et al., DNA deaminases induce break-associated mutation showers with implication of APOBEC3B and 3A in breast cancer kataegis. Elife, 2013. 2: p. e00534.
120. Petljak, M., et al., Mechanisms of APOBEC3 mutagenesis in human cancer cells. Nature, 2022. 607(7920): p. 799-807.
121. Burns, M.B., et al., APOBEC3B is an enzymatic source of mutation in breast cancer. Nature, 2013. 494(7437): p. 366-70.
122. Petljak, M., et al., Characterizing Mutational Signatures in Human Cancer Cell Lines Reveals Episodic APOBEC Mutagenesis. Cell, 2019. 176(6): p. 1282-1294.e20.
123. Burns, M.B., N.A. Temiz, and R.S. Harris, Evidence for APOBEC3B mutagenesis in multiple human cancers. Nat Genet, 2013. 45(9): p. 977-83.
124. Weeks, L.D., P. Fu, and S.L. Gerson, Uracil-DNA glycosylase expression determines human lung cancer cell sensitivity to pemetrexed. Mol Cancer Ther, 2013. 12(10): p. 2248-60.
125. Weeks, L.D., et al., Uracil DNA glycosylase (UNG) loss enhances DNA double strand break formation in human cancer cells exposed to pemetrexed. Cell Death Dis, 2014. 5(2): p. e1045.
126. Yan, Y., et al., Inhibition of uracil DNA glycosylase sensitizes cancer cells to 5-fluorodeoxyuridine through replication fork collapse-induced DNA damage. Oncotarget, 2016. 7(37): p. 59299-59313.
127. Siqueira, P.B., et al., The APE1/REF-1 and the hallmarks of cancer. Mol Biol Rep, 2024. 51(1): p. 47.
128. Wen, X., et al., APE1 overexpression promotes the progression of ovarian cancer and serves as a potential therapeutic target. Cancer Biomark, 2016. 17(3): p. 313-322.
129. Codrich, M., et al., Inhibition of APE1-endonuclease activity affects cell metabolism in colon cancer cells via a p53-dependent pathway. DNA Repair (Amst), 2019. 82: p. 102675.
130. Fishel, M.L., et al., Knockdown of the DNA repair and redox signaling protein Ape1/Ref-1 blocks ovarian cancer cell and tumor growth. DNA Repair (Amst), 2008. 7(2): p. 177-86.
131. Yang, Z., et al., The role of APE/Ref-1 signaling pathway in hepatocellular carcinoma progression. Int J Oncol, 2014. 45(5): p. 1820-8.
132. Liu, L. and S.L. Gerson, Therapeutic impact of methoxyamine: blocking repair of abasic sites in the base excision repair pathway. Curr Opin Investig Drugs, 2004. 5(6): p. 623-7.
133. Eads, J.R., et al., Phase I clinical trial of temozolomide and methoxyamine (TRC-102), an inhibitor of base excision repair, in patients with advanced solid tumors. Invest New Drugs, 2021. 39(1): p. 142-151.
134. Biswas, T., et al., Adding Base-Excision Repair Inhibitor TRC102 to Standard Pemetrexed-Platinum-Radiation in Patients with Advanced Nonsquamous Non-Small Cell Lung Cancer: Results of a Phase I Trial. Clin Cancer Res, 2022. 28(4): p. 646-652.
135. Bulgar, A.D., et al., Targeting base excision repair suggests a new therapeutic strategy of fludarabine for the treatment of chronic lymphocytic leukemia. Leukemia, 2010. 24(10): p. 1795-9.
136. Long, K., et al., Small-molecule inhibition of APE1 induces apoptosis, pyroptosis, and necroptosis in non-small cell lung cancer. Cell Death Dis, 2021. 12(6): p. 503.
137. Zou, G.M. and A. Maitra, Small-molecule inhibitor of the AP endonuclease 1/REF-1 E3330 inhibits pancreatic cancer cell growth and migration. Mol Cancer Ther, 2008. 7(7): p. 2012-21.
138. Fishel, M.L., et al., Impact of APE1/Ref-1 redox inhibition on pancreatic tumor growth. Mol Cancer Ther, 2011. 10(9): p. 1698-708.
139. Clark, S.L., et al., Structure-Function Of The Tumor Suppressor BRCA1. Comput Struct Biotechnol J, 2012. 1(1).
140. Nelson, A.C. and J.T. Holt, Impact of RING and BRCT domain mutations on BRCA1 protein stability, localization and recruitment to DNA damage. Radiat Res, 2010. 174(1): p. 1-13.
141. Liu, Y.L., et al., BRCA Mutations, Homologous DNA Repair Deficiency, Tumor Mutational Burden, and Response to Immune Checkpoint Inhibition in Recurrent Ovarian Cancer. JCO Precis Oncol, 2020. 4.
142. Petrucelli, N., M.B. Daly, and T. Pal, BRCA1- and BRCA2-Associated Hereditary Breast and Ovarian Cancer, in GeneReviews(®), M.P. Adam, et al., Editors. 1993, University of Washington, Seattle
Copyright © 1993-2024, University of Washington, Seattle. GeneReviews is a registered trademark of the University of Washington, Seattle. All rights reserved.: Seattle (WA).
143. Lord, C.J. and A. Ashworth, BRCAness revisited. Nat Rev Cancer, 2016. 16(2): p. 110-20.
144. Byrum, A.K., A. Vindigni, and N. Mosammaparast, Defining and Modulating 'BRCAness'. Trends Cell Biol, 2019. 29(9): p. 740-751.
145. Bryant, H.E., et al., Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature, 2005. 434(7035): p. 913-7.
146. Rose, M., et al., PARP Inhibitors: Clinical Relevance, Mechanisms of Action and Tumor Resistance. Front Cell Dev Biol, 2020. 8: p. 564601.
147. Orhan, E., et al., CDK inhibition results in pharmacologic BRCAness increasing sensitivity to olaparib in BRCA1-WT and olaparib resistant in Triple Negative Breast Cancer. Cancer Lett, 2024. 589: p. 216820.
148. Marzio, A., et al., EMSY inhibits homologous recombination repair and the interferon response, promoting lung cancer immune evasion. Cell, 2022. 185(1): p. 169-183.e19.
149. Miao, H., et al., FSP1 inhibition enhances olaparib sensitivity in BRCA-proficient ovarian cancer patients via a nonferroptosis mechanism. Cell Death Differ, 2024. 31(4): p. 497-510.
150. Ding, J.H., et al., Guanosine diphosphate-mannose suppresses homologous recombination repair and potentiates antitumor immunity in triple-negative breast cancer. Sci Transl Med, 2024. 16(728): p. eadg7740.
151. Kalev, P., et al., Loss of PPP2R2A inhibits homologous recombination DNA repair and predicts tumor sensitivity to PARP inhibition. Cancer Res, 2012. 72(24): p. 6414-24.
152. Zhu, Q., et al., Novel dual inhibitors of PARP and HDAC induce intratumoral STING-mediated antitumor immunity in triple-negative breast cancer. Cell Death Dis, 2024. 15(1): p. 10.
153. Zimmermann, A., et al., A New Class of Selective ATM Inhibitors as Combination Partners of DNA Double-Strand Break Inducing Cancer Therapies. Mol Cancer Ther, 2022. 21(6): p. 859-870.
154. Davis, S.L., et al., ATM kinase inhibitor AZD0156 in combination with irinotecan and 5-fluorouracil in preclinical models of colorectal cancer. BMC Cancer, 2022. 22(1): p. 1107.
155. Shu, J., et al., ATM inhibitor KU60019 synergistically sensitizes lung cancer cells to topoisomerase II poisons by multiple mechanisms. Sci Rep, 2023. 13(1): p. 882.
156. Terlizzi, C., et al., ATM inhibition blocks glucose metabolism and amplifies the sensitivity of resistant lung cancer cell lines to oncogene driver inhibitors. Cancer Metab, 2023. 11(1): p. 20.
157. Takaku, M., et al., Halenaquinone, a chemical compound that specifically inhibits the secondary DNA binding of RAD51. Genes Cells, 2011. 16(4): p. 427-36.
158. Huang, F., et al., Inhibition of homologous recombination in human cells by targeting RAD51 recombinase. J Med Chem, 2012. 55(7): p. 3011-20.
159. Huang, F. and A.V. Mazin, A small molecule inhibitor of human RAD51 potentiates breast cancer cell killing by therapeutic agents in mouse xenografts. PLoS One, 2014. 9(6): p. e100993.
160. Zhu, J., et al., A novel small molecule RAD51 inactivator overcomes imatinib-resistance in chronic myeloid leukaemia. EMBO Mol Med, 2013. 5(3): p. 353-65.
161. Ryan C Lynch, P.N.M., Ranjana H. Advani, Mehdi Hamadani, David R. Spigel, Gerald Steven Falchook, Manish R. Patel, David Samuel DiCapua Siegel, Nina Beri, Grzegorz S. Nowakowski, Neil Palmisiano, Monika Leigh Burness, Kathleen N. Moore, Geoffrey Shapiro, Dejan Juric, William D. Bradley, Thomas J. O'Shea, Markus Frederic Renschler, Judson M. Englert, and Timothy A. Yap, Phase 1 results of a phase 1/2 trial of CYT-0851, a first-in-class inhibitor of RAD51-mediated homologous recombination, in patients with advanced solid and hematologic cancers. Developmental Therapeutics—Molecularly Targeted Agents and Tumor Biology, 2022.
162. Majumder, S., et al., Total Cellular RNA Modulates Protein Activity. Biochemistry, 2016. 55(32): p. 4568-73.
163. Alberts B, J.A., Lewis J, et al., Molecular Biology of the Cell. . From DNA to RNA. 2002, New York: Garland Science.
164. Kapranov, P., et al., RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science, 2007. 316(5830): p. 1484-8.
165. Grammatikakis, I. and A. Lal, Significance of lncRNA abundance to function. Mamm Genome, 2022. 33(2): p. 271-280.
166. Bridges, M.C., A.C. Daulagala, and A. Kourtidis, LNCcation: lncRNA localization and function. J Cell Biol, 2021. 220(2).
167. Dixon-McDougall, T. and C.J. Brown, Independent domains for recruitment of PRC1 and PRC2 by human XIST. PLoS Genet, 2021. 17(3): p. e1009123.
168. Chu, C., et al., Systematic discovery of Xist RNA binding proteins. Cell, 2015. 161(2): p. 404-16.
169. Lefevre, P., et al., The LPS-induced transcriptional upregulation of the chicken lysozyme locus involves CTCF eviction and noncoding RNA transcription. Mol Cell, 2008. 32(1): p. 129-39.
170. Hu, G., Z. Lou, and M. Gupta, The long non-coding RNA GAS5 cooperates with the eukaryotic translation initiation factor 4E to regulate c-Myc translation. PLoS One, 2014. 9(9): p. e107016.
171. Han, L., et al., Lipid droplet-associated lncRNA LIPTER preserves cardiac lipid metabolism. Nat Cell Biol, 2023. 25(7): p. 1033-1046.
172. Shmuel-Galia, L., et al., The lncRNA HOXA11os regulates mitochondrial function in myeloid cells to maintain intestinal homeostasis. Cell Metab, 2023. 35(8): p. 1441-1456.e9.
173. Xue, M., et al., Hypoxic exosomes facilitate bladder tumor growth and development through transferring long non-coding RNA-UCA1. Mol Cancer, 2017. 16(1): p. 143.
174. Zhang, E.B., et al., P53-regulated long non-coding RNA TUG1 affects cell proliferation in human non-small cell lung cancer, partly through epigenetically regulating HOXB7 expression. Cell Death Dis, 2014. 5(5): p. e1243.
175. Matouk, I.J., et al., Oncofetal H19 RNA promotes tumor metastasis. Biochim Biophys Acta, 2014. 1843(7): p. 1414-26.
176. Tian, X., et al., LncRNA-H19 regulates chemoresistance to carboplatin in epithelial ovarian cancer through microRNA-29b-3p and STAT3. J Cancer, 2021. 12(19): p. 5712-5722.
177. Lu, G., et al., Long noncoding RNA LINC00511 contributes to breast cancer tumourigenesis and stemness by inducing the miR-185-3p/E2F1/Nanog axis. J Exp Clin Cancer Res, 2018. 37(1): p. 289.
178. Chang, K.C., et al., MaTAR25 lncRNA regulates the Tensin1 gene to impact breast cancer progression. Nat Commun, 2020. 11(1): p. 6438.
179. Das, M., et al., DDX5/p68 associated lncRNA LOC284454 is differentially expressed in human cancers and modulates gene expression. RNA Biol, 2018. 15(2): p. 214-230.
180. Han, L., W. Zhou, and F. Wu, Long non‑coding RNA LOC284454 promotes hepatocellular carcinoma cell invasion and migration by inhibiting E‑cadherin expression. Oncol Rep, 2021. 45(4).
181. Fan, C., et al., Long non-coding RNA LOC284454 promotes migration and invasion of nasopharyngeal carcinoma via modulating the Rho/Rac signaling pathway. Carcinogenesis, 2019. 40(2): p. 380-391.
182. Chen, H.Y., et al., Long noncoding RNA Smyca coactivates TGF-β/Smad and Myc pathways to drive tumor progression. J Hematol Oncol, 2022. 15(1): p. 85.
183. Chavez, K.J., S.V. Garimella, and S. Lipkowitz, Triple negative breast cancer cell lines: one tool in the search for better treatment of triple negative breast cancer. Breast Dis, 2010. 32(1-2): p. 35-48.
184. Keung, M.Y., et al., Response of Breast Cancer Cells to PARP Inhibitors Is Independent of BRCA Status. J Clin Med, 2020. 9(4).
185. Du, T., et al., A Novel PARP Inhibitor YHP-836 For the Treatment of BRCA-Deficiency Cancers. Front Pharmacol, 2022. 13: p. 865085.
186. Ofori, S. and S.G. Awuah, Small-Molecule Poly(ADP-ribose) Polymerase and PD-L1 Inhibitor Conjugates as Dual-Action Anticancer Agents. ACS Omega, 2019. 4(7): p. 12584-12597.
187. Zhu, X., et al., Efficacy and mechanism of the combination of PARP and CDK4/6 inhibitors in the treatment of triple-negative breast cancer. J Exp Clin Cancer Res, 2021. 40(1): p. 122.
188. Lee, C.Y., et al., An activity-based functional test for identifying homologous recombination deficiencies across cancer types in real time. Cell Rep Med, 2023. 4(11): p. 101247.
189. Gunn, A. and J.M. Stark, I-SceI-based assays to examine distinct repair outcomes of mammalian chromosomal double strand breaks. Methods Mol Biol, 2012. 920: p. 379-91.
190. Liu, S., et al., PIAS3 promotes homology-directed repair and distal non-homologous end joining. Oncol Lett, 2013. 6(4): p. 1045-1048.
191. Zona, S., et al., FOXM1: an emerging master regulator of DNA damage response and genotoxic agent resistance. Biochim Biophys Acta, 2014. 1839(11): p. 1316-22.
192. Im, J., et al., FoxM1-dependent RAD51 and BRCA2 signaling protects idiopathic pulmonary fibrosis fibroblasts from radiation-induced cell death. Cell Death Dis, 2018. 9(6): p. 584.
193. Khongkow, P., et al., FOXM1 targets NBS1 to regulate DNA damage-induced senescence and epirubicin resistance. Oncogene, 2014. 33(32): p. 4144-55.
194. Monteiro, L.J., et al., The Forkhead Box M1 protein regulates BRIP1 expression and DNA damage repair in epirubicin treatment. Oncogene, 2013. 32(39): p. 4634-45.
195. Stevens, J.B., et al., Diverse system stresses: common mechanisms of chromosome fragmentation. Cell Death Dis, 2011. 2(6): p. e178.
196. Kwon, M., M.L. Leibowitz, and J.H. Lee, Small but mighty: the causes and consequences of micronucleus rupture. Exp Mol Med, 2020. 52(11): p. 1777-1786.
197. Krupina, K., A. Goginashvili, and D.W. Cleveland, Causes and consequences of micronuclei. Curr Opin Cell Biol, 2021. 70: p. 91-99.
198. Wu, Q., et al., The BRG1 ATPase of human SWI/SNF chromatin remodeling enzymes as a driver of cancer. Epigenomics, 2017. 9(6): p. 919-931.
199. Navickas, S.M., et al., The role of chromatin remodeler SMARCA4/BRG1 in brain cancers: a potential therapeutic target. Oncogene, 2023. 42(31): p. 2363-2373.
200. Kwon, S.J., et al., ATM-mediated phosphorylation of the chromatin remodeling enzyme BRG1 modulates DNA double-strand break repair. Oncogene, 2015. 34(3): p. 303-13.
201. Lee, H.S., et al., A cooperative activation loop among SWI/SNF, gamma-H2AX and H3 acetylation for DNA double-strand break repair. Embo j, 2010. 29(8): p. 1434-45.
202. Reisman, D., S. Glaros, and E.A. Thompson, The SWI/SNF complex and cancer. Oncogene, 2009. 28(14): p. 1653-68.
203. Dunaief, J.L., et al., The retinoblastoma protein and BRG1 form a complex and cooperate to induce cell cycle arrest. Cell, 1994. 79(1): p. 119-30.
204. Zhu, Q.Q., et al., The role of TWIST1 in epithelial-mesenchymal transition and cancers. Tumour Biol, 2016. 37(1): p. 185-97.
205. Khot, M., et al., Twist1 induces chromosomal instability (CIN) in colorectal cancer cells. Hum Mol Genet, 2020. 29(10): p. 1673-1688.
206. Murthy, A.M.V., N. Robinson, and S. Kumar, Crosstalk between cGAS-STING signaling and cell death. Cell Death Differ, 2020. 27(11): p. 2989-3003.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95075-
dc.description.abstract三陰性乳癌(TNBC)是在乳癌中最具侵略性的類型。由於缺乏有效的標靶治療,其治療選擇主要局限於化療。我們實驗室先前的研究確認了Smyca作為在TNBC中高度表達的長鏈非編碼RNA,它協調TGF-β和MYC路徑以促進多種惡性特徵,包括上皮間質轉化(EMT)、幹细胞特性、代謝重整和化療抗藥性。在本篇研究中,我們發現了抑制Smyca和PARP抑制劑的合成致死性。機制上來說,Smyca和FoxM1 相互作用並促進了一群 FoxM1目標基因的表達,以影響同源重组(HR)的進行。因此,缺乏Smyca損害了HR進行並增加TNBC细胞對基因毒性劑和PARP抑制劑的敏感性。在這種條件下,Smyca的缺失還誘導了micronuclei並活化cGAS/STING先天免疫路徑,吸引CD3+ T细胞向TNBC細胞移動,表明了抗腫瘤免疫反應的誘導。使用gapmer抗寡寡核苷酸(ASO)靶向 Smyca增強了基因毒性劑和PARPi在TNBC小鼠模型中的抗腫瘤效果。我們的研究提供了將靶向Smyca與化療或PARP抑制劑结合治療TNBC之策略的潜力。zh_TW
dc.description.abstractTriple-negative breast cancer (TNBC) is the most aggressive type of breast cancer. Because of lacking effective targeted therapy, its treatment options are mainly limited to chemotherapy. Previous study in our laboratory identified Smyca as a lncRNA highly expressed in TNBC, which coordinates TGF-β and MYC pathways to promote multiple malignant features TNBC including EMT, stemness, metabolic reprogramming, and chemoresistance. In this thesis, we discovered the synthetic lethality of Smyca inhibition and PARP inhibitor. Mechanistically. Smyca interacts with FoxM1 and promotes the expression of a set of FoxM1 targets acting on the homologous recombination (HR) process. Smyca depletion impairs HR and sensitizes TNBC cells to genotoxic agent and PARP inhibitor. Smyca depletion in this condition also induces micronuclei and activates cGAS/STING innate immunity pathway to attract CD3+ T cells toward TNBC cells, suggesting the induction of anti-tumor immune responses. Targeting Smyca using gapmer antisense oligonucleotides (ASO) potentiates the anti-tumor effect of genotoxic agent and PARPi in TNBC mouse models. Our study provides the potential of targeting Smyca in combination with chemotherapy or PARP inhibitor as a strategy for TNBC treatment.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-27T16:15:03Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-27T16:15:03Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
Table of Contents v
I. Introductions 1
1. Triple Negative Breast Cancer 1
1.1 Overview of breast cancer 1
1.2 Target therapies in breast cancer 2
1.3 Treatments for TNBC 4
2. cGAS/STING pathway 6
2.1. Mechanism of cGAS/STING pathway 6
2.2. The regulation of cGAS/STING pathway in cancer 7
2.3. Immunotherapy and cGAS/STING pathway 9
3. DNA repair 11
3.1. Overview of DNA repair 11
3.2. DNA repairs and cancer therapies 17
4. LncRNA 20
4.1. Overview of lncRNA 20
4.2. LncRNA and cancer 22
4.3. LncRNA Smyca 23
II. Materials and Methods 26
III. Results 35
Smyca knockdown sensitizes TNBC cells to genotoxic agent and enables synthetic lethality to PARPi 35
Smyca knockdown impairs the repair of DNA double-strand breaks 36
Smyca promotes HR directly 37
Smyca promotes FoxM1 activity and the expression of FoxM1-regulated repair genes 38
Smyca knockdown induces micronuclei formation in basal and drug-treated conditions 40
Smyca knockdown in drug-treated TNBC cells enhances cGAS/STING pathway to induce type I interferon responses 41
Smyca knockdown in drug-treated TNBC cells enhances the chemotactic migration of CD3+ T cells towards tumor cells 42
Targeting Smyca combining PARPi or cisplatin treatment inhibits tumor growth in TNBC mouse models 43
IV. Discussions 45
V. References 50
VI. Figures 66
VII. Appendix 91
-
dc.language.isoen-
dc.subject長鏈非編碼RNAzh_TW
dc.subjectSmycazh_TW
dc.subject三陰性乳癌zh_TW
dc.subject合成致死性zh_TW
dc.subjectPARP抑制劑zh_TW
dc.subjectcGAS/STING路徑zh_TW
dc.subject同源重組zh_TW
dc.subjectSmycaen
dc.subjecthomologous recombinationen
dc.subjectcGAS/STING pathwayen
dc.subjectsynthetic lethalityen
dc.subjectPARPien
dc.subjectTNBCen
dc.subjectLncRNAen
dc.title長鏈非編碼RNA Smyca促進由FoxM1調控之同源重組以控制三陰性乳癌中的免疫逃脫及治療抗藥性zh_TW
dc.titleThe LncRNA Smyca promotes FoxM1-mediated homologous recombination to control TNBC immune evasion and therapy resistanceen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee徐立中;李育儒zh_TW
dc.contributor.oralexamcommitteeLi-Chung Hsu;Yu-Ru Leeen
dc.subject.keyword長鏈非編碼RNA,Smyca,三陰性乳癌,合成致死性,PARP抑制劑,cGAS/STING路徑,同源重組,zh_TW
dc.subject.keywordLncRNA,Smyca,TNBC,PARPi,synthetic lethality,cGAS/STING pathway,homologous recombination,en
dc.relation.page95-
dc.identifier.doi10.6342/NTU202401452-
dc.rights.note未授權-
dc.date.accepted2024-07-04-
dc.contributor.author-college醫學院-
dc.contributor.author-dept分子醫學研究所-
顯示於系所單位:分子醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
3.01 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved