Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 微生物學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95067
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳小梨zh_TW
dc.contributor.advisorShow-Li Chenen
dc.contributor.author謝祐田zh_TW
dc.contributor.authorYou-Tian Hsiehen
dc.date.accessioned2024-08-27T16:12:28Z-
dc.date.available2024-08-28-
dc.date.copyright2024-08-27-
dc.date.issued2024-
dc.date.submitted2024-08-05-
dc.identifier.citationAgaram, N. P., M. P. LaQuaglia, R. Alaggio, L. Zhang, Y. Fujisawa, M. Ladanyi, L. H. Wexler and C. R. Antonescu (2019). "MYOD1-mutant spindle cell and sclerosing rhabdomyosarcoma: an aggressive subtype irrespective of age. A reappraisal for molecular classification and risk stratification." Mod Pathol 32(1): 27-36.
Barr, F. G., N. Galili, J. Holick, J. A. Biegel, G. Rovera and B. S. Emanuel (1993). "Rearrangement of the PAX3 paired box gene in the paediatric solid tumour alveolar rhabdomyosarcoma." Nat Genet 3(2): 113-117.
Bentzinger, C. F., Y. X. Wang and M. A. Rudnicki (2012). "Building muscle: molecular regulation of myogenesis." Cold Spring Harb Perspect Biol 4(2).
Chang, S. W., P. Y. Lu, J. H. Guo, T. C. Tsai, Y. P. Tsao and S. L. Chen (2012). "NRIP enhances HPV gene expression via interaction with either GR or E2." Virology 423(1): 38-48.
Chen, H. H., W. P. Chen, W. L. Yan, Y. C. Huang, S. W. Chang, W. M. Fu, M. J. Su, I. S. Yu, T. C. Tsai, Y. T. Yan, Y. P. Tsao and S. L. Chen (2015). "NRIP is newly identified as a Z-disc protein, activating calmodulin signaling for skeletal muscle contraction and regeneration." J Cell Sci 128(22): 4196-4209.
Chen, H. H., P. Fan, S. W. Chang, Y. P. Tsao, H. P. Huang and S. L. Chen (2017). "NRIP/DCAF6 stabilizes the androgen receptor protein by displacing DDB2 from the CUL4A-DDB1 E3 ligase complex in prostate cancer." Oncotarget 8(13): 21501-21515.
Chen, H. H., L. K. Tsai, K. Y. Liao, T. C. Wu, Y. H. Huang, Y. C. Huang, S. W. Chang, P. Y. Wang, Y. P. Tsao and S. L. Chen (2018). "Muscle-restricted nuclear receptor interaction protein knockout causes motor neuron degeneration through down-regulation of myogenin at the neuromuscular junction." J Cachexia Sarcopenia Muscle 9(4): 771-785.
Chen, X., E. Stewart, A. A. Shelat, C. Qu, A. Bahrami, M. Hatley, G. Wu, C. Bradley, J. McEvoy, A. Pappo, S. Spunt, M. B. Valentine, V. Valentine, F. Krafcik, W. H. Lang, M. Wierdl, L. Tsurkan, V. Tolleman, S. M. Federico, C. Morton, C. Lu, L. Ding, J. Easton, M. Rusch, P. Nagahawatte, J. Wang, M. Parker, L. Wei, E. Hedlund, D. Finkelstein, M. Edmonson, S. Shurtleff, K. Boggs, H. Mulder, D. Yergeau, S. Skapek, D. S. Hawkins, N. Ramirez, P. M. Potter, J. A. Sandoval, A. M. Davidoff, E. R. Mardis, R. K. Wilson, J. Zhang, J. R. Downing, M. A. Dyer and P. St. Jude Children's Research Hospital-Washington University Pediatric Cancer Genome (2013). "Targeting oxidative stress in embryonal rhabdomyosarcoma." Cancer Cell 24(6): 710-724.
Ganassi, M., S. Badodi, H. P. Ortuste Quiroga, P. S. Zammit, Y. Hinits and S. M. Hughes (2018). "Myogenin promotes myocyte fusion to balance fibre number and size." Nat Commun 9(1): 4232.
Ganassi, M., S. Badodi, K. Wanders, P. S. Zammit and S. M. Hughes (2020). "Myogenin is an essential regulator of adult myofibre growth and muscle stem cell homeostasis." Elife 9.
Gautam, M., P. G. Noakes, J. Mudd, M. Nichol, G. C. Chu, J. R. Sanes and J. P. Merlie (1995). "Failure of postsynaptic specialization to develop at neuromuscular junctions of rapsyn-deficient mice." Nature 377(6546): 232-236.
Han, C. P., M. Y. Lee, S. L. Tzeng, C. C. Yao, P. H. Wang, Y. W. Cheng, S. L. Chen, T. S. Wu, Y. S. Tyan and L. F. Kok (2008). "Nuclear Receptor Interaction Protein (NRIP) expression assay using human tissue microarray and immunohistochemistry technology confirming nuclear localization." J Exp Clin Cancer Res 27(1): 25.
Hasty, P., A. Bradley, J. H. Morris, D. G. Edmondson, J. M. Venuti, E. N. Olson and W. H. Klein (1993). "Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene." Nature 364(6437): 501-506.
Huttner, S. S., H. Henze, D. Elster, P. Koch, U. Anderer, B. von Eyss and J. von Maltzahn (2023). "A dysfunctional miR-1-TRPS1-MYOG axis drives ERMS by suppressing terminal myogenic differentiation." Mol Ther 31(9): 2612-2632.
Liu, Z., X. Zhang, H. Lei, N. Lam, S. Carter, O. Yockey, M. Xu, A. Mendoza, E. R. Hernandez, J. S. Wei, J. Khan, M. E. Yohe, J. F. Shern and C. J. Thiele (2020). "CASZ1 induces skeletal muscle and rhabdomyosarcoma differentiation through a feed-forward loop with MYOD and MYOG." Nat Commun 11(1): 911.
McDowell, H. P. (2003). "Update on childhood rhabdomyosarcoma." Arch Dis Child 88(4): 354-357.
Morgenstern, D. A., H. Rees, N. J. Sebire, J. Shipley and J. Anderson (2008). "Rhabdomyosarcoma subtyping by immunohistochemical assessment of myogenin: tissue array study and review of the literature." Pathol Oncol Res 14(3): 233-238.
Olguin, H. C. and A. Pisconti (2012). "Marking the tempo for myogenesis: Pax7 and the regulation of muscle stem cell fate decisions." J Cell Mol Med 16(5): 1013-1025.
Park, K. H., S. Franciosi and B. R. Leavitt (2013). "Postnatal muscle modification by myogenic factors modulates neuropathology and survival in an ALS mouse model." Nat Commun 4: 2906.
Sanes, J. R. and J. W. Lichtman (2001). "Induction, assembly, maturation and maintenance of a postsynaptic apparatus." Nat Rev Neurosci 2(11): 791-805.
Scaricamazza, S., I. Salvatori, A. Ferri and C. Valle (2021). "Skeletal Muscle in ALS: An Unappreciated Therapeutic Opportunity?" Cells 10(3).
Sebire, N. J. and M. Malone (2003). "Myogenin and MyoD1 expression in paediatric rhabdomyosarcomas." J Clin Pathol 56(6): 412-416.
Skapek, S. X., A. Ferrari, A. A. Gupta, P. J. Lupo, E. Butler, J. Shipley, F. G. Barr and D. S. Hawkins (2019). "Rhabdomyosarcoma." Nat Rev Dis Primers 5(1): 1.
Tsai, T. C., Y. L. Lee, W. C. Hsiao, Y. P. Tsao and S. L. Chen (2005). "NRIP, a novel nuclear receptor interaction protein, enhances the transcriptional activity of nuclear receptors." J Biol Chem 280(20): 20000-20009.
Weatherbee, S. D., K. V. Anderson and L. A. Niswander (2006). "LDL-receptor-related protein 4 is crucial for formation of the neuromuscular junction." Development 133(24): 4993-5000.
Weintraub, H. (1993). "The MyoD family and myogenesis: redundancy, networks, and thresholds." Cell 75(7): 1241-1244.
Wong, M. and L. J. Martin (2010). "Skeletal muscle-restricted expression of human SOD1 causes motor neuron degeneration in transgenic mice." Hum Mol Genet 19(11): 2284-2302.
Wu, H., Y. Lu, C. Shen, N. Patel, L. Gan, W. C. Xiong and L. Mei (2012). "Distinct roles of muscle and motoneuron LRP4 in neuromuscular junction formation." Neuron 75(1): 94-107.
Xing, G., H. Jing, L. Zhang, Y. Cao, L. Li, K. Zhao, Z. Dong, W. Chen, H. Wang, R. Cao, W. C. Xiong and L. Mei (2019). "A mechanism in agrin signaling revealed by a prevalent Rapsyn mutation in congenital myasthenic syndrome." Elife 8.
Yang, K. C., K. W. Chuang, W. S. Yen, S. Y. Lin, H. H. Chen, S. W. Chang, Y. S. Lin, W. L. Wu, Y. P. Tsao, W. P. Chen and S. L. Chen (2019). "Deficiency of nuclear receptor interaction protein leads to cardiomyopathy by disrupting sarcomere structure and mitochondrial respiration." J Mol Cell Cardiol 137: 9-24.
Zong, Y. and R. Jin (2013). "Structural mechanisms of the agrin-LRP4-MuSK signaling pathway in neuromuscular junction differentiation." Cell Mol Life Sci 70(17): 3077-3088.
Furlong, M. A., T. Mentzel and J. C. Fanburg-Smith (2001). "Pleomorphic rhabdomyosarcoma in adults: a clinicopathologic study of 38 cases with emphasis on morphologic variants and recent skeletal muscle-specific markers." Mod Pathol 14(6): 595-603.
Marusyk, A., V. Almendro and K. Polyak (2012). "Intra-tumour heterogeneity: a looking glass for cancer?" Nat Rev Cancer 12(5): 323-334.
Morita-Isogai, Y., H. Sato, M. Saito, E. Kuramoto, D. X. Yin, T. Kaneko, T. Yamashiro, K. Takada, S. B. Oh, H. Toyoda and Y. Kang (2017). "A distinct functional distribution of alpha and gamma motoneurons in the rat trigeminal motor nucleus." Brain Struct Funct 222(7): 3231-3239.
Agaram, N. P. (2022). "Evolving classification of rhabdomyosarcoma." Histopathology 80(1): 98-108.
Hostein, I., M. Andraud-Fregeville, L. Guillou, M. J. Terrier-Lacombe, C. Deminiere, D. Ranchere, C. Lussan, E. Longavenne, N. B. Bui, O. Delattre and J. M. Coindre (2004). "Rhabdomyosarcoma: value of myogenin expression analysis and molecular testing in diagnosing the alveolar subtype: an analysis of 109 paraffin-embedded specimens." Cancer 101(12): 2817-2824.
Huang, E. J. and L. F. Reichardt (2001). "Neurotrophins: roles in neuronal development and function." Annu Rev Neurosci 24: 677-736.
Ma, G., Y. Wang, Y. Li, L. Cui, Y. Zhao, B. Zhao and K. Li (2015). "MiR-206, a key modulator of skeletal muscle development and disease." Int J Biol Sci 11(3): 345-352.
Ma, J., B. P. Smith, T. L. Smith, F. O. Walker, E. V. Rosencrance and L. A. Koman (2002). "Juvenile and adult rat neuromuscular junctions: density, distribution, and morphology." Muscle Nerve 26(6): 804-809.
Marshall, A. D. and G. C. Grosveld (2012). "Alveolar rhabdomyosarcoma - The molecular drivers of PAX3/7-FOXO1-induced tumorigenesis." Skelet Muscle 2(1): 25.
Skrzypek, K., G. Adamek, M. Kot, B. Badyra and M. Majka (2021). "Progression and Differentiation of Alveolar Rhabdomyosarcoma Is Regulated by PAX7 Transcription Factor-Significance of Tumor Subclones." Cells 10(8).
Williams, A. H., G. Valdez, V. Moresi, X. Qi, J. McAnally, J. L. Elliott, R. Bassel-Duby, J. R. Sanes and E. N. Olson (2009). "MicroRNA-206 delays ALS progression and promotes regeneration of neuromuscular synapses in mice." Science 326(5959): 1549-1554.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95067-
dc.description.abstract核受體結合蛋白(NRIP),也被稱為DCAF6和IQWD1,是一種多功能蛋白,通過與核受體和其他細胞成分的相互作用參與多種細胞的生理代謝過程。NRIP是由860個胺基酸所組成,具有7個WD40以及1個IQ結構,在先前的研究中發現NRIP會增強雄激素和糖皮質激素受體的轉錄活性,並且對肌肉完整性以及發育有重要的影響力。當NRIP在肌肉被專一性的敲除後,小鼠在6周大時出現肌肉異常但神經肌肉突觸 (NMJ) 以及運動神經元都維持正常。然而,在16周齡時,肌肉NRIP專一性敲除鼠 (MCK-NRIP cKO mice)的肌肉、肌肉神經突觸與運動神經元都出現異常的現象。
本研究主要探討了三個領域:NRIP對神經肌肉接頭(NMJ)和運動神經元發育的影響、NRIP與橫紋肌肉瘤(RMS)組織中肌生成素 (myogenin) 的表達及其關聯,以及使用免疫螢光染色實驗觀察分析NMJ的方法。
為了更深入的研究肌肉NRIP對NMJ和運動神經元發育的影響,研究首先對6、8、10、12、14、16周齡的MCK-NRIP cKO mice以及野生型小鼠 (WT mice) 進行實驗,檢測肌肉NRIP缺失對NMJ和運動神經元生理的逆行效應(retrograde effect)。免疫螢光 (IFA) 數據顯示,在14周齡時,肌肉特異性敲除NRIP的小鼠的NMJ面積相對野生型小鼠出現顯著下降,而在16周齡時,除了上述異常外,α-運動神經元數量亦顯著減少。上述異常與肌生成素表達減少有關,因為從6周齡起,肌肉NRIP缺失小鼠的肌生成素在NMJ的表達即出現顯著減少。另外,對人類橫紋肌組織進行NRIP和肌生成素的免疫染色數據顯示它們的表達存在顯著的正相關,證明了NRIP在骨骼肌中會調控肌生成素表達,並且NRIP 的缺失直接導致了肌生成素表現量下降,進一步造成NMJ 與運動神經元的異常,意即上述的逆行效應(retrograde effect)。
除了NRIP在正常肌肉生理中的作用外,我們還使用免疫組化 (IHC) 和統計分析研究了人類橫紋肌肉腫瘤 (rhabdomyosarcoma)組織中NRIP和肌生成素的表達。結果表明,NRIP在胚胎型橫紋肌肉腫瘤(embryonal rhabdomyosarcoma, ERMS)和多形性橫紋肌肉瘤 (pleomorphic rhabdomyosarcoma, PRMS)表現量較高,且NRIP的表現量會隨著橫紋肌肉腫瘤的嚴重程度加劇而上升。另一方面,肌生成素在多形性橫紋肌肉瘤中的表現相對較低,但肌生成素的表現量會隨著橫紋肌肉腫瘤的嚴重程度變大而上升。此外,研究還分析了橫紋肌肉瘤組織中NRIP和肌生成素表達的相關性。與正常肌肉組織中的結果不同,在橫紋肌肉瘤組織中兩者的表現量沒有顯著相關性,這表明癌變組織中可能存在不同的調控機制,突顯了NRIP在肌肉生理和病理中的複雜作用。
論文的最後部分提供了利用螢光染色搭配共軛焦顯微鏡觀察定量NMJ的方法。包含了小鼠解剖、分離腓腸肌、組織冷凍切片等等的詳細步驟,以及免疫螢光染色的操作方式,與共軛焦顯微鏡的設定參數,最後提供常用的軟體定量分析方法。
綜上所述,這篇論文闡明了NRIP在肌肉發育、功能和疾病中的關鍵作用。強調了NRIP通過調節肌生成素在維持NMJ和運動神經元正常生理中的重要性,並揭示了其對橫紋肌肉腫瘤的影響。同時,研究還提供了全面的NMJ觀察分析方法,從而促進了對神經肌肉疾病的進一步研究。
zh_TW
dc.description.abstractNRIP, also known as DCAF6 and IQWD1, is a multifunctional protein involved in various biological processes through its interaction with nuclear receptors and other cellular components. It enhances the transcriptional activity of androgen and glucocorticoid receptors in a ligand-dependent manner. NRIP, consisting of 860 amino acids with seven WD40 domains and a nuclear localization signal, plays a key role in protein-protein interactions within the nucleus. It boosts HPV-16 gene expression through glucocorticoid response elements and E2 binding sites, crucial for HPV-positive cancer cell growth. NRIP is also linked to cardiomyopathy in limb-girdle muscular dystrophy (LGMD) patients and is essential for cardiac and skeletal muscle functions.
This research delved into three primary areas: the impact of NRIP on neuromuscular junction (NMJ) and motor neuron development, the NRIP and myogenin expression in rhabdomyosarcoma (RMS) tissues and their association, and the methodologies for visualizing and analyzing NMJs using immunofluorescence.
To thoroughly investigate the impact of muscle NRIP on NMJ and motor neuron development, the study began by examining the retrograde effects of muscle NRIP deficiency on NMJ and motor neuron physiology at 2-week intervals, from 6 to 16 weeks of age. Immunofluorescence data showed that NRIP deficiency in muscle-specific knockout mice led to significant declines in NMJ area by 14 weeks of age and in α-motor neuron numbers by 16 weeks of age. This decline was linked to reduced myogenin expression, a key regulatory factor in muscle differentiation. Immunofluorescence assays revealed that myogenin expression at the NMJ was significantly reduced in muscle NRIP-deficient mice from 6 weeks of age. Data from immunohistochemistry staining of NRIP and myogenin on human tissue arrays showed a significant positive correlation in their expression. These results suggest that muscle NRIP's role in NMJ and motor neuron physiology is mediated through its regulation of myogenin.
In addition to its role in normal muscle physiology, we investigated NRIP and myogenin expression in human RMS tissues using immunohistochemistry and statistical analysis. The results indicated that NRIP expression was significantly elevated in human RMS tissues, particularly in the embryonal and pleomorphic subtypes. In contrast, the pleomorphic subtype (PRMS) exhibited a significant decrease in myogenin expression. Moreover, the findings suggested that the expression levels of both NRIP and myogenin correlated with the severity of RMS, with higher levels observed in more advanced stages of the disease. Furthermore, the research investigated the correlation between NRIP and myogenin expression in RMS tissues. Unlike in normal muscle tissues, where NRIP and myogenin levels were significantly correlated, no significant correlation was found in RMS tissues. This suggested a distinct regulatory mechanism in cancerous tissues, highlighting the complexity of NRIP's role in muscle physiology and pathology.
The final part of the thesis focused on the visualization and analysis of NMJs using immunofluorescence. The methodology involved targeting acetylcholine receptors with α-bungarotoxin to visualize NMJs in gastrocnemius muscle sections by confocal microscopy. This technique allowed for detailed imaging and quantification of NMJs, providing insights into the structural and functional integrity of neuromuscular connections.
Overall, this thesis elucidated the critical roles of NRIP in muscle development, function, and disease. It underscored the importance of NRIP in maintaining NMJ and motor neuron health through myogenin regulation and revealed its potential as a biomarker for RMS severity. Simultaneously, the research provided comprehensive methodologies for NMJ visualization and analysis, thereby facilitating further studies in neuromuscular diseases.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-27T16:12:28Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-27T16:12:28Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents目次
口試委員會審定書 I
致謝 II
中文摘要 III
Abstract V
Chapter 1. Introduction 1
Part 1 1
1.1.1 Key Features of Nuclear Receptor Interaction Protein (NRIP) 1
1.1.2 The retrograde effect on NMJ and motor neurons due to critical protein deficiency in the postsynaptic muscle 3
1.1.3 The role of myogenin in skeletal muscle and the interplay between NRIP and myogenin. 5
Part 2 8
1.2.1 The crucial homeostasis of NRIP 8
1.2.2 Rhabdomyosarcoma (RMS) 9
1.2.3 The correlation between myogenin expression and RMS 11
Chapter 2. Materials and methods 13
2.1 Study approval 13
2.2 Muscle-restricted NRIP conditional knockout mice (cKO mice) generation 13
2.3 Western blot analysis 13
2.4 Preparation for cryosection 14
2.5 Immunofluorescence assay of neuromuscular junction (NMJ) and NMJ area calculation 15
2.6 Immunofluorescence assay of neuromuscular junction (NMJ) and myogenin 17
2.7 Immunohistochemistry assay for human tissue array 18
Chapter 3. Result 20
Part 1 20
3.1.1 The area of the neuromuscular junction (NMJ) in MCK-NRIP cKO mice aged 14 weeks and 16 weeks declines. 20
3.1.2 The number of α-motor neuron decreased in the spinal lumbar region of 16-week-old MCK-NRIP cKO mice. 22
3.1.3 Muscle NRIP retrogradely affects the NMJ and motor neuron physiology by regulating myogenin expression. 24
Part 2 28
3.2.1NRIP expression in rhabdomyosarcoma (RMS) tissues 28
3.2.2 NRIP expression levels increase with the disease severity of rhabdomyosarcoma. 31
3.2.3 Myogenin expression in rhabdomyosarcoma (RMS) tissues 32
3.2.4 NRIP and myogenin expression are not significantly correlated in rhabdomyosarcoma tissues. 35
Chapter 4. Discussion 37
Part 1 37
Part 2 42
4.2.1 NRIP expression in RMS 42
4.2.2 Myogenin expression in RMS 44
4.2.3 Correlation between NRIP and myogenin expression in RMS 46
Chapter 5. Figure 49
Part 1 49
Part 2 62
Chapter 6. Reference 76
Part 3. Bio-protocol publication (under review) 81
Abstract 81
Key features 82
Background 83
Materials and reagents 85
Equipment 86
Software 88
Procedure 88
Data analysis 107
General Notes and Troubleshooting 111
Recipes 114
Acknowledgments 116
Competing interests 117
References 117
-
dc.language.isoen-
dc.subject核受體結合蛋白zh_TW
dc.subject神經肌肉突觸zh_TW
dc.subject運動神經元zh_TW
dc.subject肌生成素zh_TW
dc.subject橫紋肌肉腫瘤zh_TW
dc.subjectmyogeninen
dc.subjectmotor neuronen
dc.subjectneuromuscular junction (NMJ)en
dc.subjectrhabdomyosarcomaen
dc.subjectNRIPen
dc.title探討肌肉 NRIP 對神經肌肉突觸和運動神經元發育的影響以及對橫紋肌肉瘤的作用zh_TW
dc.titleThe impact of muscle NRIP on neuromuscular junction and motor neuron development and the insight into rhabdomyosarcoma.en
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee曹友平;黃祥博;陳伯翰zh_TW
dc.contributor.oralexamcommitteeYeuo-Ping Tsao;Hsiang-Po Huang;Po-Han Chenen
dc.subject.keyword核受體結合蛋白,肌生成素,橫紋肌肉腫瘤,神經肌肉突觸,運動神經元,zh_TW
dc.subject.keywordNRIP,neuromuscular junction (NMJ),motor neuron,myogenin,rhabdomyosarcoma,en
dc.relation.page118-
dc.identifier.doi10.6342/NTU202403379-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-05-
dc.contributor.author-college醫學院-
dc.contributor.author-dept微生物學研究所-
dc.date.embargo-lift2026-08-10-
顯示於系所單位:微生物學科所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  此日期後於網路公開 2026-08-10
4.34 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved