請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95074完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭世榮 | zh_TW |
| dc.contributor.advisor | Shih-Jung Cheng | en |
| dc.contributor.author | 吳庭妤 | zh_TW |
| dc.contributor.author | Ting-Yu Wu | en |
| dc.date.accessioned | 2024-08-27T16:14:45Z | - |
| dc.date.available | 2024-08-28 | - |
| dc.date.copyright | 2024-08-27 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-11 | - |
| dc.identifier.citation | 1. Lingen, M. W., Kalmar, J. R., Karrison, T., et al. (2008). Critical evaluation of diagnostic aids for the detection of oral cancer. Oral Oncology, 44(1), 10-22.
2. Ko, Y. C., Huang, Y. L., Lee, C. H., et al. (1995). Betel quid chewing, cigarette smoking and alcohol consumption related to oral cancer in Taiwan. Journal of Oral Pathology and Medicine, 24(10), 450-453. 3. Shiu, M. N., Chen, T. H., Chang, S. H., et al. (2000). Risk factors for leukoplakia and malignant transformation to oral carcinoma: A leukoplakia cohort in Taiwan. British Journal of Cancer, 82(11), 1871-1874. 4. Dhanuthai, K., Rojanawatsirivej, S., Thosaporn, W., et al. (2018). Oral cancer: A multicenter study. Medicina oral, patologia oraly cirugia bucal, 23(1), e23-e29. 5. Lee, J. J., Hung, H. C., Cheng, S. J., et al. (2006). Carcinoma and dysplasia in oral leukoplakias in Taiwan: Prevalence and risk factors. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 101(4), 472-480. 6. Wong, T., et al. (2018). Oral Cancer. Australian Dental Journal, 63(S1), S91-S99. 7. van der Waal, I. (2009). Potentially malignant disorders of the oral and oropharyngeal mucosa; terminology, classification and present concepts of management. Oral Oncology, 45(4), 317-323. 8. Tirelli, G., et al. (2018). Prognosis of oral cancer: A comparison of the staging systems given in the 7th and 8th editions of the American Joint Committee on Cancer Staging Manual. British Journal of Oral and Maxillofacial Surgery, 56(1), 8-13. 9. Ionna, F., et al. (2021). Recurrent/Metastatic Squamous Cell Carcinoma of the Head and Neck: A Big and Intriguing Challenge Which May Be Resolved by Integrated Treatments Combining Locoregional and Systemic Therapies. Cancers, 13(10), 2371. 10. Jerjes, W., Upile, T., Petrie, A., et al. (2010). Clinicopathological parameters, recurrence, locoregional and distant metastasis in 115 T1-T2 oral squamous cell carcinoma patients. Head & Neck Oncology, 2, 9. 11. Baumann, M., Krause, M., et al. (2008). Exploring the role of cancer stem cells in radioresistance. Nature Reviews Cancer, 8(7), 545-554. 12. Siqueira, J. M., et al. (2023). Mechanisms involved in cancer stem cell resistance in head and neck squamous cell carcinoma. Cancer Drug Resistance, 6(1), 116-137. 13. Hernandez, B. Y., Zhu, X., Goodman, M. T., et al. (2017). Betel nut chewing, oral premalignant lesions, and the oral microbiome. PLoS One, 12(2), e0172196. 14. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. (2004). Betel-quid and areca-nut chewing and some areca-nut derived nitrosamines, 85, 1-334. 15. Lee, H. C., Yin, P. H., Yu, T. N., Chang, Y. D., et al. (2001). Accumulation of mitochondrial DNA deletions in human oral tissues -- effects of betel quid chewing and oral cancer. Mutation Research, 493(1-2), 67-74. 16. Wen, C. P., Tsai, M. K., Chung, W. S., et al. (2010). Cancer risks from betel quid chewing beyond oral cancer: A multiple-site carcinogen when acting with smoking. Cancer Causes & Control, 21(9), 1427-1435. 17. Prabhu, R. V., Prabhu, V., Chatra, L., et al. (2014). Areca nut and its role in oral submucous fibrosis. Journal of Clinical and Experimental Dentistry, 6(5), e569-e575. 18. Sharan, R. N., Mehrotra, R., Choudhury, Y., et al. (2012). Association of betel nut with carcinogenesis: Revisit with a clinical perspective. PLoS One, 7(8), e42759. 19. Gao, Y., Ling, T., & Wu, H. (1997). Expression of transforming growth factor beta 1 in keratinocytes of oral submucous fibrosis tissue. Zhonghua Kou Qiang Yi Xue Za Zhi, 32(4), 239-241. 20. Hsieh, Y. P., Wu, K. J., Chen, H. M., et al. (2018). Arecoline activates latent transforming growth factor β1 via mitochondrial reactive oxygen species in buccal fibroblasts: Suppression by epigallocatechin-3-gallate. Journal of the Formosan Medical Association, 117(6), 527-534. 21. Lee, S. S., et al. (2013). Elevated snail expression mediates tumor progression in areca quid chewing-associated oral squamous cell carcinoma via reactive oxygen species. PLoS One, 8(7), e67985. 22. Wang, T. Y., Peng, C. Y., Lee, S. S., et al. (2016). Acquisition cancer stemness, mesenchymal transdifferentiation, and chemoresistance properties by chronic exposure of oral epithelial cells to arecoline. Oncotarget, 7(51), 84072-84081. 23. Delaney, K., Kasprzycka, P., Ciemerych, M. A., et al. (2017). The role of TGF-β1 during skeletal muscle regeneration. Cell Biology International, 41(7), 706-715. 24. Kubiczkova, L., Sedlarikova, L., Hajek, R., et al. (2012). TGF-β - An excellent servant but a bad master. Journal of Translational Medicine, 10, 183. 25. Grgurevic, L., et al. (2020). Plasma levels and tissue expression of soluble TGFβrIII receptor in women with early-stage breast cancer and in healthy women: A prospective observational study. Journal of Translational Medicine, 18(1), 478. 26. Xie, F., Ling, L., van Dam, H., Zhou, F., et al. (2018). TGF-β signaling in cancer metastasis. Acta Biochimica et Biophysica Sinica, 50(1), 121-132. 27. Derynck, R., & Zhang, Y. E. (2003). Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature, 425(6958), 577-584. 28. Zhang, Y. E. (2017). Non-Smad Signaling Pathways of the TGF-β Family. Cold Spring Harbor Perspectives in Biology, 9(2), a022129. 29. Zhang, Y., et al. (2017). TGF-β Family Signaling in the Control of Cell Proliferation and Survival. Cold Spring Harbor Perspectives in Biology, 9(4), a022145. 30. Futakuchi, M., Lami, K., Tachibana, Y., et al. (2019). The Effects of TGF-β Signaling on Cancer Cells and Cancer Stem Cells in the Bone Microenvironment. International Journal of Molecular Sciences, 20(20), 5117. 31. Li, K., Yang, L., Li, J., Guan, C., et al. (2019). TGFβ induces stemness through non-canonical AKT-FOXO3a axis in oral squamous cell carcinoma. EBioMedicine, 48, 70-80. 32. Gatza, C. E., Holtzhausen, A., Kirkbride, K. C., et al. (2011). Type III TGF-β receptor enhances colon cancer cell migration and anchorage-independent growth. Neoplasia, 13(8), 758-770. 33. González-Santiago, A. E., Mendoza-Topete, L. A., et al. (2011). TGF-β1 serum concentration as a complementary diagnostic biomarker of lung cancer: Establishment of a cut-point value. Journal of Clinical Laboratory Analysis, 25(4), 238-243. 34. Karcher, J., Reisser, C., Daniel, V., et al. (1999). Cytokine expression of transforming growth factor-beta2 and interleukin-10 in squamous cell carcinomas of the head and neck. Comparison of tissue expression and serum levels. HNO, 47(10), 879-84. 35. Yang, L., et al. (2010). TGF-beta and immune cells: An important regulatory axis in the tumor microenvironment and progression. Trends in Immunology, 31(6), 220-227. 36. Wang, S. S., et al. (2015). Links between cancer stem cells and epithelial-mesenchymal transition. OncoTargets and Therapy, 8, 2973-2980. 37. van der Horst, G., et al. (2011). Targeting of α(v)-integrins in stem/progenitor cells and supportive microenvironment impairs bone metastasis in human prostate cancer. Neoplasia, 13(6), 516-525. 38. Xu, R. H., Sampsell-Barron, T. L., Gu, F., et al. (2008). NANOG is a direct target of TGFbeta/activin-mediated SMAD signaling in human ESCs. Cell Stem Cell, 3(2), 196-206. 39. Xu, X., et al. (2018). Elevated EpCAM expression confers to the malignant status and prognosis of esophageal squamous cell carcinoma patients via regulating TGF-β-mediated epithelial-mesenchymal transition. Journal of Cancer, 9(11), 2002-2014. 40. Chen, Y. L., et al. (2018). Role of S100A4 in cholangiocarcinoma: Clinicopathological correlations and prognostic significance. International Journal of Molecular Sciences, 19(12), 3394. 41. Sadler, A. J., & Williams, B. R. (2008). Interferon-inducible antiviral effectors. Nature Reviews Immunology, 8(7), 559-568. 42. Hovnanian, A., et al. (1998). The human 2',5'-oligoadenylate synthetase locus is composed of three distinct genes clustered on chromosome 12q24.2 encoding the 100-, 69-, and 40-kDa forms. Genomics, 52(3), 267-277. 43. Bonnevie-Nielsen, V., et al. (2005). Variation in antiviral 2',5'-oligoadenylate synthetase (2'5'AS) enzyme activity is controlled by a single-nucleotide polymorphism at a splice-acceptor site in the OAS1 gene. American Journal of Human Genetics, 76(4), 623-633. 44. Dong, B., & Silverman, R. H. (1995). 2-5A-dependent RNase molecules dimerize during activation by 2-5A. Journal of Biological Chemistry, 270(8), 4133-4137. 45. Hovanessian, A. G., et al. (2007). The human 2'-5'oligoadenylate synthetase family: unique interferon-inducible enzymes catalyzing 2'-5' instead of 3'-5' phosphodiester bond formation. Biochimie, 89(6-7), 779-788. 46. Lee, W. B., Choi, W. Y., Lee, D. H., et al. (2019). OAS1 and OAS3 negatively regulate the expression of chemokines and interferon-responsive genes in human macrophages. BMB Reports, 52(2), 133-138. 47. Ghosh, A., et al. (1997). Enzymatic activity of 2'-5'-oligoadenylate synthetase is impaired by specific mutations that affect oligomerization of the protein. Journal of Biological Chemistry, 272(52), 33220-33226. 48. Lin, R. J., Yu, H. P., Chang, B. L., et al. (2009). Distinct antiviral roles for human 2',5'-oligoadenylate synthetase family members against dengue virus infection. Journal of Immunology, 183(12), 8035-8043. 49. Kwon, Y. C., Kang, J. I., Hwang, S. B., et al. (2013). The ribonuclease L-dependent antiviral roles of human 2',5'-oligoadenylate synthetase family members against hepatitis C virus. FEBS Letters, 587(2), 156-164. 50. Rebouillat, D., & Hovanessian, A. G. (1999). The human 2',5'-oligoadenylate synthetase family: interferon-induced proteins with unique enzymatic properties. Journal of Interferon & Cytokine Research, 19(4), 295-308. 51. de Freitas Almeida, G. M., et al. (2014). Differential upregulation of human 2'5'OAS genes on systemic sclerosis: Detection of increased basal levels of OASL and OAS2 genes through a qPCR based assay. Autoimmunity, 47(2), 119-126. 52. Croze, E. (2010). Differential gene expression and translational approaches to identify biomarkers of interferon beta activity in multiple sclerosis. Journal of Interferon & Cytokine Research, 30(10), 743-439. 53. Preble, O. T., et al. (1983). Interferon-induced 2'-5' adenylate synthetase in vivo and interferon production in vitro by lymphocytes from systemic lupus erythematosus patients with and without circulating interferon. Journal of Experimental Medicine, 157(6), 2140-2146. 54. Hertzog, P. J., et al. (1988). Interferons in rheumatoid arthritis: alterations in production and response related to disease activity. Clinical Immunology and Immunopathology, 48(2), 192-201. 55. Zhang, Y., & Yu, C. (2020). Prognostic characterization of OAS1/OAS2/OAS3/OASL in breast cancer. BMC Cancer, 20(1), 575. 56. Gao, L., Ren, R., Shen, J., Hou, J., et al. (2022). Values of OAS gene family in the expression signature, immune cell infiltration and prognosis of human bladder cancer. BMC Cancer, 22(1), 1016. 57. Caglar, H. O., Aytatli, A., Barlak, N., Aydin Karatas, E., et al. (2024). Bioinformatics approach combined with experimental verification reveals OAS3 gene implicated in paclitaxel resistance in head and neck cancer. Head & Neck, 1-19. 58. Yu, C., Xue, P., Zhang, L., Pan, R., Cai, Z., et al. (2018). Prediction of key genes and pathways involved in trastuzumab-resistant gastric cancer. World Journal of Surgical Oncology, 16(1), 174. 59. Casarrubios, M., Provencio, M., Nadal, E., Insa, A., et al. (2022). Tumor microenvironment gene expression profiles associated to complete pathological response and disease progression in resectable NSCLC patients treated with neoadjuvant chemoimmunotherapy. Journal for Immunotherapy of Cancer, 10(9), e005320. 60. Li, X. Y., et al. (2022). OAS3 is a co-immune biomarker associated with tumour microenvironment, disease staging, prognosis, and treatment response in multiple cancer types. Frontiers in Cell and Developmental Biology, 10, 815480. 61. Archiv für Pathologische Anatomie und Physiologie und für Klinische Medicin. (1861). British and Foreign Medico-Chirurgical Review, 27(53), 52-65. 62. Kreso, A., & Dick, J. E (2014). Evolution of the cancer stem cell model. Cell Stem Cell, 14(3), 275-291. 63. Brooks, M. D., et al. (2015). Therapeutic implications of cellular heterogeneity and plasticity in breast cancer. Cell Stem Cell, 17(3), 260-271. 64. Santivasi, W. L., & Xia, F. (2014). Ionizing radiation-induced DNA damage, response, and repair. Antioxidants & Redox Signaling, 21(2), 251-259. 65. Feinendegen, L. E. (2002). Reactive oxygen species in cell responses to toxic agents. Human & Experimental Toxicology, 21(2), 85-90. 66. Surova, O., & Zhivotovsky, B. (2013). Various modes of cell death induced by DNA damage. Oncogene, 32(33), 3789-3797. 67. Skvortsova, I., et al. (2015). Radiation resistance: Cancer stem cells (CSCs) and their enigmatic pro-survival signaling. Seminars in Cancer Biology, 35, 39-44. 68. Lee, S. Y., Jeong, E. K., Ju, M. K., Jeon, H. M., et al. (2017). Induction of metastasis, cancer stem cell phenotype, and oncogenic metabolism in cancer cells by ionizing radiation. Molecular Cancer, 16(1), 10. 69. Vlashi, E., et al. (2016). Radiation-induced dedifferentiation of head and neck cancer cells into cancer stem cells depends on human papillomavirus status. International Journal of Radiation Oncology, Biology, Physics, 94(5), 1198-1206. 70. Holohan, C., Van Schaeybroeck, S., Longley, D. B., et al. (2013). Cancer drug resistance: an evolving paradigm. Nature Reviews Cancer, 13(10), 714-726. 71. Lima de Oliveira, J., et al. (2023). Epithelial-mesenchymal transition and cancer stem cells: A route to acquired cisplatin resistance through epigenetics in HNSCC. Oral Diseases, 29(5), 1991-2005. 72. Kulsum, S., Sudheendra, H. V., Pandian, R., et al. (2017). Cancer stem cell mediated acquired chemoresistance in head and neck cancer can be abrogated by aldehyde dehydrogenase 1 A1 inhibition. Molecular Carcinogenesis, 56(2), 694-711. 73. Cui, Y., et al. (2022). Reversal of epithelial-mesenchymal transition and inhibition of tumor stemness of breast cancer cells through advanced combined chemotherapy. Acta Biomaterialia, 152, 380-392. 74. Cho, Y. H., et al. (2020). 5-FU promotes stemness of colorectal cancer via p53-mediated WNT/β-catenin pathway activation. Nature Communications, 11(1), 5321. 75. Bao, S., et al. (2006). Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature, 444(7120), 756-760. 76. Lo, W. L., Kao, S. Y., Chi, L. Y., Wong, Y. K., et al. (2003). Outcomes of oral squamous cell carcinoma in Taiwan after surgical therapy: Factors affecting survival. Journal of Oral and Maxillofacial Surgery, 61(7), 751-758. 77. Danish, H.H., et al. (2013). Interferon-induced protein with tetratricopeptide repeats 1 (IFIT1) as a prognostic marker for local control in T1-2 N0 breast cancer treated with breast-conserving surgery and radiation therapy (BCS + RT). Breast J, 19(3), 231-9. 78. Yang, Y., et al. (2017). Hepatic IFIT3 predicts interferon-α therapeutic response in patients of hepatocellular carcinoma. Hepatology, 66(1), 152-166. 79. Pidugu, V. K., Pidugu, H. B., Wu, M. M., Liu, C. J., et al. (2019). Emerging Functions of Human IFIT Proteins in Cancer. Frontiers in Molecular Biosciences, 6, 148. 80. Li, H., et al. (2020). Expression and Prognostic Value of IFIT1 and IFITM3 in Head and Neck Squamous Cell Carcinoma. Am J Clin Pathol, 153(5), 618-629. 81. Pidugu, V.K., et al. (2019). IFIT1 and IFIT3 promote oral squamous cell carcinoma metastasis and contribute to the anti-tumor effect of gefitinib via enhancing p-EGFR recycling. Oncogene, 38(17), 3232-3247. 82. Gao, L.J., et al.(2022). Biological Characterization and Clinical Value of OAS Gene Family in Pancreatic Cancer. Front Oncol, 12, 884334. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95074 | - |
| dc.description.abstract | 根據111年衛生福利部公佈的十大癌症死因死亡率統計,口腔癌高居男性十大癌症死亡率的第四位。抽菸、喝酒與嚼檳榔為台灣口腔癌的主要致病危險因子,其中嚼檳榔比起抽菸更具統計意義。實驗室先前以微陣列分析口腔癌SAS細胞株及具有幹細胞特性的SAS聚球體細胞其基因表現差異,分別以Gene Ontology, KEGG和Protein-Protein Interaction的資料庫分析,篩選出過去並無任何文獻報導與口腔癌有相關性之2'-5'-oligoadenylate synthetase 3 ( OAS3)。我們初步利用OAS3免疫染色發現正常口腔上皮組織(n=12) OAS3陽性染色labeling index(LI)中位數為15%而OSCC患者(n=11)陽性染色中位數為77.5%。顯示OAS3在口腔癌組織有過度表現且具統計意義(p<0.0001)。進一步於細胞實驗中以OAS3質體及空載體轉殖入TW2.6細胞及SAS細胞。發現OAS3過表現的口腔癌細胞Migration和Invasion能力具明顯增強,OAS3過表現的TW2.6細胞及SAS細胞形成聚球體( sphere )的能力明顯提升,並增進口腔癌細胞生長的能力。此外,OAS3過表達會使上皮間質轉換相關蛋白N-Cadherin、Vimentin、Slug、Snail、Twist表現提升,E-Cadherin表現下降,同時增加癌幹細胞(Stemness)相關標誌OCT4、KLF4、SOX2及NANOG的表現。使用OAS3 siRNA knockdown OAS3表現量較多的SAS和FaDu聚球體細胞,發現可降低Stemness相關蛋白表現和形成聚球體的能力。PPI分析中亦發現OAS3與干擾素誘導基因(interferon-stimulated genes, ISGs)的IFIT1及IFIT3有高度相關。OAS3過表現或OAS3 siRNA knockdown的TW2.6細胞中,OAS3的表現與IFIT1和IFIT3的蛋白表現量呈正相關。小鼠頰黏膜異體口腔癌模式結果顯示,OAS3過表現TW2.6細胞腫瘤起始頻率是vector組的10倍以上(p<0.01)。顯示OAS3亦能夠增進口腔癌起始發生。 OAS3過表現TW2.6細胞腫瘤組織OAS3染色表現增加,相對的癌幹細胞及表皮間質標誌表現亦明顯上升,且IFIT1、IFIT3蛋白表現也都有明顯正相關的陽性染色增加。為了解嚼檳榔與OAS3表現的相關性,我們以檳榔鹼Arecoline處理人類口腔上皮SG細胞及TW2.6細胞,發現Arecoline可增加此兩株細胞OAS3的表現量。加入TGF-ß中和抗體、ALK5抑制劑、Smad3抑制劑,可抑制Arecoline誘導OAS3表現。顯示Arecoline經由TGF-ß訊息傳遞路徑誘導口腔上皮細胞OAS3的表現。 從上述結果顯示,Arecoline引發OAS3過表現,可促進頭頸上皮細胞癌化及癌細胞幹性化,其路徑可能經過下游的IFIT1及IFIT3之作用。 | zh_TW |
| dc.description.abstract | The chewing of areca nut (AN, Areca catechu) preparations has been associated with the high incidence of oral cancer observed in Taiwan. Previous studies in our laboratory found 2'-5'-oligoadenylate synthetase 3 (OAS3) is overexpressed in the stem cell-like SAS sphere cells. OAS3 expression in the oral squamous cell carcinoma (OSCC) tissues was higher than those of the normal oral mucosal samples. Human buccal SCC TW2.6 cells and tongue SCC SAS cells with OAS3 overexpression exhibited enhanced migration, invasion, epithelial–mesenchymal transition (EMT), cancer stem cell (CSC) phenotypes. OAS3 overexpression in TW2.6 cells increased tumor initiating frequency at least 10-folds in SCID mice. Furthermore, a positive correlation between OAS3 expression and IFIT1 and IFIT3 overexpression in TW2.6-OAS3 xenograft tissues was observed. Arecoline, a main alkaloid of areca nut, induced the expression of OAS3 protein in oral epithelial SG and TW2.6 cells. Pretreatment with TGF-β neutralizing antibody, SB431542 and smad3 inhibitor SIS3 inhibit the arecoline-induced OAS3 expression, indicating arecoline-induced OAS3 expression is mediated by TGF-β1. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-27T16:14:45Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-27T16:14:45Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目次
誌謝 i 中文摘要 ii Abstract iv 第一章、研究背景與文獻回顧 4 1.1 口腔癌 4 1.2 檳榔鹼 5 1.3 Transforming growth factor-β1 6 1.4 OAS3 2'-5'-oligoadenylate synthetase 3 7 1.5 癌症幹細胞 (Cancer Stem Cell, CSC) 8 第二章、研究動機與目的 10 第三章、實驗材料 11 3.1 實驗材料 11 3.2 實驗方法 12 3.2.1 細胞培養 12 3.2.2 藥物處理 12 3.2.3 西方點墨法、蛋白植萃取與定量 12 3.2.4 膠體配置 13 3.2.5 蛋白質電泳與轉漬(Transfer) 13 3.2.6 一級抗體與二級抗體使用 14 3.2.7 顯影呈色 15 3.2.8 抽取質體 15 3.2.9 細胞增生速率測試 (Cell proliferation assay) 17 3.2.10 細胞存活率試驗 (MTT assay) 17 3.2.11 細胞移動性實驗 (Migration assay) 17 3.2.12 細胞侵襲性試驗 (Invasion assay) 18 3.2.13 細胞聚球體形成試驗 (Sphere forming assay) 18 3.2.14 腫瘤移植實驗 18 3.2.15 切片染色 19 第四章、實驗結果 20 4.1 OAS3在口腔癌組織有過度表現 20 4.2 SAS細胞聚球體中OAS3蛋白有較高表現 20 4.3 Knockdown OAS3可降低SAS形成聚球體的能力與Stemness markers 20 4.4 FaDu細胞聚球體中OAS3蛋白有較高表現 21 4.5 Knockdown OAS3可降低FaDu形成聚球體的能力與Stemness markers 21 4.6 OAS3 overexpression增強TW2.6細胞與SAS細胞Stemness markers的表現 22 4.7 OAS3 overexpression增強TW2.6細胞與SAS細胞EMT markers的表現 22 4.8 OAS3 overexpression增強細胞形成聚球體的能力 22 4.9 OAS3 overexpression增強TW2.6細胞與SAS細胞的生長速率 23 4.10 Knockdown OAS3降低FaDu細胞migration與invasion的能力 23 4.11 OAS3 overexpression會增強TW2.6細胞migration與invasion的能力 23 4.12 Arecoline誘導SG細胞與TW2.6細胞OAS3蛋白表現 24 4.13 Arecoline經由TGF-b路徑誘導TW2.6細胞OAS3的表現現 24 4.14 OAS3的表達與IFIT1和IFIT3的蛋白表現量呈正相關 25 4.15 OAS3 overexpression增加腫瘤在小鼠體內的發生並促進腫瘤生長 25 4.16 以IHC分析在in vivo實驗中取下之OAS3過表達OSCC腫瘤 25 第五章、討論與結論 26 圖與表 29 圖ㄧ、OSCC患者與正常口腔上皮組織免疫染色切片分析OAS3表現量 29 圖二、SAS細胞聚球體中OAS3蛋白表現量 30 圖三、降低OAS3的表達對SAS Sphere細胞Stemness markers的影響 31 圖四、Sphere forming assay觀察SAS sphere處理siOAS3後形成聚球體的能力 32 圖五、FaDu細胞聚球體中OAS3蛋白表現量 33 圖六、降低OAS3的表達對FaDu Sphere細胞Stemness markers的影響 34 圖七、Sphere forming assay觀察FaDu sphere處理siOAS3後形成聚球體的能力 35 圖八、在TW2.6細胞建立OAS3穩定過表達 36 圖九、OAS3的過表達對TW2.6細胞Stemness markers的影響 37 圖十、OAS3的過表達對SAS細胞Stemness markers的影響 38 圖十一、OAS3的過表達對TW2.6細胞EMT markers的影響 39 圖十二、OAS3的過表達對SAS細胞EMT markers的影響 40 圖十三、OAS3過表達對TW2.6細胞與SAS細胞形成聚球體的能力 41 圖十四、OAS3過表達對細胞生長速率的影響 42 圖十五、降低OAS3的表達對FaDu細胞移動和侵襲能力的影響 43 圖十六、OAS3過表達對TW2.6細胞移動和侵襲能力的影響 44 圖十七、Arecoline及TGF-b誘導SG細胞OAS3蛋白表現 45 圖十八、Arecoline及TGF-b誘導TW2.6細胞OAS3蛋白表現 46 圖十九、Arecoline經由TGF-b路徑誘導TW2.6細胞OAS3蛋白表現 47 圖二十、OAS3過表達與IFIT1和IFIT3的蛋白表現量呈正相關 48 圖二十一、OAS3的過表達能夠增加腫瘤在小鼠體內的發生 50 圖二十二、以IHC分析在in vivo實驗中取下之OAS3過表達OSCC腫瘤 51 參考文獻 52 附錄 61 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 癌幹細胞 | zh_TW |
| dc.subject | EMT | zh_TW |
| dc.subject | OAS3 | zh_TW |
| dc.subject | 檳榔鹼 | zh_TW |
| dc.subject | 口腔癌 | zh_TW |
| dc.subject | Stemness | zh_TW |
| dc.subject | Oral Cancer | en |
| dc.subject | Stemness | en |
| dc.subject | EMT | en |
| dc.subject | Arecoline | en |
| dc.subject | Cancer Stem Cell | en |
| dc.subject | OAS3 | en |
| dc.title | 2''-5''-寡腺苷酸合成酶3 (OAS3)誘導口腔癌細胞EMT與幹細胞特性之研究 | zh_TW |
| dc.title | 2''-5''-oligoadenylate synthase 3 (OAS3) induced epithelial mesenchymal transition and stemness in oral cancer | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 郭彥彬 | zh_TW |
| dc.contributor.coadvisor | Mark Yen-Ping Kuo | en |
| dc.contributor.oralexamcommittee | 張國威 | zh_TW |
| dc.contributor.oralexamcommittee | Kuo-Wei Chang | en |
| dc.subject.keyword | OAS3,癌幹細胞,檳榔鹼,口腔癌,Stemness,EMT, | zh_TW |
| dc.subject.keyword | OAS3,Cancer Stem Cell,Arecoline,Oral Cancer,Stemness,EMT, | en |
| dc.relation.page | 65 | - |
| dc.identifier.doi | 10.6342/NTU202401604 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-07-12 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 口腔生物科學研究所 | - |
| 顯示於系所單位: | 口腔生物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 20.44 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
