請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95065完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡坤憲 | zh_TW |
| dc.contributor.advisor | Kun-Hsien Tsai | en |
| dc.contributor.author | 黃靖軒 | zh_TW |
| dc.contributor.author | Jing-Syuan Huang | en |
| dc.date.accessioned | 2024-08-27T16:11:51Z | - |
| dc.date.available | 2024-08-28 | - |
| dc.date.copyright | 2024-08-27 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-01 | - |
| dc.identifier.citation | Aguiar, D. M., Ziliani, T. F., Zhang, X., Melo, A. L., Braga, I. A., Witter, R., Freitas, L. C., Rondelli, A. L., Luis, M. A., Sorte, E. C., Jaune, F. W., Santarém, V. A., Horta, M. C., Pescador, C. A., Colodel, E. M., Soares, H. S., Pacheco, R. C., Onuma, S. S., Labruna, M. B., & McBride, J. W. (2014). A novel Ehrlichia genotype strain distinguished by the TRP36 gene naturally infects cattle in Brazil and causes clinical manifestations associated with ehrlichiosis. Ticks and Tick-borne Diseases, 5(5), 537-544. https://doi.org/10.1016/j.ttbdis.2014.03.010
Anderson, B. E., Sims, K. G., Olson, J. G., Childs, J. E., Piesman, J. F., Happ, C. M., Maupin, G. O., & Johnson, B. J. (1993). Amblyomma americanum: a potential vector of human ehrlichiosis. Am J Trop Med Hyg, 49(2), 239-244. https://doi.org/10.4269/ajtmh.1993.49.239 Arraga-Alvarado, C. M., Qurollo, B. A., Parra, O. C., Berrueta, M. A., Hegarty, B. C., & Breitschwerdt, E. B. (2014). Molecular Evidence of Anaplasma platys infection in two women from Venezuela. The American Society of Tropical Medicine and Hygiene, 91(6), 1161-1165. https://doi.org/10.4269/ajtmh.14-0372 Azad, A. F., & Beard, C. B. (1998). Rickettsial pathogens and their arthropod vectors. Emerging Infectious Diseases, 4(2), 179-186. https://doi.org/10.3201/eid0402.980205 Bhowmick, B., & Han, Q. (2020). Understanding tick biology and its implications in anti-tick and transmission blocking vaccines against tick-borne pathogens. Frontiers in Veterinary Science, 7, 319. https://doi.org/10.3389/fvets.2020.00319 Black, W. C., & Piesman, J. (1994). Phylogeny of hard- and soft-tick taxa (Acari: Ixodida) based on mitochondrial 16S rDNA sequences. Proceedings of the National Academy of Sciences of the United States of America, 91(21), 10034-10038. https://doi.org/10.1073/pnas.91.21.10034 Bouchard, C., Dibernardo, A., Koffi, J., Wood, H., Leighton, P. A., & Lindsay, L. R. (2019). N Increased risk of tick-borne diseases with climate and environmental changes. Can Commun Dis Rep, 45(4), 83-89. https://doi.org/10.14745/ccdr.v45i04a02 Boulanger, N., Boyer, P., Talagrand-Reboul, E., & Hansmann, Y. (2019). Ticks and tick-borne diseases. Médecine et Maladies Infectieuses, 49(2), 87-97. https://doi.org/https://doi.org/10.1016/j.medmal.2019.01.007 Breitschwerdt, E. B., Hegarty, B. C., Qurollo, B. A., Saito, T. B., Maggi, R. G., Blanton, L. S., & Bouyer, D. H. (2014). Intravascular persistence of Anaplasma platys, Ehrlichia chaffeensis, and Ehrlichia ewingii DNA in the blood of a dog and two family members. Parasites and Vectors, 7(1), 298. https://doi.org/10.1186/1756-3305-7-298 Bremer, W. G., Schaefer, J. J., Wagner, E. R., Ewing, S. A., Rikihisa, Y., Needham, G. R., Jittapalapong, S., Moore, D. L., & Stich, R. W. (2005). Transstadial and intrastadial experimental transmission of Ehrlichia canis by male Rhipicephalus sanguineus. Veterinary Parasitology 131(1-2), 95-105. https://doi.org/10.1016/j.vetpar.2005.04.030 Brouqui, P., & Matsumoto, K. (2007). Bacteriology and phylogeny of Anaplasmataceae. In (pp. 179-198). https://doi.org/10.3109/9781420019971.013 Burri, C., Schumann, O., Schumann, C., & Gern, L. (2014). Are Apodemus spp. mice and Myodes glareolus reservoirs for Borrelia miyamotoi, Candidatus Neoehrlichia mikurensis, Rickettsia helvetica, R. monacensis and Anaplasma phagocytophilum? Ticks and Tick-borne Diseases, 5(3), 245-251. https://doi.org/https://doi.org/10.1016/j.ttbdis.2013.11.007 CDC. (2013). 蜱媒新興及人畜共通傳染病分子流行病學監測100-102 年度全程研究報告. https://www.cdc.gov.tw/Uploads/files/8dba746e-c81b-4326-ba1a-cc7530b6d511.pdf CDC. (2015). 台灣無形體症與敤點熱流行病學調查. https://www.cdc.gov.tw/Uploads/files/c7ef4e1e-a123-485e-b204-50530bfd8e02.pdf CDC. (2016). 台灣蜱媒病毒監測與蜱種基因庫建立. https://www.cdc.gov.tw/En/File/Get?q=8WuVM0eNDWdgVwB5E9JbuVRUmn7IoPm5RsD00Ham_IXXAW3QhhYan61eslGZRnxJ7xXr6_nVmeplVENLX0BrbYCDgI3FGe0uh5HFrOiLAmPSXTOpi88H22AKOcVyFl0 CDC. (2019). Why is CDC concerned about Lyme disease? https://www.cdc.gov/lyme/why-is-cdc-concerned-about-lyme-disease.html Chang, F. Y., Wang, R. Y., Yen, T. Y., Shu, P. Y., & Yang, S. L. (2023). Human case of Anaplasma phagocytophilum infection in Eastern Taiwan. Journal of the Formosan Medical Association, 122(3), 286-289. https://doi.org/10.1016/j.jfma.2022.08.018 Chao, L. L., Hsieh, C. K., Ho, T. Y., & Shih, C. M. (2019). First zootiological survey of hard ticks (Acari: Ixodidae) infesting dogs in northern Taiwan. Exp Appl Acarol, 77(1), 105-115. https://doi.org/10.1007/s10493-018-0328-x Chao, L. L., Liu, L. L., Ho, T. Y., & Shih, C. M. (2014). First detection and molecular identification of Borrelia garinii spirochete from Ixodes ovatus tick ectoparasitized on stray cat in Taiwan. PLoS One, 9(10), e110599. https://doi.org/10.1371/journal.pone.0110599 Chao, L. L., & Shih, C. M. (2016). Molecular analysis of Rhipicephalus sanguineus (Acari: Ixodidae), an incriminated vector tick for Babesia vogeli in Taiwan. Experimental and Applied Acarology, 70(4), 469-481. https://doi.org/10.1007/s10493-016-0094-6 Chilton, N. B., Curry, P. S., Lindsay, L. R., Rochon, K., Lysyk, T. J., & Dergousoff, S. J. (2020). Passive and Active Surveillance for Ixodes scapularis (Acari: Ixodidae) in Saskatchewan, Canada. J Med Entomol, 57(1), 156-163. https://doi.org/10.1093/jme/tjz155 Chisu, V., Dei Giudici, S., Foxi, C., Chessa, G., Peralta, F., Sini, V., & Masala, G. (2023). Anaplasma Species in Ticks Infesting Mammals of Sardinia, Italy. Animals, 13(8), 1332. https://www.mdpi.com/2076-2615/13/8/1332 Chochlakis, D., Ioannou, I., Tselentis, Y., & Psaroulaki, A. (2010). Human anaplasmosis and Anaplasma ovis variant. Emerg Infect Dis, 16(6), 1031-1032. https://doi.org/10.3201/eid1606.090175 Cupp, E. W. (1991). Biology of ticks. Veterinary Clinics of North America: Small Animal Practice, 21(1), 1-26. https://doi.org/10.1016/s0195-5616(91)50001-2 da Costa, P. S., Valle, L. M., Brigatte, M. E., & Greco, D. B. (2006). More about human monocytotropic ehrlichiosis in Brazil: serological evidence of nine new cases. Braz J Infect Dis, 10(1), 7-10. https://doi.org/10.1590/s1413-86702006000100002 Dantas-Torres, F., Chomel, B. B., & Otranto, D. (2012). Ticks and tick-borne diseases: a One Health perspective. Trends in Parasitology 28(10), 437-446. https://doi.org/10.1016/j.pt.2012.07.003 Dawson, J. E., Anderson, B. E., Fishbein, D. B., Sanchez, J. L., Goldsmith, C. S., Wilson, K. H., & Duntley, C. W. (1991). Isolation and characterization of an Ehrlichia sp. from a patient diagnosed with human ehrlichiosis. Journal of Clinical Microbiology, 29(12), 2741-2745. https://doi.org/10.1128/jcm.29.12.2741-2745.1991 de la Fuente, J., Antunes, S., Bonnet, S., Cabezas-Cruz, A., Domingos, A. G., Estrada-Peña, A., Johnson, N., Kocan, K. M., Mansfield, K. L., Nijhof, A. M., Papa, A., Rudenko, N., Villar, M., Alberdi, P., Torina, A., Ayllón, N., Vancova, M., Golovchenko, M., Grubhoffer, L., . . . Rego, R. O. M. (2017). Tick-pathogen interactions and vector vompetence: Identification of molecular drivers for tick-borne diseases. Frontiers in Cellular and Infection Microbiology, 7, 114. https://doi.org/10.3389/fcimb.2017.00114 de la Fuente, J., Estrada-Pena, A., Venzal, J. M., Kocan, K. M., & Sonenshine, D. E. (2008). Overview: Ticks as vectors of pathogens that cause disease in humans and animals. Frontiers in Bioscience-Landmark, 13, 6938-6946. https://doi.org/10.2741/3200 Diniz, P. P., Schulz, B. S., Hartmann, K., & Breitschwerdt, E. B. (2011). "Candidatus Neoehrlichia mikurensis" infection in a dog from Germany. Journal of Clinical Microbiology, 49(5), 2059-2062. https://doi.org/10.1128/jcm.02327-10 Donahue, J. G., Piesman, J., & Spielman, A. (1987). Reservoir competence of white-footed mice for Lyme disease spirochetes. The American Journal of Tropical Medicine and Hygiene, 36(1), 92-96. https://doi.org/10.4269/ajtmh.1987.36.92 Dumler, J. S., Barbet, A. F., Bekker, C. P., Dasch, G. A., Palmer, G. H., Ray, S. C., Rikihisa, Y., & Rurangirwa, F. R. (2001). Reorganization of genera in the families Rickettsiaceae and Anaplasmataceae in the order Rickettsiales: Unification of some species of Ehrlichia with Anaplasma, Cowdria with Ehrlichia and Ehrlichia with Neorickettsia, descriptions of six new species combinations and designation of Ehrlichia equi and 'HGE agent' as subjective synonyms of Ehrlichia phagocytophila. International Journal of Systematic and Evolutionary Microbiology, 51(Pt 6), 2145-2165. https://doi.org/10.1099/00207713-51-6-2145 Dumler, J. S., Choi, K. S., Garcia-Garcia, J. C., Barat, N. S., Scorpio, D. G., Garyu, J. W., Grab, D. J., & Bakken, J. S. (2005). Human granulocytic anaplasmosis and Anaplasma phagocytophilum. Emerging Infectious Diseases, 11(12), 1828-1834. https://doi.org/10.3201/eid1112.050898 El-Sayed, A., & Kamel, M. (2020). Climatic changes and their role in emergence and re-emergence of diseases. Environmental Science and Pollution Research, 27(18), 22336-22352. https://doi.org/10.1007/s11356-020-08896-w Eng, T. R., Harkess, J. R., Fishbein, D. B., Dawson, J. E., Greene, C. N., Redus, M. A., & Satalowich, F. T. (1990). Epidemiologic, clinical, and laboratory findings of human ehrlichiosis in the United States, 1988. Jama, 264(17), 2251-2258. Estrada-Peña, A., & Jongejan, F. (1999). Ticks feeding on humans: a review of records on human-biting Ixodoidea with special reference to pathogen transmission. Exp Appl Acarol, 23(9), 685-715. https://doi.org/10.1023/a:1006241108739 Fehr, J. S., Bloemberg, G. V., Ritter, C., Hombach, M., Lüscher, T. F., Weber, R., & Keller, P. M. (2010). Septicemia caused by tick-borne bacterial pathogen Candidatus Neoehrlichia mikurensis. Emerging Infectious Diseases, 16(7), 1127-1129. https://doi.org/10.3201/eid1607.091907 Fourie, J. J., Stanneck, D., Luus, H. G., Beugnet, F., Wijnveld, M., & Jongejan, F. (2013). Transmission of Ehrlichia canis by Rhipicephalus sanguineus ticks feeding on dogs and on artificial membranes. Veterinary Parasitology, 197(3-4), 595-603. https://doi.org/10.1016/j.vetpar.2013.07.026 Fournier, P. E., Dumler, J. S., Greub, G., Zhang, J., Wu, Y., & Raoult, D. (2003). Gene sequence-based criteria for identification of new rickettsia isolates and description of Rickettsia heilongjiangensis sp. nov. Journal of Clinical Microbiology, 41(12), 5456-5465. https://doi.org/10.1128/jcm.41.12.5456-5465.2003 Fournier, P. E., Roux, V., & Raoult, D. (1998). Phylogenetic analysis of spotted fever group rickettsiae by study of the outer surface protein rOmpA. International Journal of Systematic and Evolutionary Microbiology, 48 Pt 3, 839-849. https://doi.org/10.1099/00207713-48-3-839 Francischetti, I. M., Mans, B. J., Meng, Z., Gudderra, N., Veenstra, T. D., Pham, V. M., & Ribeiro, J. M. (2008). An insight into the sialome of the soft tick, Ornithodorus parkeri. Insect Biochemistry and Molecular Biology, 38(1), 1-21. https://doi.org/10.1016/j.ibmb.2007.09.009 Gaywee, J., Sunyakumthorn, P., Rodkvamtook, W., Ruang-areerate, T., Mason, C. J., & Sirisopana, N. (2007). Human infection with Rickettsia sp. related to R. japonica, Thailand. Emerging Infectious Diseases, 13(4), 657-659. https://doi.org/10.3201/eid1304.060585 Grankvist, A., Andersson, P. O., Mattsson, M., Sender, M., Vaht, K., Höper, L., Sakiniene, E., Trysberg, E., Stenson, M., Fehr, J., Pekova, S., Bogdan, C., Bloemberg, G., & Wennerås, C. (2014). Infections with the tick-borne bacterium "Candidatus Neoehrlichia mikurensis" mimic noninfectious conditions in patients with B cell malignancies or autoimmune diseases. Clinical Infectious Diseases, 58(12), 1716-1722. https://doi.org/10.1093/cid/ciu189 Guglielmone, A. A., & Robbins, R. G. (2018). Hard Ticks (Acari: Ixodida: Ixodidae) Parasitizing Humans: A Global Overview. Springer International Publishing. https://books.google.com.tw/books?id=w-11DwAAQBAJ Han, B. A., Kramer, A. M., & Drake, J. M. (2016). Global patterns of zoonotic disease in mammals. Trends in Parasitology, 32(7), 565-577. https://doi.org/10.1016/j.pt.2016.04.007 Harrus, S., Waner, T., Bark, H., Jongejan, F., & Cornelissen, A. W. (1999). Recent advances in determining the pathogenesis of canine monocytic ehrlichiosis. Journal of Clinical Microbiology, 37(9), 2745-2749. https://doi.org/10.1128/jcm.37.9.2745-2749.1999 Höper, L., Skoog, E., Stenson, M., Grankvist, A., Wass, L., Olsen, B., Nilsson, K., Mårtensson, A., Söderlind, J., Sakinis, A., & Wennerås, C. (2021). Vasculitis due to Candidatus Neoehrlichia mikurensis: A cohort study of 40 Swedish patients. Clinical Infectious Diseases 73(7), e2372-e2378. https://doi.org/10.1093/cid/ciaa1217 Huang, C. C., Hsieh, Y. C., Tsang, C. L., & Chung, Y. T. (2010). Sequence and phylogenetic analysis of the gp200 protein of Ehrlichia canis from dogs in Taiwan. Journal of Veterinary Science, 11(4), 333-340. https://doi.org/10.4142/jvs.2010.11.4.333 Huchon, D., Madsen, O., Sibbald, M. J., Ament, K., Stanhope, M. J., Catzeflis, F., de Jong, W. W., & Douzery, E. J. (2002). Rodent phylogeny and a timescale for the evolution of Glires: Evidence from an extensive taxon sampling using three nuclear genes. Molecular Biology and Evolution, 19(7), 1053-1065. https://doi.org/10.1093/oxfordjournals.molbev.a004164 Inokuma, H., Raoult, D., & Brouqui, P. (2000). Detection of Ehrlichia platys DNA in brown dog ticks (Rhipicephalus sanguineus) in Okinawa Island, Japan. Journal of Clinical Microbiology, 38(11), 4219-4221. https://doi.org/10.1128/jcm.38.11.4219-4221.2000 Jenkins, A., Raasok, C., Pedersen, B. N., Jensen, K., Andreassen, Å., Soleng, A., Edgar, K. S., Lindstedt, H. H., Kjelland, V., Stuen, S., Hvidsten, D., & Kristiansen, B. E. (2019). Detection of Candidatus Neoehrlichia mikurensis in Norway up to the northern limit of Ixodes ricinus distribution using a novel real time PCR test targeting the groEL gene. BMC Microbiology, 19(1), 199. https://doi.org/10.1186/s12866-019-1502-y Jones, B. A., Grace, D., Kock, R., Alonso, S., Rushton, J., Said, M. Y., McKeever, D., Mutua, F., Young, J., McDermott, J., & Pfeiffer, D. U. (2013). Zoonosis emergence linked to agricultural intensification and environmental change. Proceedings of the National Academy of Sciences of the United States of America, 110(21), 8399-8404. https://doi.org/10.1073/pnas.1208059110 Jongejan, F., Su, B. L., Yang, H. J., Berger, L., Bevers, J., Liu, P. C., Fang, J. C., Cheng, Y. W., Kraakman, C., & Plaxton, N. (2018). Molecular evidence for the transovarial passage of Babesia gibsoni in Haemaphysalis hystricis (Acari: Ixodidae) ticks from Taiwan: a novel vector for canine babesiosis. Parasites and Vectors, 11(1), 134. https://doi.org/10.1186/s13071-018-2722-y Kim, K. H., Yi, J., Oh, W. S., Kim, N. H., Choi, S. J., Choe, P. G., Kim, N. J., Lee, J. K., & Oh, M. D. (2014). Human granulocytic anaplasmosis, South Korea, 2013. Emerging Infectious Diseases, 20(10), 1708-1711. https://doi.org/10.3201/eid2010.131680 Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16(2), 111-120. https://doi.org/10.1007/bf01731581 Kuhn, K., Campbell-Lendrum, D., Haines, A., Cox, J., Corvalán, C., & Anker, M. (2005). Using climate to predict infectious disease epidemics. Geneva: World Health Organization, 16-20. Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547-1549. https://doi.org/10.1093/molbev/msy096 Kuo, C. C., Huang, J. L., Chien, C. H., Shih, H. C., & Wang, H. C. (2018). First molecular detection of Anaplasma phagocytophilum in the hard tick Rhipicephalus haemaphysaloides in Taiwan. Experimental and Applied Acarology, 75(4), 437-443. https://doi.org/10.1007/s10493-018-0283-6 Kuo, C. C., Lin, Y. F., Yao, C. T., Shih, H. C., Chung, L. H., Liao, H. C., Hsu, Y. C., & Wang, H. C. (2017). Tick-borne pathogens in ticks collected from birds in Taiwan. Parasites and Vectors, 10(1), 587. https://doi.org/10.1186/s13071-017-2535-4 Li, H., Jiang, J. F., Liu, W., Zheng, Y. C., Huo, Q. B., Tang, K., Zuo, S. Y., Liu, K., Jiang, B. G., Yang, H., & Cao, W. C. (2012). Human infection with Candidatus Neoehrlichia mikurensis, China. Emerging Infectious Diseases, 18(10), 1636-1639. https://doi.org/10.3201/eid1810.120594 Lindgren, E., Tälleklint, L., & Polfeldt, T. (2000). Impact of climatic change on the northern latitude limit and population density of the disease-transmitting European tick Ixodes ricinus. Environmental Health Perspectives, 108(2), 119-123. https://doi.org/10.1289/ehp.00108119 Liu, Z., Ma, M., Wang, Z., Wang, J., Peng, Y., Li, Y., Guan, G., Luo, J., & Yin, H. (2012). Molecular survey and genetic identification of Anaplasma Species in goats from central and southern China [Article]. Applied and Environmental Microbiology, 78(2), 464-470. https://doi.org/10.1128/AEM.06848-11 Maggi, R. G., Mascarelli, P. E., Havenga, L. N., Naidoo, V., & Breitschwerdt, E. B. (2013). Co-infection with Anaplasma platys, Bartonella henselae and Candidatus Mycoplasma haematoparvum in a veterinarian [Article]. Parasites and Vectors, 6(1), Article 103. https://doi.org/10.1186/1756-3305-6-103 McLain, D. K., Wesson, D. M., Collins, F. H., & Oliver, J. H. (1995). Evolution of the rDNA spacer, ITS2, in the ticks Ixodes scapularis and I. pacificus (Acari: Ixodidae). Heredity, 75(3), 303-319. https://doi.org/10.1038/hdy.1995.139 MOA. (2024). 全國家犬貓飼養數量最新推估結果. https://www.moa.gov.tw/theme_data.phptheme=news&sub_theme=agri&id=9418 Morissette, E., Massung, R. F., Foley, J. E., Alleman, A. R., Foley, P., & Barbet, A. F. (2009). Diversity of Anaplasma phagocytophilum strains, USA. Emerging Infectious Diseases, 15(6), 928-931. https://doi.org/10.3201/eid1506.081610 Naitou, H., Kawaguchi, D., Nishimura, Y., Inayoshi, M., Kawamori, F., Masuzawa, T., Hiroi, M., Kurashige, H., Kawabata, H., Fujita, H., & Ohashi, N. (2006). Molecular identification of Ehrlichia species and 'Candidatus Neoehrlichia mikurensis' from ticks and wild rodents in Shizuoka and Nagano Prefectures, Japan. Microbiology and Immunology, 50(1), 45-51. https://doi.org/10.1111/j.1348-0421.2006.tb03769.x Ohashi, N., Gaowa, Wuritu, Kawamori, F., Wu, D., Yoshikawa, Y., Chiya, S., Fukunaga, K., Funato, T., Shiojiri, M., Nakajima, H., Hamauzu, Y., Takano, A., Kawabata, H., Ando, S., & Kishimoto, T. (2013). Human granulocytic Anaplasmosis, Japan. Emerging Infectious Diseases, 19(2), 289-292. https://doi.org/10.3201/eid1902.120855 Overgaauw, P. A. M., Vinke, C. M., Hagen, M., & Lipman, L. J. A. (2020). A One Health perspective on the human-companion animal relationship with emphasis on zoonotic aspects. International Journal of Environmental Research and Public Health, 17(11). https://doi.org/10.3390/ijerph17113789 Paddock, C. D., & Childs, J. E. (2003a). Ehrlichia chaffeensis: a prototypical emerging pathogen. Clin Microbiol Rev, 16(1), 37-64. https://doi.org/10.1128/cmr.16.1.37-64.2003 Paddock, C. D., & Childs, J. E. (2003b). Ehrlichia chaffeensis: A prototypical emerging pathogen. Clinical Microbiology Reviews, 16(1), 37-64. https://doi.org/10.1128/cmr.16.1.37-64.2003 Parham, P. E., Waldock, J., Christophides, G. K., Hemming, D., Agusto, F., Evans, K. J., Fefferman, N., Gaff, H., Gumel, A., LaDeau, S., Lenhart, S., Mickens, R. E., Naumova, E. N., Ostfeld, R. S., Ready, P. D., Thomas, M. B., Velasco-Hernandez, J., & Michael, E. (2015). Climate, environmental and socio-economic change: Weighing up the balance in vector-borne disease transmission. Philosophical Transactions Of The Royal Society B-biological Sciences, 370(1665). https://doi.org/10.1098/rstb.2013.0551 Park, J. H., Heo, E. J., Choi, K. S., Dumler, J. S., & Chae, J. S. (2003). Detection of antibodies to Anaplasma phagocytophilum and Ehrlichia chaffeensis antigens in sera of Korean patients by western immunoblotting and indirect immunofluorescence assays. Clin Diagn Lab Immunol, 10(6), 1059-1064. https://doi.org/10.1128/cdli.10.6.1059-1064.2003 Parola, P., Paddock, C. D., Socolovschi, C., Labruna, M. B., Mediannikov, O., Kernif, T., Abdad, M. Y., Stenos, J., Bitam, I., Fournier, P. E., & Raoult, D. (2013). Update on tick-borne rickettsioses around the world: A geographic approach. Clinical Microbiology Reviews, 26(4), 657-702. https://doi.org/10.1128/cmr.00032-13 Peng, S. H., Yang, S. L., Ho, Y. N., Chen, H. F., & Shu, P. Y. (2019). Human Case of Ehrlichia chaffeensis Infection, Taiwan. Emerging Infectious Diseases, 25(11), 2141-2143. https://doi.org/10.3201/eid2511.190665 Portillo, A., Santibáñez, S., García-Álvarez, L., Palomar, A. M., & Oteo, J. A. (2015). Rickettsioses in Europe. Microbes and Infection, 17(11), 834-838. https://doi.org/https://doi.org/10.1016/j.micinf.2015.09.009 Rabiee, M. H., Mahmoudi, A., Siahsarvie, R., Kryštufek, B., & Mostafavi, E. (2018). Rodent-borne diseases and their public health importance in Iran. PLOS Neglected Tropical Diseases, 12(4), e0006256. https://doi.org/10.1371/journal.pntd.0006256 Randolph, S. E., Gern, L., & Nuttall, P. A. (1996). Co-feeding ticks: Epidemiological significance for tick-borne pathogen transmission. Parasitology Today, 12(12), 472-479. https://doi.org/https://doi.org/10.1016/S0169-4758(96)10072-7 Rar, V., & Golovljova, I. (2011). Anaplasma, Ehrlichia, and “Candidatus Neoehrlichia” bacteria: Pathogenicity, biodiversity, and molecular genetic characteristics, a review. Infection, Genetics and Evolution, 11(8), 1842-1861. https://doi.org/https://doi.org/10.1016/j.meegid.2011.09.019 Regnery, R. L., Spruill, C. L., & Plikaytis, B. D. (1991). Genotypic identification of rickettsiae and estimation of intraspecies sequence divergence for portions of two rickettsial genes. Journal of Bacteriology, 173(5), 1576-1589. https://doi.org/10.1128/jb.173.5.1576-1589.1991 Rochlin, I., & Toledo, A. (2020). Emerging tick-borne pathogens of public health importance: A mini-review. Journal of Medical Microbiology 69(6), 781-791. https://doi.org/10.1099/jmm.0.001206 Roux, V., & Raoult, D. (2000). Phylogenetic analysis of members of the genus Rickettsia using the gene encoding the outer-membrane protein rOmpB (ompB). International Journal of Systematic and Evolutionary Microbiology, 50 Pt 4, 1449-1455. https://doi.org/10.1099/00207713-50-4-1449 Sekeyova, Z., Roux, V., & Raoult, D. (2001). Phylogeny of Rickettsia spp. inferred by comparing sequences of 'gene D', which encodes an intracytoplasmic protein. International Journal of Systematic and Evolutionary Microbiology, 51(Pt 4), 1353-1360. https://doi.org/10.1099/00207713-51-4-1353 Singla, L. D., Singla, N., Parshad, V. R., Juyal, P. D., & Sood, N. K. (2008). Rodents as reservoirs of parasites in India. Integrative Zoology, 3(1), 21-26. https://doi.org/10.1111/j.1749-4877.2008.00071.x Su, B. L., Liu, P. C., Fang, J. C., & Jongejan, F. (2023). Correlation between Babesia Species Affecting Dogs in Taiwan and the Local Distribution of the Vector Ticks. Vet Sci, 10(3). https://doi.org/10.3390/vetsci10030227 ingos, A., & Dmitryjuk, M. (2023). Neoehrlichia mikurensis-A new emerging tick-borne pathogen in north-eastern Poland? Pathogens, 12(2). https://doi.org/10.3390/pathogens12020307 Teng, K., & Jiang, Z. (1991). Economic insect fauna of China Fasc 39 Acari: Ixodidae. Fauna Sinica Beijing: Science Press. Truchan, H. K., Seidman, D., & Carlyon, J. A. (2013). Breaking in and grabbing a meal: Anaplasma phagocytophilum cellular invasion, nutrient acquisition, and promising tools for their study. Microbes and Infection, 15(14), 1017-1025. https://doi.org/https://doi.org/10.1016/j.micinf.2013.10.010 Tsai, K. H., Chang, S. F., Yen, T. Y., Shih, W. L., Chen, W. J., Wang, H. C., Yu, X. J., Wen, T. H., Wu, W. J., & Shu, P. Y. (2016). Prevalence of antibodies against Ehrlichia spp. and Orientia tsutsugamushi in small mammals around harbors in Taiwan. Parasites and Vectors, 9(1), 45. https://doi.org/10.1186/s13071-016-1318-7 Tsai, K. H., Chung, L. H., Chien, C. H., Tung, Y. J., Wei, H. Y., Yen, T. Y., Shu, P. Y., & Wang, H. C. (2019). Human granulocytic anaplasmosis in Kinmen, an offshore island of Taiwan. PLOS Neglected Tropical Diseases, 13(9), e0007728. https://doi.org/10.1371/journal.pntd.0007728 Tsai, K. H., Wang, H. C., Chen, C. H., Huang, J. H., Lu, H. Y., Su, C. L., & Shu, P. Y. (2008). Isolation and identification of a novel spotted fever group rickettsia, strain IG-1, from Ixodes granulatus ticks collected on Orchid Island (Lanyu), Taiwan. The American Journal of Tropical Medicine and Hygiene, 79(2), 256-261. Tsui, P. Y., Tsai, K. H., Weng, M. H., Hung, Y. W., Liu, Y. T., Hu, K. Y., Lien, J. C., Lin, P. R., Shaio, M. F., Wang, H. C., & Ji, D. D. (2007). Molecular detection and characterization of spotted fever group rickettsiae in Taiwan. The American Journal of Tropical Medicine and Hygiene, 77(5), 883-890. von Loewenich, F. D., Geissdörfer, W., Disqué, C., Matten, J., Schett, G., Sakka, S. G., & Bogdan, C. (2010). Detection of "Candidatus Neoehrlichia mikurensis" in two patients with severe febrile illnesses: evidence for a European sequence variant. Journal of Clinical Microbiology, 48(7), 2630-2635. https://doi.org/10.1128/jcm.00588-10 Welinder-Olsson, C., Kjellin, E., Vaht, K., Jacobsson, S., & Wennerås, C. (2010). First case of human "Candidatus Neoehrlichia mikurensis" infection in a febrile patient with chronic lymphocytic leukemia. Journal of Clinical Microbiology, 48(5), 1956-1959. https://doi.org/10.1128/jcm.02423-09 WHO. (2018). Climate change. https://www.who.int/news-room/fact-sheets/detail/climate-change-and-health WHO. (2023). One Health. https://www.who.int/news-room/fact-sheets/detail/one-health Woldehiwet, Z. (2010). The natural history of Anaplasma phagocytophilum. Veterinary Parasitology, 167(2-4), 108-122. https://doi.org/10.1016/j.vetpar.2009.09.013 Wormser, G. P. (2016). Accuracy of diagnosis of human granulocytic anaplasmosis in China. Emerging Infectious Diseases, 22(10), 1728-1731. https://doi.org/10.3201/eid2210.160161 Yen, T. Y., Tung, Y. J., Wang, H. C., & Tsai, K. H. (2020). Detection of Ehrlichia chaffeensis in a febrile patient in Kinmen, an offshore island of Taiwan. J Formos Med Assoc, 119(8), 1329-1330. https://doi.org/10.1016/j.jfma.2019.11.019 Yen, T. Y., Wang, H. C., Chang, Y. C., Su, C. L., Chang, S. F., Shu, P. Y., & Tsai, K. H. (2021). Seroepidemiological study of spotted fever group Rickettsiae and Identification of a putative new species, Rickesttsia sp. Da-1, in Gongliao, northeast Taiwan. Pathogens, 10(11). https://doi.org/10.3390/pathogens10111434 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95065 | - |
| dc.description.abstract | 蜱蟲為動物的主要體外寄生蟲,也是多種病原體的傳播媒介,包括無形體(Anaplasma spp.) 、艾利希氏體 (Ehrlichia spp.) 和立克次體 (Rickettsia spp.)等,對人類健康造成危害。近年來,隨著飼養伴侶動物的人數上升,新興蟲媒傳染病在全球公共衛生的重要性日漸增加。動物提供蜱蟲血液來源,使其成為病原體的宿主,從而影響人類的健康。人類無形體症 (Anaplasmosis) 是一種新興的人畜共通傳染病,其病原體為嗜吞噬球無形體 (Anaplasma phagocytophilum),由蜱蟲傳播,可感染人類、牛、犬、貓及囓齒類等動物。
本研究目的為透過分子技術檢測花蓮伴侶動物外寄生蜱蟲、野生小型哺乳動物脾臟及其外寄生蜱蟲之嗜吞噬球無形體。於2021年和2023年,分別自伴侶動物和小型哺乳動物採集共115隻和23隻蜱蟲樣本,蜱蟲種類包含板齒鼠血蜱 (Haemaphysalis bandicota)、豪豬血蜱 (Haemaphysalis hystricis)、粒型硬蜱 (Ixodes granulatus)、鐮型扇頭蜱 (Rhipicephalus haemaphysaloides) 和血紅扇頭蜱 (Rhipicephalus sanguineus)。此外,所採集之41隻野生小型哺乳動物中,包括8隻赤背條鼠 (Apodemus agrarius)、11隻小黃腹鼠 (Rattus losea)、6隻溝鼠 (Rattus norvegicus) 和16隻臭鼩 (Suncus murinus)。伴侶動物收集之115隻蜱蟲中,無形體科 (Anaplasmataceae) 和立克次體的盛行率分別為84.3% (97/115) 和2.6% (3/115)。基因序列比對顯示,在1隻血紅扇頭蜱和2隻豪豬血蜱中檢測到艾利希氏體;此外,於豪豬血蜱中檢測到片狀邊蟲 (Anaplasma platys)與嗜吞噬球無形體,且於3隻豪豬血蜱中檢測到立克次體陽性,經由gltA、ompA、ompB和sca4基因分析,發現一立克次體物種Rickettsia sp. HH-1。同時,2023年所採集的41隻野生小型哺乳動物脾臟和23隻蜱蟲中,無形體科於蜱蟲與野生小型哺乳動物脾臟之盛行率為0% (0/23) 和19.5% (8/41)。嗜吞噬球無形體於3隻赤背條鼠和2隻小黃腹鼠檢出,並於2隻小黃腹鼠和1隻臭鼩檢測出Neoehrlichia mikurensis,依據16S rDNA 基因擴增片段顯示小型哺乳動物中之嗜吞噬球無形體和N. mikurensis與臺灣小黃腹鼠脾臟中之嗜吞噬球無形體 (Accession no.: MK394178) 以及中國小黃腹鼠脾臟之N. mikurensis (Accession no.: MH722225) 之序列具有100% 相似度。以上結果顯示,嗜吞噬球無形體、立克次體和艾利希氏體存在於花蓮地區之蜱蟲和野外小型哺乳動物。在健康一體 (One Health) 的概念下,高盛行率之無形體科和多種病原體表明,飼主應更加重視動物身上之蜱蟲和蜱媒傳疾病。 | zh_TW |
| dc.description.abstract | Ticks are the primary ectoparasites of animals and serve as vectors for multiple pathogens, including Anaplasma, Ehrlichia, and Rickettsia spp., making threats to human health and animal health. Emerging vector-borne zoonoses have increased public health importance worldwide, as the number of people raising companion animals has risen in recent years. Animals provide blood sources for ticks, hence becoming a reservoir for pathogens and may damage either human or animal health. The aim of the study was to identify Anaplasma phagocytophilum via molecular diagnostic techniques in companion animals’ ticks, free ranging small mammals and their ectoparasitic ticks in Hualien, eastern Taiwan by PCR. In 2021 and 2023, a total number of 115 and 23 ticks were collected as samples from companion animals and small mammals, respectively. Tick species included Haemaphysalis bandicota, Haemaphysalis hystricis, Ixodes granulatus, Rhipicephalus haemaphysaloides and Rhipicephalus sanguineus.A total of 41 free ranging small mammals were observed, including 8 Apodemus agrarius, 11 Rattus losea, 6 Rattus norvegicus, and 16 Suncus murinus. Of the 115 ticks sourced from companion animals in 2021, the prevalence rate of Anaplasmataceae and Rickettsia were 84.3% (97/115) and 2.6% (3/115), respectively. Gene pairwise comparison showed Ehrlichia spp. was found in 1 R. sanguineus and 2 H. hystricis. On the other hands, Anaplasma platy and A. phagocytophilum were found in H. hystricis. Meanwhile, the results of pairwise comparison in gltA, ompA, ompB and sca4 gene suggested a novel Rickettsia species, Rickettsia sp. HH-1, in H. hystricis. Of the 41 small mammals’ spleens and 23 ticks collected in 2023, 0% (0/23) of ticks and 19.5% (8/41) of small mammals were infected with Anaplasmataceae. As a result, A. phagocytophilum were detected in 3 A. agrarius and 2 R. losea. Besides, Neoehrlichia mikurensis were detected in 2 R. losea and 1 S. murinus. The 16S rDNA amplicons showed 100% identical to A. phagocytophilum clone 10699S (Accession no.: MK394178.1) isolate from spleen in R.losea in Taiwan and 100% identical to N. mikurensis strain JXRLSY-59 (Accession no.: MH722225) isolate from spleen in R. losea in China. These results demonstrate the presence of ticks and small mammals infected with A. phagocytophilum, Ehrlichia spp. and Rickettsia spp. in Hualien. Under the One Health concept, the high prevalence of Anaplasmataceae and various species of other pathogens indicates that pet owners should pay more attention to ticks on animals and tick-borne diseases. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-27T16:11:51Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-27T16:11:51Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 摘要 iv Abstract vi Contents viii List of Figures x List of Tables xii Chapter 1 Introduction 1 1.1 Climate change 1 1.2 One Health 1 1.3 Ticks 2 1.4 Tick-borne diseases (TBDs) 4 1.4.1 Anaplasma spp. 5 1.4.2 Ehrlichia spp. 7 1.4.3 Rickettsia spp. 9 1.5 Companion animals 10 1.6 Small mammals 11 1.7 Study aim 12 Chapter 2 Materials and methods 13 2.1 Study area and sample collection 13 2.2 DNA extraction and PCR amplification 14 2.3 Sequence analysis 16 Chapter 3 Results 17 3.1 Sample collection and morphological identification 17 3.2 Prevalent rate and screening of tick-borne microbes 18 3.3 Novel Rickettsia sp. 20 Chapter 4 Discussion 21 4.1 The prevalence of Anaplasmataceae 21 4.2 Gene diversity of Rickettsia spp. in Taiwan 23 4.3 Tick biology and prevention 24 4.4 One Health concept 25 Chapter 5 Conclusion 27 References 29 Appendix 50 | - |
| dc.language.iso | en | - |
| dc.subject | 立克次體 | zh_TW |
| dc.subject | 蜱蟲 | zh_TW |
| dc.subject | 健康一體 | zh_TW |
| dc.subject | 伴侶動物 | zh_TW |
| dc.subject | 嗜吞噬球無形體 | zh_TW |
| dc.subject | 野生小型哺乳動物 | zh_TW |
| dc.subject | Ticks | en |
| dc.subject | Anaplasma phagocytophilum | en |
| dc.subject | Companion animals | en |
| dc.subject | One Health | en |
| dc.subject | Rickettsia spp. | en |
| dc.subject | Small mammals | en |
| dc.title | 花蓮伴侶動物外寄生蜱蟲、野生小型哺乳動物及其外 寄生蜱蟲之嗜吞噬球無形體分子檢測 | zh_TW |
| dc.title | Molecular detection of Anaplasma phagocytophilum in companion animals’ ticks, free ranging small mammals and their ectoparasitic ticks in Hualien | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 吳尹文;王錫杰;顏采瑩;余品奐 | zh_TW |
| dc.contributor.oralexamcommittee | Yin-Wen Wu;Hsi-Chieh Wang;Tsai-Ying Yen;Pin-Huan Yu | en |
| dc.subject.keyword | 嗜吞噬球無形體,伴侶動物,野生小型哺乳動物,蜱蟲,健康一體,立克次體, | zh_TW |
| dc.subject.keyword | Anaplasma phagocytophilum,Companion animals,One Health,Rickettsia spp.,Small mammals,Ticks, | en |
| dc.relation.page | 64 | - |
| dc.identifier.doi | 10.6342/NTU202402693 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-02 | - |
| dc.contributor.author-college | 公共衛生學院 | - |
| dc.contributor.author-dept | 環境與職業健康科學研究所 | - |
| dc.date.embargo-lift | 2029-07-31 | - |
| 顯示於系所單位: | 環境與職業健康科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 此日期後於網路公開 2029-07-31 | 2.3 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
