Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 微生物學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95064
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳小梨zh_TW
dc.contributor.advisorShow-Li Chenen
dc.contributor.author黃慧儀zh_TW
dc.contributor.authorHui Yee Ngen
dc.date.accessioned2024-08-27T16:11:33Z-
dc.date.available2024-08-28-
dc.date.copyright2024-08-27-
dc.date.issued2024-
dc.date.submitted2024-08-03-
dc.identifier.citationAbramson, J., Adler, J., Dunger, J., Evans, R., Green, T., Pritzel, A., et al. (2024). Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature, 630(8016), 493-500.
Adhikari, A., Kim, W., & Davie, J. (2021). Myogenin is required for assembly of the transcription machinery on muscle genes during skeletal muscle differentiation. PLOS ONE, 16(1), e0245618.
Agbulut, O., Noirez, P., Beaumont, F., & Butler-Browne, G. (2003). Myosin heavy chain isoforms in postnatal muscle development of mice. Biology of the Cell, 95(6), 399-406.
Asfour, H. A., Allouh, M. Z., & Said, R. S. (2018). Myogenic regulatory factors: The orchestrators of myogenesis after 30 years of discovery. Exp Biol Med (Maywood), 243(2), 118-128.
Bähler, M., & Rhoads, A. (2002). Calmodulin signaling via the IQ motif. FEBS Lett, 513(1), 107-113.
Bassel-Duby, R., & Olson, E. N. (2006). Signaling pathways in skeletal muscle remodeling. Annu Rev Biochem, 75, 19-37.
Bentzinger, C. F., Wang, Y. X., & Rudnicki, M. A. (2012). Building Muscle: Molecular Regulation of Myogenesis. Cold Spring Harbor Perspectives in Biology, 4(2).
Boillée, S., & Cleveland, D. W. (2004). Gene therapy for ALS delivers. Trends Neurosci, 27(5), 235-238.
Cary, G. A., & La Spada, A. R. (2008). Androgen receptor function in motor neuron survival and degeneration. Phys Med Rehabil Clin N Am, 19(3), 479-494, viii.
Chang, S.-W., Tsao, Y.-P., Lin, C.-Y., & Chen, S.-L. (2011). NRIP, a Novel Calmodulin Binding Protein, Activates Calcineurin To Dephosphorylate Human Papillomavirus E2 Protein. Journal of Virology, 85(13), 6750-6763.
Chen, H. H., Chen, W. P., Yan, W. L., Huang, Y. C., Chang, S. W., Fu, W. M., et al. (2015). NRIP is newly identified as a Z-disc protein, activating calmodulin signaling for skeletal muscle contraction and regeneration. J Cell Sci, 128(22), 4196-4209.
Chen, H. H., Tsai, L. K., Liao, K. Y., Wu, T. C., Huang, Y. H., Huang, Y. C., et al. (2018). Muscle-restricted nuclear receptor interaction protein knockout causes motor neuron degeneration through down-regulation of myogenin at the neuromuscular junction. J Cachexia Sarcopenia Muscle, 9(4), 771-785.
Chen, P. H., Tsao, Y. P., Wang, C. C., & Chen, S. L. (2008). Nuclear receptor interaction protein, a coactivator of androgen receptors (AR), is regulated by AR and Sp1 to feed forward and activate its own gene expression through AR protein stability. Nucleic Acids Res, 36(1), 51-66.
Cheung, C. L., Chan, B. Y., Chan, V., Ikegawa, S., Kou, I., Ngai, H., et al. (2009). Pre-B-cell leukemia homeobox 1 (PBX1) shows functional and possible genetic association with bone mineral density variation. Hum Mol Genet, 18(4), 679-687.
Dobbins, G. C., Luo, S., Yang, Z., Xiong, W. C., & Mei, L. (2008). alpha-Actinin interacts with rapsyn in agrin-stimulated AChR clustering. Mol Brain, 1, 18.
Edmondson, D. G., Cheng, T. C., Cserjesi, P., Chakraborty, T., & Olson, E. N. (1992). Analysis of the myogenin promoter reveals an indirect pathway for positive autoregulation mediated by the muscle-specific enhancer factor MEF-2. Mol Cell Biol, 12(9), 3665-3677.
Ehret, G. B., O'Connor, A. A., Weder, A., Cooper, R. S., & Chakravarti, A. (2009). Follow-up of a major linkage peak on chromosome 1 reveals suggestive QTLs associated with essential hypertension: GenNet study. Eur J Hum Genet, 17(12), 1650-1657.
Esteves de Lima, J., & Relaix, F. (2021). Master regulators of skeletal muscle lineage development and pluripotent stem cells differentiation. Cell Regeneration, 10(1), 31.
Faralli, H., & Dilworth, F. J. (2012). Turning on Myogenin in Muscle: A Paradigm for Understanding Mechanisms of Tissue-Specific Gene Expression. Comparative and Functional Genomics, 2012, 836374.
Ganassi, M., Badodi, S., Ortuste Quiroga, H. P., Zammit, P. S., Hinits, Y., & Hughes, S. M. (2018). Myogenin promotes myocyte fusion to balance fibre number and size. Nature Communications, 9(1), 4232.
Ganassi, M., Badodi, S., Wanders, K., Zammit, P. S., & Hughes, S. M. (2020). Myogenin is an essential regulator of adult myofibre growth and muscle stem cell homeostasis. eLife, 9, e60445.
Hasty, P., Bradley, A., Morris, J. H., Edmondson, D. G., Venuti, J. M., Olson, E. N., et al. (1993). Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene. Nature, 364(6437), 501-506.
Hernández-Hernández, J. M., García-González, E. G., Brun, C. E., & Rudnicki, M. A. (2017). The myogenic regulatory factors, determinants of muscle development, cell identity and regeneration. Seminars in Cell & Developmental Biology, 72, 10-18.
Kanning, K. C., Kaplan, A., & Henderson, C. E. (2010). Motor neuron diversity in development and disease. Annu Rev Neurosci, 33, 409-440.
Massari, M. E., & Murre, C. (2000). Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms. Mol Cell Biol, 20(2), 429-440.
Millay, D. P., O’Rourke, J. R., Sutherland, L. B., Bezprozvannaya, S., Shelton, J. M., Bassel-Duby, R., et al. (2013). Myomaker is a membrane activator of myoblast fusion and muscle formation. Nature, 499(7458), 301-305.
Mu, X., Brown, L. D., Liu, Y., & Schneider, M. F. (2007). Roles of the calcineurin and CaMK signaling pathways in fast-to-slow fiber type transformation of cultured adult mouse skeletal muscle fibers. Physiol Genomics, 30(3), 300-312.
Nabeshima, Y., Hanaoka, K., Hayasaka, M., Esuml, E., Li, S., Nonaka, I., et al. (1993). Myogenin gene disruption results in perinatal lethality because of severe muscle defect. Nature, 364(6437), 532-535.
Naidu, P. S., Ludolph, D. C., To, R. Q., Hinterberger, T. J., & Konieczny, S. F. (1995). Myogenin and MEF2 function synergistically to activate the MRF4 promoter during myogenesis. Mol Cell Biol, 15(5), 2707-2718.
Park, K. H. J., Franciosi, S., & Leavitt, B. R. (2013). Postnatal muscle modification by myogenic factors modulates neuropathology and survival in an ALS mouse model. Nature Communications, 4(1), 2906.
Perdiguero, E., Ruiz‐Bonilla, V., Gresh, L., Hui, L., Ballestar, E., Sousa‐Victor, P., et al. (2007). Genetic analysis of p38 MAP kinases in myogenesis: fundamental role of p38α in abrogating myoblast proliferation. The EMBO Journal, 26(5), 1245-1256.
Ridgeway, A. G., Wilton, S., & Skerjanc, I. S. (2000). Myocyte enhancer factor 2C and myogenin up-regulate each other's expression and induce the development of skeletal muscle in P19 cells. J Biol Chem, 275(1), 41-46.
Shi, Y., Li, Z., Xu, Q., Wang, T., Li, T., Shen, J., et al. (2011). Common variants on 8p12 and 1q24.2 confer risk of schizophrenia. Nature Genetics, 43(12), 1224-1227.
Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., et al. (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol, 7, 539.
Sweetman, D., Goljanek, K., Rathjen, T., Oustanina, S., Braun, T., Dalmay, T., et al. (2008). Specific requirements of MRFs for the expression of muscle specific microRNAs, miR-1, miR-206 and miR-133. Developmental Biology, 321(2), 491-499.
Tapscott, S. J. (2005). The circuitry of a master switch: Myod and the regulation of skeletal muscle gene transcription. Development, 132(12), 2685-2695.
Tintignac, L. A., Brenner, H.-R., & Rüegg, M. A. (2015). Mechanisms Regulating Neuromuscular Junction Development and Function and Causes of Muscle Wasting. Physiological Reviews, 95(3), 809-852.
Tsai, L. K., Chen, I. H., Chao, C. C., Hsueh, H. W., Chen, H. H., Huang, Y. H., et al. (2021). Autoantibody of NRIP, a novel AChR-interacting protein, plays a detrimental role in myasthenia gravis. J Cachexia Sarcopenia Muscle, 12(3), 665-676.
Tsai, T.-C., Lee, Y.-L., Hsiao, W.-C., Tsao, Y.-P., & Chen, S.-L. (2005). NRIP, a Novel Nuclear Receptor Interaction Protein, Enhances the Transcriptional Activity of Nuclear Receptors*. Journal of Biological Chemistry, 280(20), 20000-20009.
Venuti, J. M., Morris, J. H., Vivian, J. L., Olson, E. N., & Klein, W. H. (1995). Myogenin is required for late but not early aspects of myogenesis during mouse development. Journal of Cell Biology, 128(4), 563-576.
Weintraub, H., Tapscott, S. J., Davis, R. L., Thayer, M. J., Adam, M. A., Lassar, A. B., et al. (1989). Activation of muscle-specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD. Proceedings of the National Academy of Sciences, 86(14), 5434-5438.
Williams, A. H., Valdez, G., Moresi, V., Qi, X., McAnally, J., Elliott, J. L., et al. (2009). MicroRNA-206 Delays ALS Progression and Promotes Regeneration of Neuromuscular Synapses in Mice. Science, 326(5959), 1549-1554.
Wright, W. E., Sassoon, D. A., & Lin, V. K. (1989). Myogenin, a factor regulating myogenesis, has a domain homologous to MyoD. Cell, 56(4), 607-617.
Yang, K.-C., Chuang, K.-W., Yen, W.-S., Lin, S.-Y., Chen, H.-H., Chang, S.-W., et al. (2019). Deficiency of nuclear receptor interaction protein leads to cardiomyopathy by disrupting sarcomere structure and mitochondrial respiration. Journal of Molecular and Cellular Cardiology, 137, 9-24.
Zhang, Y., Ye, J., Chen, D., Zhao, X., Xiao, X., Tai, S., et al. (2006). Differential expression profiling between the relative normal and dystrophic muscle tissues from the same LGMD patient. Journal of Translational Medicine, 4(1), 53.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95064-
dc.description.abstract核受體相互作用蛋白 (NRIP),它也可以稱為 DCAF6 (DDB1 及 CUL4 相關因子 6) 或 IQWD1。NRIP由 860 個氨基酸組成,目前已知NRIP有七個 WD40 domain再加上一個IQ結構模體 (motif)。我們之前的研究發現MyoG是NRIP調控的目標,因為在全身性NRIP基因剔除 (NRIP-gKO) 模式小鼠中,受傷後第6天的MyoG mRNA和蛋白質, 其表達量皆低於野生型小鼠。另外,肌肉特異性NRIP條件性基因敲除 (NRIP-cKO) 小鼠顯示出肌肉異常和運動功能受損。在NRIP-cKO小鼠中,MyoG在神經肌肉接合處 (NMJ) 的突觸核中的表達量下降。通過MyoG過表達可以改善NRIP-cKO小鼠的異常表型,表示NRIP可以通過MyoG表達逆行支持脊髓運動神經元的NMJ功能。鑑於NRIP在肌肉分化中的多重角色及其與MyoG調控的關聯性,我們旨在確定NRIP是否作為轉錄共激活因子來增強MyoG基因表達。
我們首先構建了一個驅動熒光素酶報告基因的MyoG啟動子質粒(MyoG_P-luc2) 並進行了熒光素酶測定,以檢查NRIP對MyoG啟動子活性的影響。為了研究NRIP是否作為MyoG的轉錄共激活因子,我們探討了NRIP是否與MyoG已知的轉錄因子MyoD和MEF2D協同作用來調控MyoG轉錄。結果表明,NRIP和MyoD在增強MyoG_P-luc2活性中具有協同效應。
接著,我們想要了解NRIP和MyoD的協同效應是否通過蛋白質-蛋白質相互作用介導。因此,我們進行了蛋白質拉下 (pull-down) 實驗以探討NRIP對MyoD的結合能力。我們也使用免疫沉澱實驗確認C2C12肌母細胞中內源性NRIP和MyoD的這兩個蛋白是否有交互作用。兩項實驗結果皆顯示NRIP能與MyoD相互作用,這表明MyoG的轉錄激活可以通過NRIP和MyoD的結合來介導。
此外,我們檢查了NRIP、MyoD和MyoG的蛋白質表達,以深入了解在肌肉分化過程中關鍵轉錄因子和共調控因子的時間調控。研究結果顯示,MyoD的表達在分化的第3天增加,表明MyoD在此階段作為轉錄因子的功能。NRIP在分化初期增加並保持在高水平,使其能夠作為MyoD的轉錄共激活因子,從而激活MyoG的轉錄,並在整個分化過程中穩定增加。
為了研究NRIP的哪個特定區域或基序對其轉錄共激活效應負責,我們測試不同的NRIP截短構建體與MyoD對MyoG_P-luc2的轉錄共激活效應。我們發現全長NRIP (NRIP-FL)和IQ基序缺失的NRIP突變體 (NRIP-ΔIQ),兩者都包含所有七個WD40區域,對於MyoG啟動子的有效轉錄共激活是必需的。這一結果進一步得到了AlphaFold 3結構預測的支持,該預測顯示MyoD與NRIP的WD40區域頂表面相互作用。
總而言之,我們發現NRIP在調控MyoG表達中作為MyoD的轉錄共激活因子並證明了NRIP是一種新型的MyoD結合蛋白。我們的發現提供了一個新的視角,展示了NRIP通過與MyoD相互作用調控MyoG的機制,說明了NRIP在肌肉分化中的作用。
zh_TW
dc.description.abstractNuclear receptor interaction protein (NRIP) can be referred to as IQWD1 or DDB1 and CUL4 associated factor 6 and DDB1 (DCAF6). NRIP consists of 860 amino acids; the known functional domain in NRIP includes seven WD40 domains and an IQ motif. Our previous research found that MyoG was identified as a target for NRIP regulation, with significantly lower mRNA and protein levels of myogenin (MyoG) in global NRIP-knockout (NRIP-gKO) mice compared to wild-type mice at six-day post-muscle injury.
Additionally, muscle-specific NRIP conditional knockout (NRIP-cKO) mice exhibited muscular abnormalities and impaired motor function. MyoG expression in NRIP-cKO mice was downregulated at the synaptic nuclei in the neuromuscular junction (NMJ). The abnormal phenotype in NRIP-cKO mice could be rescued through MyoG overexpression, indicating that NRIP can act as a trophic factor that retrogradely supports motor neuron survival via MyoG expression. Given the multifaceted role of NRIP in the muscle differentiation process and its association with MyoG expression, we aim to determine if NRIP acts as a transcription coactivator to enhance MyoG gene expression.
First, we constructed a myogenin promoter-driven luciferase reporter plasmid (MyoG_P-luc2) and performed a luciferase assay to examine the effect of NRIP on MyoG promoter activity. To study if NRIP functions as a transcription coactivator of MyoG, we investigated whether NRIP acts synergistically with MyoD and MEF2D, known transcription factors of MyoG, in regulating MyoG transcription. The results indicated that NRIP and MyoD exhibit a synergistic effect in enhancing MyoG_P-luc2 activity.
Next, we sought to determine if the synergistic effect of NRIP and MyoD is mediated through protein-protein interaction. Therefore, we performed in vitro pull-down assays to investigate whether NRIP can interact with MyoD. The interaction of endogenous NRIP and MyoD in C2C12 myoblast cells was also examined using immunoprecipitation assays. NRIP was discovered to have protein interaction with MyoD both in vitro and in C2C12 myoblasts, indicating that the transcriptional activation of MyoG may be facilitated by the binding of NRIP to MyoD.
Additionally, we investigated the protein expression of NRIP, MyoD, and MyoG to better understand the temporal regulation of key transcription factors and coregulators during muscle differentiation. Our results showed that MyoD levels increase on day 3 of differentiation, indicating that MyoD can function as a transcription factor at this stage. NRIP increases early in differentiation and remains elevated, allowing it to act as a transcription coactivator for MyoD, thereby activating MyoG transcription, which consistently increases throughout differentiation.
To investigate which specific domain or motif is responsible for the transcription coactivator effect of NRIP, we tested the trans-cofactor effect of different NRIP truncation constructs with MyoD on MyoG_P-luc2. We found that full-length NRIP (NRIP-FL) and IQ motif-deletion NRIP mutant (NRIP-ΔIQ), both containing all seven WD40 domains, are required for effective transcriptional coactivation of the MyoG_P-luc2. AlphaFold 3 structural predictions further supported this result, revealing that MyoD interacts with the amino acid residues on the top surface of the WD40 domain of NRIP.
In conclusion, we found that NRIP acts as a transcription coactivator of MyoD in regulating MyoG expression. NRIP was also identified as a novel MyoD-binding protein. Our findings provide a new perspective on NRIP-regulated MyoG through MyoD interaction, illustrating the role of NRIP in muscle differentiation.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-27T16:11:33Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-27T16:11:33Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 I
致謝 II
中文摘要 III
Abstract V
Chapter 1 INTRODUCTION 1
1.1 Attributes of the Nuclear Receptor Interaction Protein (NRIP) 1
1.2 The contribution of NRIP in the functioning of skeletal muscles 3
1.3 The involvement of NRIP at the neuromuscular junction system 4
1.4 Molecular control of muscle formation 5
1.5 Myogenin's involvement in skeletal muscle functionality and the development of neuromuscular junctions 7
1.6 NRIP's influence on myogenin regulation 9
1.7 Aim of the study 10
Chapter 2 METHODS AND MATERIALS 11
2.1 Plasmid construction 11
2.2 Cell culture 12
2.3 Cell transfection 12
2.4 Luciferase assay 12
2.5 Recombinant protein production 13
2.6 In vitro pull-down assay 14
2.7 Protein extraction and western blot analysis 15
2.8 Nuclear protein extraction 16
2.9 Immunoprecipitation 17
2.10 AlphaFold 3 protein structure prediction 18
2.11 Statistical analysis 18
Chapter 3 RESULTS 19
3.1 Construction of myogenin promoter-driving luciferase reporter plasmid (MyoG_P-luc2) 19
3.2 NRIP and MyoD act synergistically to enhance MyoG_P activity 21
3.3 NRIP directly interacts with MyoD in vitro 23
3.4 Endogenous NRIP reciprocally interacts with MyoD in C2C12 cells 24
3.5 NRIP, MyoD, and myogenin expression profile during the differentiation of C2C12 26
3.6 The mutant analysis of NRIP for interacting with MyoD enhances MyoG promoter activity 26
3.7 AlphaFold 3 predicted structure of MyoD 28
3.8 AlphaFold 3 predicted structure of NRIP 30
3.9 AlphaFold 3 predicted structure of NRIP-MyoD complex 32
Chapter 4 DISCUSSION 36
Chapter 5 FIGURES 45
Chapter 6 SUPPLEMENTARY 64
Chapter 7 APPENDIX 71
Chapter 8 REFERENCES 73
-
dc.language.isoen-
dc.subjectWD40zh_TW
dc.subject轉錄共激活因子zh_TW
dc.subject核受體結合蛋白zh_TW
dc.subjectMyoDzh_TW
dc.subject肌细胞生成蛋白zh_TW
dc.subjecttranscription coactivatoren
dc.subjectWD40en
dc.subjectmyogeninen
dc.subjectMyoDen
dc.subjectNRIPen
dc.title探討NRIP在調控肌細胞生成蛋白的基因表現中所扮演的角色zh_TW
dc.titleRole of NRIP in the regulation of myogenin gene expressionen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李明學;黃祥博;陳伯翰zh_TW
dc.contributor.oralexamcommitteeMing-Shyue Lee;Hsiang-Po Huang;Po-Han Chenen
dc.subject.keyword核受體結合蛋白,MyoD,肌细胞生成蛋白,WD40,轉錄共激活因子,zh_TW
dc.subject.keywordNRIP,MyoD,myogenin,WD40,transcription coactivator,en
dc.relation.page77-
dc.identifier.doi10.6342/NTU202402820-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-05-
dc.contributor.author-college醫學院-
dc.contributor.author-dept微生物學研究所-
dc.date.embargo-lift2026-08-10-
顯示於系所單位:微生物學科所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  此日期後於網路公開 2026-08-10
4.02 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved