Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 藥學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95072
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭錦樺zh_TW
dc.contributor.advisorChing-Hua Kuoen
dc.contributor.author鄭芷寧zh_TW
dc.contributor.authorChih-Ning Chengen
dc.date.accessioned2024-08-27T16:14:00Z-
dc.date.available2024-08-28-
dc.date.copyright2024-08-27-
dc.date.issued2024-
dc.date.submitted2024-06-19-
dc.identifier.citation1. Tamargo J, Le Heuzey JY, Mabo P. Narrow therapeutic index drugs: A clinical pharmacological consideration to flecainide. Eur J Clin Pharmacol. 2015;71(5):549-567.
2. Pinho AR, Fortuna A, Falcão A, et al. Comparison of elisa and hplc-ms methods for the determination of exenatide in biological and biotechnology-based formulation matrices. J Pharm Anal. 2019;9(3):143-155.
3. Jiang X, Wu M, Albo J, Rao Q. Non-specific binding and cross-reaction of elisa: A case study of porcine hemoglobin detection. Foods. 2021;10(8).
4. Liang WS, Beaulieu-Jones B, Smalley S, Snyder M, Goetz LH, Schork NJ. Emerging therapeutic drug monitoring technologies: Considerations and opportunities in precision medicine. Frontiers in Pharmacology. 2024;15.
5. Griffiths WJ, Wang YQ. Mass spectrometry: From proteomics to metabolomics and lipidomics. Chemical Society Reviews. 2009;38(7):1882-1896.
6. Qian WJ, Jacobs JM, Liu T, Camp DG, Smith RD. Advances and challenges in liquid chromatography-mass spectrometry-based proteomics profiling for clinical applications. Molecular & Cellular Proteomics. 2006;5(10):1727-1744.
7. Saigusa D, Matsukawa N, Hishinuma E, Koshiba S. Identification of biomarkers to diagnose diseases and find adverse drug reactions by metabolomics. Drug Metabolism and Pharmacokinetics. 2021;37.
8. Chiurchiù V, Tiberi M, Matteocci A, et al. Lipidomics of bioactive lipids in alzheimer's and parkinson's diseases: Where are we? International Journal of Molecular Sciences. 2022;23(11).
9. Obis E, Sol J, Andres-Benito P, et al. Lipidomic alterations in the cerebral cortex and white matter in sporadic alzheimer's disease. Aging and Disease. 2023;14(5):1887-1916.
10. Huynh K, Barlow CK, Jayawardana KS, et al. High-throughput plasma lipidomics: Detailed mapping of the associations with cardiometabolic risk factors. Cell Chemical Biology. 2019;26(1):71-+.
11. Kus K, Kij A, Zakrzewska A, et al. Alterations in arginine and energy metabolism, structural and signalling lipids in metastatic breast cancer in mice detected in plasma by targeted metabolomics and lipidomics. Breast Cancer Research. 2018;20.
12. Eghlimi R, Shi XJ, Hrovat J, Xi BW, Gu HW. Triple negative breast cancer detection using lc-ms/ms lipidomic profiling. Journal of Proteome Research. 2020;19(6):2367-2378.
13. Edelbroek PM, van der Heijden J, Stolk LM. Dried blood spot methods in therapeutic drug monitoring: Methods, assays, and pitfalls. Ther Drug Monit. 2009;31(3):327-336.
14. Lehotay DC, Hall P, Lepage J, Eichhorst JC, Etter ML, Greenberg CR. Lc-ms/ms progress in newborn screening. Clin Biochem. 2011;44(1):21-31.
15. Sadones N, Capiau S, De Kesel PM, Lambert WE, Stove CP. Spot them in the spot: Analysis of abused substances using dried blood spots. Bioanalysis. 2014;6(17):2211-2227.
16. Demirev PA. Dried blood spots: Analysis and applications. Anal Chem. 2013;85(2):779-789.
17. Antunes MV, Charão MF, Linden R. Dried blood spots analysis with mass spectrometry: Potentials and pitfalls in therapeutic drug monitoring. Clin Biochem. 2016;49(13-14):1035-1046.
18. Liao HW, Lin SW, Chen GY, Kuo CH. Estimation and correction of the blood volume variations of dried blood spots using a postcolumn infused-internal standard strategy with lc-electrospray ionization-ms. Anal Chem. 2016;88(12):6457-6464.
19. Koal T, Burhenne H, Römling R, Svoboda M, Resch K, Kaever V. Quantification of antiretroviral drugs in dried blood spot samples by means of liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom. 2005;19(21):2995-3001.
20. Spooner N, Lad R, Barfield M. Dried blood spots as a sample collection technique for the determination of pharmacokinetics in clinical studies: Considerations for the validation of a quantitative bioanalytical method. Anal Chem. 2009;81(4):1557-1563.
21. Capiau S, Veenhof H, Koster RA, et al. Official international association for therapeutic drug monitoring and clinical toxicology guideline: Development and validation of dried blood spot-based methods for therapeutic drug monitoring. Ther Drug Monit. 2019;41(4):409-430.
22. Wilhelm AJ, den Burger JC, Swart EL. Therapeutic drug monitoring by dried blood spot: Progress to date and future directions. Clin Pharmacokinet. 2014;53(11):961-973.
23. Abu-Rabie P, Denniff P, Spooner N, Brynjolffssen J, Galluzzo P, Sanders G. Method of applying internal standard to dried matrix spot samples for use in quantitative bioanalysis. Anal Chem. 2011;83(22):8779-8786.
24. Zimmer D, Hassler S, Betschart B, Sack S, Fankhauser C, Loppacher M. Internal standard application to dried blood spots by spraying: Investigation of the internal standard distribution. Bioanalysis. 2013;5(6):711-719.
25. De Kesel PM, Lambert WE, Stove CP. Does volumetric absorptive microsampling eliminate the hematocrit bias for caffeine and paraxanthine in dried blood samples? A comparative study. Anal Chim Acta. 2015;881:65-73.
26. Spooner N, Denniff P, Michielsen L, et al. A device for dried blood microsampling in quantitative bioanalysis: Overcoming the issues associated blood hematocrit. Bioanalysis. 2015;7(6):653-659.
27. Denniff P, Spooner N. Volumetric absorptive microsampling: A dried sample collection technique for quantitative bioanalysis. Anal Chem. 2014;86(16):8489-8495.
28. Emmons G, Rowland M. Pharmacokinetic considerations as to when to use dried blood spot sampling. Bioanalysis. 2010;2(11):1791-1796.
29. Capiau S, Wilk LS, De Kesel PMM, Aalders MCG, Stove CP. Correction for the hematocrit bias in dried blood spot analysis using a nondestructive, single-wavelength reflectance-based hematocrit prediction method. Anal Chem. 2018;90(3):1795-1804.
30. Luginbühl M, Fischer Y, Gaugler S. Fully automated optical hematocrit measurement from dried blood spots. J Anal Toxicol. 2020.
31. De Kesel PM, Capiau S, Stove VV, Lambert WE, Stove CP. Potassium-based algorithm allows correction for the hematocrit bias in quantitative analysis of caffeine and its major metabolite in dried blood spots. Anal Bioanal Chem. 2014;406(26):6749-6755.
32. Zheng JH, Guida LA, Rower C, et al. Quantitation of tenofovir and emtricitabine in dried blood spots (dbs) with lc-ms/ms. J Pharm Biomed Anal. 2014;88:144-151.
33. Amara AB, Else LJ, Tjia J, et al. A validated method for quantification of efavirenz in dried blood spots using high-performance liquid chromatography-mass spectrometry. Ther Drug Monit. 2015;37(2):220-228.
34. Martial LC, Hoogtanders KEJ, Schreuder MF, et al. Dried blood spot sampling for tacrolimus and mycophenolic acid in children: Analytical and clinical validation. Ther Drug Monit. 2017;39(4):412-421.
35. Boons C, Chahbouni A, Schimmel AM, et al. Dried blood spot sampling of nilotinib in patients with chronic myeloid leukaemia: A comparison with venous blood sampling. J Pharm Pharmacol. 2017;69(10):1265-1274.
36. Jhang RS, Lin SY, Peng YF, et al. Using the pci-is method to simultaneously estimate blood volume and quantify nonvitamin k antagonist oral anticoagulant concentrations in dried blood spots. Anal Chem. 2020;92(3):2511-2518.
37. Ashbee HR, Barnes RA, Johnson EM, Richardson MD, Gorton R, Hope WW. Therapeutic drug monitoring (tdm) of antifungal agents: Guidelines from the british society for medical mycology. J Antimicrob Chemother. 2014;69(5):1162-1176.
38. Patterson TF, Thompson GR, 3rd, Denning DW, et al. Practice guidelines for the diagnosis and management of aspergillosis: 2016 update by the infectious diseases society of america. Clin Infect Dis. 2016;63(4):e1-e60.
39. van der Elst KC, Span LF, van Hateren K, et al. Dried blood spot analysis suitable for therapeutic drug monitoring of voriconazole, fluconazole, and posaconazole. Antimicrob Agents Chemother. 2013;57(10):4999-5004.
40. Courtney R, Sansone A, Smith W, et al. Posaconazole pharmacokinetics, safety, and tolerability in subjects with varying degrees of chronic renal disease. J Clin Pharmacol. 2005;45(2):185-192.
41. Lee YR, Lee J, Kang HG. Presoaking dried blood spot with water improves efficiency for small-molecule analysis. Biotechniques. 2019;67(5):219-228.
42. U.S. Food and drug administration, bioanalytical method validation. Guidance for industry. In:2018.
43. Rowland M, Emmons GT. Use of dried blood spots in drug development: Pharmacokinetic considerations. Aaps j. 2010;12(3):290-293.
44. Prathipati PK, Mandal S, Destache CJ. Lc-ms/ms method for the simultaneous determination of tenofovir, emtricitabine, elvitegravir and rilpivirine in dried blood spots. Biomed Chromatogr. 2018:e4270.
45. Velghe S, Delahaye L, Stove CP. Is the hematocrit still an issue in quantitative dried blood spot analysis? J Pharm Biomed Anal. 2019;163:188-196.
46. Martial LC, van den Hombergh E, Tump C, et al. Manual punch versus automated flow-through sample desorption for dried blood spot lc-ms/ms analysis of voriconazole. J Chromatogr B Analyt Technol Biomed Life Sci. 2018;1089:16-23.
47. U.S. Food and drug administration, clinical pharmacology and biopharmaceutics review(s) nda 22-512, dabigatran, center for drug evaluation and research. In:2010.
48. Alley SC, Okeley NM, Senter PD. Antibody-drug conjugates: Targeted drug delivery for cancer. Curr Opin Chem Biol. 2010;14(4):529-537.
49. Sievers EL, Senter PD. Antibody-drug conjugates in cancer therapy. Annu Rev Med. 2013;64:15-29.
50. Drago JZ, Modi S, Chandarlapaty S. Unlocking the potential of antibody-drug conjugates for cancer therapy. Nat Rev Clin Oncol. 2021;18(6):327-344.
51. Fu Z, Li S, Han S, Shi C, Zhang Y. Antibody drug conjugate: The "biological missile" for targeted cancer therapy. Signal Transduct Target Ther. 2022;7(1):93.
52. Su Z, Xiao D, Xie F, et al. Antibody-drug conjugates: Recent advances in linker chemistry. Acta Pharm Sin B. 2021;11(12):3889-3907.
53. Othus M, Appelbaum FR, Petersdorf SH, et al. Fate of patients with newly diagnosed acute myeloid leukemia who fail primary induction therapy. Biol Blood Marrow Transplant. 2015;21(3):559-564.
54. Donaghy H. Effects of antibody, drug and linker on the preclinical and clinical toxicities of antibody-drug conjugates. MAbs. 2016;8(4):659-671.
55. Inoue K, Mochizuki T, Kasamori N, Komori T. Determination of drug-to-antibody ratio of antibody-drug conjugate in biological samples using microflow-liquid chromatography/high-resolution mass spectrometry. Bioanalysis. 2022;14(24):1533-1545.
56. Cai T, Shi L, Guo H, et al. Detection and characterization of in vitro payload-containing catabolites of noncleavable antibody-drug conjugates by high-resolution mass spectrometry and multiple data mining tools. Drug Metab Dispos. 2023;51(5):591-598.
57. Tsuchikama K, An Z. Antibody-drug conjugates: Recent advances in conjugation and linker chemistries. Protein Cell. 2018;9(1):33-46.
58. Jain N, Smith SW, Ghone S, Tomczuk B. Current adc linker chemistry. Pharm Res. 2015;32(11):3526-3540.
59. Sharkey RM, McBride WJ, Cardillo TM, et al. Enhanced delivery of sn-38 to human tumor xenografts with an anti-trop-2-sn-38 antibody conjugate (sacituzumab govitecan). Clin Cancer Res. 2015;21(22):5131-5138.
60. Starodub AN, Ocean AJ, Shah MA, et al. First-in-human trial of a novel anti-trop-2 antibody-sn-38 conjugate, sacituzumab govitecan, for the treatment of diverse metastatic solid tumors. Clin Cancer Res. 2015;21(17):3870-3878.
61. Li L, Wang C, Wu Y, et al. Simple and rapid lc-ms/ms methods for quantifying catabolites of antibody-drug conjugates with smcc linker. J Chromatogr Sci. 2021;59(7):642-649.
62. Iwamoto N, Shimomura A, Tamura K, Hamada A, Shimada T. Lc-ms bioanalysis of trastuzumab and released emtansine using nano-surface and molecular-orientation limited (nsmol) proteolysis and liquid-liquid partition in plasma of trastuzumab emtansine-treated breast cancer patients. J Pharm Biomed Anal. 2017;145:33-39.
63. Liu Y, Zhou F, Sang H, et al. Lc-ms/ms method for the simultaneous determination of lys-mcc-dm1, mcc-dm1 and dm1 as potential intracellular catabolites of the antibody-drug conjugate trastuzumab emtansine (t-dm1). J Pharm Biomed Anal. 2017;137:170-177.
64. Dere R, Yi JH, Lei C, et al. Pk assays for antibody-drug conjugates: Case study with ado-trastuzumab emtansine. Bioanalysis. 2013;5(9):1025-1040.
65. Choi BK, Gusev AI, Hercules DM. Postcolumn introduction of an internal standard for quantitative lc−ms analysis. Analytical Chemistry. 1999;71(18):4107-4110.
66. Liao HW, Kuo CH, Chao HC, Chen GY. Post-column infused internal standard assisted lipidomics profiling strategy and its application on phosphatidylcholine research. J Pharm Biomed Anal. 2020;178:112956.
67. Chiu HH, Liao HW, Shao YY, et al. Development of a general method for quantifying igg-based therapeutic monoclonal antibodies in human plasma using protein g purification coupled with a two internal standard calibration strategy using lc-ms/ms. Anal Chim Acta. 2018;1019:93-102.
68. Chepyala D, Kuo HC, Su KY, et al. Improved dried blood spot-based metabolomics analysis by a postcolumn infused-internal standard assisted liquid chromatography-electrospray ionization mass spectrometry method. Anal Chem. 2019;91(16):10702-10712.
69. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209-249.
70. Ocean AJ, Starodub AN, Bardia A, et al. Sacituzumab govitecan (immu-132), an anti-trop-2-sn-38 antibody-drug conjugate for the treatment of diverse epithelial cancers: Safety and pharmacokinetics. Cancer. 2017;123(19):3843-3854.
71. Girish S, Gupta M, Wang B, et al. Clinical pharmacology of trastuzumab emtansine (t-dm1): An antibody-drug conjugate in development for the treatment of her2-positive cancer. Cancer Chemother Pharmacol. 2012;69(5):1229-1240.
72. Doi T, Shitara K, Naito Y, et al. Safety, pharmacokinetics, and antitumour activity of trastuzumab deruxtecan (ds-8201), a her2-targeting antibody-drug conjugate, in patients with advanced breast and gastric or gastro-oesophageal tumours: A phase 1 dose-escalation study. Lancet Oncol. 2017;18(11):1512-1522.
73. European medicines agency, guideline on bioanalytical method validation. In:2011.
74. Distler U, Łącki MK, Schumann S, Wanninger M, Tenzer S. Enhancing sensitivity of microflow-based bottom-up proteomics through postcolumn solvent addition. Analytical Chemistry. 2019;91(12):7510-7515.
75. Distler U, Łącki MK, Schumann S, Wanninger M, Tenzer S. Enhancing sensitivity of microflow-based bottom-up proteomics through postcolumn solvent addition. Anal Chem. 2019;91(12):7510-7515.
76. Hinneburg H, Chatterjee S, Schirmeister F, et al. Post-column make-up flow (pcmf) enhances the performance of capillary-flow pgc-lc-ms/ms-based glycomics. Anal Chem. 2019;91(7):4559-4567.
77. Liao HW, Chen GY, Tsai IL, Kuo CH. Using a postcolumn-infused internal standard for correcting the matrix effects of urine specimens in liquid chromatography-electrospray ionization mass spectrometry. J Chromatogr A. 2014;1327:97-104.
78. Perez J, Garrigós L, Gion M, et al. Trastuzumab deruxtecan in her2-positive metastatic breast cancer and beyond. Expert Opin Biol Ther. 2021;21(7):811-824.
79. Lu D, Girish S, Gao Y, et al. Population pharmacokinetics of trastuzumab emtansine (t-dm1), a her2-targeted antibody-drug conjugate, in patients with her2-positive metastatic breast cancer: Clinical implications of the effect of covariates. Cancer Chemother Pharmacol. 2014;74(2):399-410.
80. Goldenberg DM, Sharkey RM. Antibody-drug conjugates targeting trop-2 and incorporating sn-38: A case study of anti-trop-2 sacituzumab govitecan. MAbs. 2019;11(6):987-995.
81. Santi DV, Cabel L, Bidard FC. Does sacituzumab-govitecan act as a conventional antibody drug conjugate (adc), a prodrug of sn-38 or both? Ann Transl Med. 2021;9(14):1113.
82. Syed YY. Sacituzumab govitecan: First approval. Drugs. 2020;80(10):1019-1025.
83. Yin O, Iwata H, Lin CC, et al. Exposure-response relationships in patients with her2-positive metastatic breast cancer and other solid tumors treated with trastuzumab deruxtecan. Clin Pharmacol Ther. 2021;110(4):986-996.
84. Health promotion administration. The cancer registry annual report, 2019 Taiwan. https://www.hpa.gov.tw/File/Attach/14913/File_18302.pdf. Accessed 19 December, 2022.
85. Liang Y, Zhang H, Song X, Yang Q. Metastatic heterogeneity of breast cancer: Molecular mechanism and potential therapeutic targets. Semin Cancer Biol. 2020;60:14-27.
86. Lao C, Kuper-Hommel M, Elwood M, Campbell I, Edwards M, Lawrenson R. Characteristics and survival of de novo and recurrent metastatic breast cancer in new zealand. Breast Cancer. 2021;28(2):387-397.
87. Gunasinghe NP, Wells A, Thompson EW, Hugo HJ. Mesenchymal-epithelial transition (met) as a mechanism for metastatic colonisation in breast cancer. Cancer Metastasis Rev. 2012;31(3-4):469-478.
88. Deng S, Lin Z, Li W. Recent advances in antibody-drug conjugates for breast cancer treatment. Curr Med Chem. 2017;24(23):2505-2527.
89. Hurvitz SA, Hegg R, Chung WP, et al. Trastuzumab deruxtecan versus trastuzumab emtansine in patients with her2-positive metastatic breast cancer: Updated results from destiny-breast03, a randomised, open-label, phase 3 trial. Lancet. 2023;401(10371):105-117.
90. Nguyen TD, Bordeau BM, Balthasar JP. Mechanisms of adc toxicity and strategies to increase adc tolerability. Cancers (Basel). 2023;15(3).
91. Masters JC, Nickens DJ, Xuan D, Shazer RL, Amantea M. Clinical toxicity of antibody drug conjugates: A meta-analysis of payloads. Invest New Drugs. 2018;36(1):121-135.
92. Saber H, Simpson N, Ricks TK, Leighton JK. An FDA oncology analysis of toxicities associated with pbd-containing antibody-drug conjugates. Regul Toxicol Pharmacol. 2019;107:104429.
93. Zhu Y, Liu K, Wang K, Zhu H. Treatment-related adverse events of antibody-drug conjugates in clinical trials: A systematic review and meta-analysis. Cancer. 2023;129(2):283-295.
94. Cheng CN, Liao HW, Lin CH, et al. Quantifying payloads of antibody‒drug conjugates using a postcolumn infused-internal standard strategy with lc‒ms. Anal Chim Acta. 2024;1303:342537.
95. Yin O, Xiong Y, Endo S, et al. Population pharmacokinetics of trastuzumab deruxtecan in patients with her2-positive breast cancer and other solid tumors. Clin Pharmacol Ther. 2021;109(5):1314-1325.
96. Johnson CO, Nguyen M, Roth GA, et al. Global, regional, and national burden of stroke, 1990-2016: A systematic analysis for the global burden of disease study 2016. Lancet Neurol. 2019;18(5):439-458.
97. Benjamin EJ, Muntner P, Alonso A, et al. Heart disease and stroke statistics-2019 update a report from the american heart association. Circulation. 2019;139(10):E56-E528.
98. Adams HP, Jr., Bendixen BH, Kappelle LJ, et al. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. Toast. Trial of org 10172 in acute stroke treatment. Stroke. 1993;24(1):35-41.
99. Sacco RL, Kasner SE, Broderick JP, et al. An updated definition of stroke for the 21st century a statement for healthcare professionals from the american heart association/american stroke association. Stroke. 2013;44(7):2064-2089.
100. Haeusler KG, Tütüncü S, Schnabel RB. Detection of atrial fibrillation in cryptogenic stroke. Curr Neurol Neurosci Rep. 2018;18(10):66.
101. Wang H, Chen S, Han Z, et al. Screening of phospholipids in plasma of large-artery atherosclerotic and cardioembolic stroke patients with hydrophilic interaction chromatography-mass spectrometry. Front Mol Biosci. 2022;9:794057.
102. Wang X, Zhang L, Sun W, et al. Changes of metabolites in acute ischemic stroke and its subtypes. Front Neurosci. 2020;14:580929.
103. Sun D, Tiedt S, Yu B, et al. A prospective study of serum metabolites and risk of ischemic stroke. Neurology. 2019;92(16):e1890-e1898.
104. Suissa L, Guigonis JM, Graslin F, et al. Combined omic analyzes of cerebral thrombi: A new molecular approach to identify cardioembolic stroke origin. Stroke. 2021;52(9):2892-2901.
105. Li W, Bai X, Hao J, et al. Thrombosis origin identification of cardioembolism and large artery atherosclerosis by distinct metabolites. J Neurointerv Surg. 2023;15(7):701-707.
106. Tonks KT, Coster ACF, Christopher MJ, et al. Skeletal muscle and plasma lipidomic signatures of insulin resistance and overweight/obesity in humans. Obesity. 2016;24(4):908-916.
107. Lappas M, Mundra PA, Wong G, et al. The prediction of type 2 diabetes in women with previous gestational diabetes mellitus using lipidomics. Diabetologia. 2015;58(7):1436-1442.
108. Powers WJ, Rabinstein AA, Ackerson T, et al. 2018 guidelines for the early management of patients with acute ischemic stroke: A guideline for healthcare professionals from the american heart association/american stroke association. Stroke. 2018;49(3):e46-e110.
109. Lee CH, Wang CY, Kao HL, Wu WK, Kuo CH. Differentiation of alkyl- and plasmenyl-phosphatidylcholine by endogenous sphingomyelin rt-xlogp3 regression for coronary artery disease plasma lipidomics analysis. Anal Chem. 2023;95(46):16902-16910.
110. Blaise BJ, Correia GDS, Haggart GA, et al. Statistical analysis in metabolic phenotyping. Nat Protoc. 2021;16(9):4299-4326.
111. Benjamini Y, Hochberg Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B (Methodological). 1995;57(1):289-300.
112. Tirandi A, Sgura C, Carbone F, Montecucco F, Liberale L. Inflammatory biomarkers of ischemic stroke. Intern Emerg Med. 2023;18(3):723-732.
113. DeLong JH, Ohashi SN, O'Connor KC, Sansing LH. Inflammatory responses after ischemic stroke. Semin Immunopathol. 2022;44(5):625-648.
114. Rink TJ, Sanchez A, Hallam TJ. Diacylglycerol and phorbol ester stimulate secretion without raising cytoplasmic free calcium in human platelets. Nature. 1983;305(5932):317-319.
115. Boeckh-Behrens T, Kleine JF, Zimmer C, et al. Thrombus histology suggests cardioembolic cause in cryptogenic stroke. Stroke. 2016;47(7):1864-1871.
116. Maegerlein C, Friedrich B, Berndt M, et al. Impact of histological thrombus composition on preinterventional thrombus migration in patients with acute occlusions of the middle cerebral artery. Interv Neuroradiol. 2018;24(1):70-75.
117. Shimizu H, Hatakeyama K, Saito K, et al. Age and composition of the thrombus retrieved by mechanical thrombectomy from patients with acute ischemic stroke are associated with revascularization and clinical outcomes. Thromb Res. 2022;219:60-69.
118. Huang J, Killingsworth MC, Bhaskar SMM. Is composition of brain clot retrieved by mechanical thrombectomy associated with stroke aetiology and clinical outcomes in acute ischemic stroke?-a systematic review and meta-analysis. Neurol Int. 2022;14(4):748-770.
119. Bacigaluppi M, Semerano A, Gullotta GS, Strambo D. Insights from thrombi retrieved in stroke due to large vessel occlusion. J Cereb Blood Flow Metab. 2019;39(8):1433-1451.
120. Kim SK, Yoon W, Kim TS, Kim HS, Heo TW, Park MS. Histologic analysis of retrieved clots in acute ischemic stroke: Correlation with stroke etiology and gradient-echo mri. AJNR Am J Neuroradiol. 2015;36(9):1756-1762.
121. Goldberg IJ, Trent CM, Schulze PC. Lipid metabolism and toxicity in the heart. Cell Metab. 2012;15(6):805-812.
122. Chiu HC, Kovacs A, Blanton RM, et al. Transgenic expression of fatty acid transport protein 1 in the heart causes lipotoxic cardiomyopathy. Circ Res. 2005;96(2):225-233.
123. Xie X, Tie YF, Lai S, Zhang YL, Li HH, Liu Y. Cardiac-specific cgi-58 deficiency activates the er stress pathway to promote heart failure in mice. Cell Death Dis. 2021;12(11):1003.
124. Han X, Zhang YL, Zhao YX, Guo SB, Yin WP, Li HH. Adipose triglyceride lipase deficiency aggravates angiotensin ii-induced atrial fibrillation by reducing peroxisome proliferator-activated receptor a activation in mice. Laboratory Investigation. 2023;103(1).
125. Kienesberger PC, Pulinilkunnil T, Sung MMY, et al. Myocardial atgl overexpression decreases the reliance on fatty acid oxidation and protects against pressure overload-induced cardiac dysfunction. Molecular and Cellular Biology. 2012;32(4):740-750.
126. Lee HC, Cheng WC, Ma WL, Lin YH, Shin SJ, Lin YH. Association of lipid composition and unsaturated fatty acids of vldl with atrial remodeling in metabolic syndrome. Scientific Reports. 2023;13(1).
127. Del Gobbo LC, Imamura F, Aslibekyan S, et al. Ω-3 polyunsaturated fatty acid biomarkers and coronary heart disease pooling project of 19 cohort studies. Jama Internal Medicine. 2016;176(8):1155-1166.
128. Adkins Y, Kelley DS. Mechanisms underlying the cardioprotective effects of omega-3 polyunsaturated fatty acids. Journal of Nutritional Biochemistry. 2010;21(9):781-792.
129. Pavlovic D, Niciforovic D, Markovic M, Papic D. Cancer-associated thrombosis: Epidemiology, pathophysiological mechanisms, treatment, and risk assessment. Clin Med Insights Oncol. 2023;17:11795549231220297.
130. Zhang C, Yang Z, Zhou P, et al. Phosphatidylserine-exposing tumor-derived microparticles exacerbate coagulation and cancer cell transendothelial migration in triple-negative breast cancer. Theranostics. 2021;11(13):6445-6460.
131. Szlasa W, Zendran I, Zalesinska A, Tarek M, Kulbacka J. Lipid composition of the cancer cell membrane. Journal of Bioenergetics and Biomembranes. 2020;52(5):321-342.
132. Birge RB, Boeltz S, Kumar S, et al. Phosphatidylserine is a global immunosuppressive signal in efferocytosis, infectious disease, and cancer. Cell Death & Differentiation. 2016;23(6):962-978.
133. Sharma B, Kanwar SS. Phosphatidylserine: A cancer cell targeting biomarker. Seminars in Cancer Biology. 2018;52:17-25.
134. Liu QP, Luo Q, Halim A, Song GB. Targeting lipid metabolism of cancer cells: A promising therapeutic strategy for cancer. Cancer Letters. 2017;401:39-45.
135. Sheridan M, Ogretmen B. The role of ceramide metabolism and signaling in the regulation of mitophagy and cancer therapy. Cancers. 2021;13(10):2475.
136. Ogretmen B. Sphingolipid metabolism in cancer signalling and therapy. Nature Reviews Cancer. 2018;18(1):33-50.
137. de Leon J. Personalizing dosing of risperidone, paliperidone and clozapine using therapeutic drug monitoring and pharmacogenetics. Neuropharmacology. 2020;168:107656.
138. Chen D, Hou S, Zhao M, Sun X, Zhang H, Yang L. Dose optimization of tacrolimus with therapeutic drug monitoring and cyp3a5 polymorphism in patients with myasthenia gravis. Eur J Neurol. 2018;25(8):1049-e1080.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95072-
dc.description.abstract近年來,液相層析質譜技術(LC-MS)顯示出巨大的潛力以提升精準醫療於各種疾病領域。透過液相層析質譜技術精進藥物療劑監測(therapeutic drug monitoring; TDM)和生物標誌物的開發,使得藥物的定量能更加準確並有望找出具有疾病特異性的生物標誌物。然而,液相層析質譜技術依然存在一些問題,其中包括全血基質的基質效應會引起的分析偏差,以及無法取得穩定同位素標記內標(SIL-IS)的問題。因此,目前仍需要創新的分析策略來解決這些可能影響藥物療劑監測準確度的問題。此外,雖然體學(omics)科學已廣泛應用於尋找生物標誌物,新興的脂質體學領域額外提供了脂質組成和結構的詳細資訊,這些資訊仍需要更多研究需來進一步探討脂質在疾病中的作用。因此,本論文旨在透過探索這些問題來促進精準醫療的發展。
本論文分為三個部分。前兩部分專注於藥物療劑監測,而第三部分旨在尋找脂質類的生物標誌物。第一部分致力於提升乾血點(DBS)的定量準確性以利於藥物療劑監測的應用。乾血點樣本的其中一個分析挑戰是血比容(Hct)效應,不同血比容可能影響乾血點的定量準確性。以往的研究常常忽視與血比容相關的分佈偏差。本研究旨在提供一套完善流程以評估血比容效應,並選擇了voriconazole和posaconazole這兩個藥物作為示範來評估血比容效應。通過研究三個重要參數,我們證明了添加固態的分析物到全血、在製備不同血比容樣品之前預先添加分析物,以及給予充分的平衡時間,將可以更良好的評估血比容效應。我們後續透過比對71對乾血點和血漿樣本,驗證了此流程有效性。本研究提供了一種可靠的策略來評估血比容效應,為未來的乾血點研究奠定基礎。
第二部分旨在開發一種液相層析質譜方式用於測量一新型抗癌治療藥物,抗體-藥物複合物(ADCs)的小分子藥物載體(payload)。然而,這些小分子藥物載體的同位素內標準品取得困難,造成準確定量上的挑戰。為此,我們開發了一種液相層析質譜方法並使用管柱後注入內標(PCI-IS)的策略來定量trastuzumab emtansine、trastuzumab deruxtecan,以及sacituzumab govitecan中的小分子藥物載體及其衍生物。我們選擇了結構相似物當成管柱後注入內標的候選分析物,並發現他們的校正效果得以使結構相對應的藥物擁有良好的定量準確性。該方法成功應用於定量乳癌病人臨床樣品當中的小分子藥物載體。此外,我們使用此液相層析質譜方法進行了trastuzumab deruxtecan的藥物療劑監測,發現其小分子藥物載體DXd濃度與血小板低下之間存在正相關關係。因此,建議未來對DXd濃度超過4.4 ng/mL的臨床患者,應常規監測血小板計數以及早發現副作用的發生。
第三部分,由於不同中風病因需要不同的預防策略,因此我們利用脂質體學來探索能夠區分中風病因的潛在臨床生物標誌物。我們使用實驗室內部的標的脂質體學的液相層析質譜方法,研究了包括甘油脂質(glycerolipids)、磷脂質(glycerophospholipids)和神經磷脂質(sphingolipids)的不同脂質。並比較不同的中風病因之間的脂質差異,包括心因性(cardioembolism; CE)、血管性(large artery atherosclerosis; LAA)或癌症。在606種發現的脂質種類中,我們觀察到只有血栓樣本可以顯著區分心因性和血管性組別之間以及心因性和癌症組別之間的不同。尤其是部分二酸甘油脂(DG)和多不飽和三酸甘油脂(TG)在心因性患者中比血管性患者中含量更多,而大多數神經醯胺(ceramides)和許多磷脂質在癌症組別中顯著升高。此外,我們分別確定了26種和116種脂質在區分血管性和癌症相對於心因性患者時,具有至少80%的準確性。這些發現強調了血栓脂質在區分中風病因中的重要性,並有助於我們對中風病理生理學的理解,以期能提供臨床端更多資訊來調整病人後續的治療方針。
總體而言,本論文展現了液相層析質譜技術在各種臨床應用的潛力。前兩部分透過解決藥物定量中的分析問題,以提升藥物療劑監測準確度,並展現藥物療劑監測對個人化醫療中的劑量優化的重要性。我們透過開發一套完善流程以評估血比容效應和創新的管柱後注入內標的定量策略,不僅有效提升了液相層析質譜技術的分析可靠性,還拓展了其在精準醫療中的應用。此外,通過探索中風病因分類中的脂質生物標誌物,我們展示了基於液相層析質譜技術的脂質體學在提供可能的病理機制的潛力。鑑定新穎的生物標誌物不僅增加了我們的診斷方法,亦提供了對疾病病理生理學的重要資訊,為標靶治療和精準醫療奠定了基礎。若未來能更廣泛將液相層析質譜技術整合到臨床常規治療流程中,將能對病患的個人化照護產生巨大的影響力。
zh_TW
dc.description.abstractRecently, liquid chromatography–mass spectrometry (LC–MS) has shown great promise in enhancing precision medicine across various disease areas. By advancing therapeutic drug monitoring (TDM) and biomarker discovery, LC–MS has enabled more accurate drug quantification and identification of disease-specific biomarkers. However, challenges remain, particularly matrix effects that cause analytical biases from whole blood matrices and issues with unavailable stable isotope-labeled internal standards (SIL-IS). Innovative analytical strategies are needed to address these TDM issues. Additionally, while omics sciences have been extensively utilized for biomarker discovery, the emerging field of lipidomics offers detailed insights into lipid composition and structure, necessitating further investigation into the role of lipids in diseases. Therefore, this dissertation aims to advance precision medicine by exploring these critical areas.
This dissertation is divided into three sections. The first two sections focus on TDM, while the third section aims to discover lipid biomarkers. The first section seeks to improve the quantification accuracy of dried blood spots (DBS), a minimally invasive sampling technique in TDM. One major analytical challenge of DBS is the hematocrit (Hct) effect, which affects DBS quantification accuracy. Previous studies often overlooked the Hct-related distribution bias. We propose a new DBS preparation protocol to evaluate the Hct effect through the demonstration of voriconazole and posaconazole. By investigating three critical parameters, we demonstrated that a solid-state target analyte, pre-spiking target analytes before preparing different Hct levels, and allowing sufficient equilibrium time provide a more comprehensive Hct effect evaluation. The validity of the new protocol was confirmed by conversion factors from 71 paired DBS and plasma samples, offering a reliable strategy to assess the Hct effect for further DBS studies.
The second section develops an LC–MS method for TDM of payloads in antibody–drug conjugates (ADCs), a novel class of anticancer therapeutics. A major issue of lacking SIL-IS for ADC payloads hinders accurate quantification. We developed an LC‒MS/MS method using a postcolumn-infused internal standard (PCI-IS) strategy for quantifying payloads and their derivatives in trastuzumab emtansine, trastuzumab deruxtecan, and sacituzumab govitecan. Structural analogs were selected as PCI-IS candidates, showing excellent accuracy for the respective target. This method was successfully applied to quantify payloads in clinical samples from breast cancer patients. Additionally, we conducted TDM of trastuzumab deruxtecan with the developed LC–MS method, revealing a positive association found between DXd concentrations and the development of thrombocytopenia. It is suggested that routinely monitoring platelet counts for patients with DXd concentrations over 4.4 ng/mL could be valuable in clinical practice for early detection of the potential site effect.
The third section uses lipidomics to explore potential clinical biomarkers for differentiating stroke etiologies, which require distinct preventive strategies. Using in-house targeted lipidomics LC-MS/MS methods, we investigated various lipid species, including glycerolipids, glycerophospholipids, and sphingolipids. Patients were compared among different stroke etiologies, including cardioembolism (CE), large artery atherosclerosis (LAA), or Cancer. Among 606 identified lipid species, considerably significant differences were only found in thrombi samples between CE and LAA groups, and between CE and cancer groups. Notably, certain diacylglycerols (DG) and polyunsaturated triacylglycerols (TG) were enriched in CE patients compared to LAA patients, while most ceramides and many glycerophospholipids were elevated in the Cancer group. Additionally, we identified 26 and 116 lipids with at least 80% accuracy in distinguishing LAA and cancer from CE, respectively. These findings highlight the importance of thrombus lipids in differentiating stroke etiologies and contribute to our understanding of stroke pathophysiology, potentially informing future clinical strategies.
In summary, this dissertation highlights the impact of LC–MS technology in various clinical applications. Addressing key methodological challenges in drug quantification, the first two sections underscore the importance of accurate TDM for dose optimization in personalized medicine. Developing robust preparation protocols and innovative quantification strategies enhances the reliability of LC–MS-based analyses and broadens its application in precision medicine. Additionally, exploring lipid biomarkers in stroke etiology classification demonstrates the potential of LC–MS-based lipidomics in providing mechanistic insights. Identifying novel biomarkers not only enhances our diagnostic approaches but also offers valuable insights into disease pathophysiology, paving the way for targeted therapies and precision medicine. Enhancing the integration of LC–MS-based approaches into routine clinical workflows holds great promise for revolutionizing personalized patient care.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-27T16:14:00Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-27T16:14:00Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
聲明(Declaration)ii
中文摘要 iii
Abstract v
目錄 viii
圖目錄 xiii
表目錄 xv
Chapter 1. Introduction 1
1.1 Liquid chromatography–mass spectrometry (LC–MS) 1
1.2 Therapeutic Drug Monitoring (TDM) 1
1.3 Biomarker Discovery 3
1.4 Research Aims and Dissertation Structure 4
Section I – Method Development for Advancing Therapeutic Drug Monitoring through LC–MS: Preparation Protocol of Dried Blood Spot 7
Chapter 2. Development of the Dried Blood Spot Preparation Protocol for Comprehensive Evaluation of the Hematocrit Effect 8
2.1 Introduction 8
2.2 Materials and Methods 10
2.2.1 Chemicals and Materials 10
2.2.2 LC−MS/MS System for Analyzing DBS of Azole Drugs 11
2.2.3 Standard and Sample Preparation 12
2.2.4 Different Preparative Steps in Studying the Hct Effect 13
2.2.5 Verification by Clinical Samples of Voriconazole, Posaconazole, and Dabigatran 14
2.2.6 Data Analysis 15
2.3 Results 16
2.3.1 Extraction and LC-MS/MS Method Development and Validation 16
2.3.2 Development of the DBS Preparative Protocol for Studying the Hct Effect 17
2.3.3 Verification with the Hct Effect Calculated by Clinical Samples 21
2.4 Discussion 23
2.5 Conclusions 25
Section II – Method Development and Clinical Application for Therapeutic Drug Monitoring of Antibody–Drug Conjugates through LC–MS 38
Chapter 3. Quantifying Payloads of Antibody–Drug Conjugates Using a Postcolumn Infused-Internal Standard Strategy with LC–MS 39
3.1 Introduction 39
3.2 Materials and Methods 42
3.2.1 Chemicals42
3.2.2 LC−MS/MS System 42
3.2.3 Standard and Sample Preparation 44
3.2.4 Method Validation 45
3.2.5 Comparison of Matrix Effects 46
3.2.6 Human Samples 46
3.2.7 Data Analysis and Statistics 47
3.3 Results 47
3.3.1 Optimization of the LC−MS/MS Method 47
3.3.2 Optimization of the PCI-IS Method49
3.3.3 Method Validation 51
3.3.4 Comparison of the Matrix Effect between the PCI-IS Normalized Approach and the IS Normalized Approach 52
3.3.5 Clinical Sample Analysis 53
3.4 Discussion 55
3.5 Conclusions 58
Chapter 4. Investigating the Association between Circulation DXd Concentration and Adverse Drug Reaction of Trastuzumab Deruxtecan in Breast Cancer Patients 73
4.1 Introduction 73
4.2 Methods 74
4.2.1 Study Population and Study Design 75
4.2.2 Data Collection and Covariates 75
4.2.3 Measurement of DXd concentration 75
4.2.4 Outcome Definition 75
4.2.5 Statistical Analysis 76
4.3 Results 76
4.3.1 Patient Characteristics76
4.3.2 Associations between DXd concentrations, thrombocytopenia, and leukopenia 77
4.3.3 Cutoff points for DXd concentrations 78
4.4 Discussion 78
4.5 Conclusions 80
Section III – Clinical Biomarker Investigations with Lipidomics Analysis through LC–MS: Differentiation of Stroke Etiologies87
Chapter 5. Elucidating Stroke Etiologies through Lipidomics Analysis of Thrombi and Plasma in Acute Ischemic Stroke Patients Undergoing Endovascular Thrombectomy . 88
5.1 Introduction 88
5.2 Methods 89
5.2.1 Study Population and Study Design 89
5.2.2 Blood and Thrombi Sample Collection 90
5.2.3 Lipidomics Analysis by LC−MS/MS 90
5.2.4 Data Processing and Statistical Analysis 92
5.3 Results 93
5.3.1 Patient Enrollment and Overview of Lipid Profiles 93
5.3.2 Patient Characteristics94
5.3.3 Comparisons of lipid profiles in CE and LAA groups 95
5.3.4 Comparisons of lipid profiles in CE and Cancer groups 95
5.3.5 Sensitivity analysis of lipid-lowering drugs 96
5.3.6 Identification of definite thrombus lipids for potential mechanism elucidation 97
5.4 Discussion 98
5.5 Conclusions 102
Chapter 6. Summary and Perspectives 125
Reference 128
Publications 137
-
dc.language.isoen-
dc.subject液相層析質譜zh_TW
dc.subject生物指標zh_TW
dc.subject藥物療劑監測zh_TW
dc.subjectTherapeutic Drug Monitoringen
dc.subjectBiomarkeren
dc.subjectLiquid Chromatography Mass Spectrometryen
dc.title以液相層析質譜技術精進藥物療劑監測和生物指標開發zh_TW
dc.titleAdvancing in Therapeutic Drug Monitoring and Biomarker Discovery through Liquid Chromatography Mass Spectrometryen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee鄭美玲;廖曉偉;湯頌君;林季宏zh_TW
dc.contributor.oralexamcommitteeMei-Ling Cheng;Hsiao-Wei Liao;Sung-Chun Tang;Ching-Hung Linen
dc.subject.keyword液相層析質譜,藥物療劑監測,生物指標,zh_TW
dc.subject.keywordLiquid Chromatography Mass Spectrometry,Therapeutic Drug Monitoring,Biomarker,en
dc.relation.page138-
dc.identifier.doi10.6342/NTU202401233-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-06-20-
dc.contributor.author-college醫學院-
dc.contributor.author-dept藥學研究所-
dc.date.embargo-lift2029-06-18-
顯示於系所單位:藥學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
5.91 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved