請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95059完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳家揚 | zh_TW |
| dc.contributor.advisor | Chia-Yang Chen | en |
| dc.contributor.author | 林書廷 | zh_TW |
| dc.contributor.author | Shu-Ting Lin | en |
| dc.date.accessioned | 2024-08-27T16:09:46Z | - |
| dc.date.available | 2024-08-28 | - |
| dc.date.copyright | 2024-08-27 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-09 | - |
| dc.identifier.citation | 1. Oßmann, B.E., Sarau, G., Holtmannspötter, H., Pischetsrieder, M., Christiansen, S.H., and Dicke, W., Small-sized microplastics and pigmented particles in bottled mineral water. Water Research, 2018. 141: p. 307-316.
2. Pérez-Guevara, F., Roy, P.D., Elizalde-Martínez, I., Kutralam-Muniasamy, G., and Shruti, V., Human exposure to microplastics from urban decentralized pay-to-fetch drinking-water refill kiosks. Science of The Total Environment, 2022. 848: p. 157722. 3. Shruti, V., Kutralam-Muniasamy, G., Pérez-Guevara, F., Roy, P.D., and Elizalde-Martínez, I., Free, but not microplastic-free, drinking water from outdoor refill kiosks: A challenge and a wake-up call for urban management. Environmental Pollution, 2022. 309: p. 119800. 4. Lu, L., Wan, Z., Luo, T., Fu, Z., and Jin, Y., Polystyrene microplastics induce gut microbiota dysbiosis and hepatic lipid metabolism disorder in mice. Science of The Total Environment, 2018. 631: p. 449-458. 5. Rodríguez-Seijo, A., da Costa, J.P., Rocha-Santos, T., Duarte, A.C., and Pereira, R., Oxidative stress, energy metabolism and molecular responses of earthworms (Eisenia fetida) exposed to low-density polyethylene microplastics. Environmental Science and Pollution Research, 2018. 25: p. 33599-33610. 6. Zhu, B.-K., Fang, Y.-M., Zhu, D., Christie, P., Ke, X., and Zhu, Y.-G., Exposure to nanoplastics disturbs the gut microbiome in the soil oligochaete Enchytraeus crypticus. Environmental Pollution, 2018. 239: p. 408-415. 7. Maes, T., Jessop, R., Wellner, N., Haupt, K., and Mayes, A.G., A rapid-screening approach to detect and quantify microplastics based on fluorescent tagging with Nile red. Scientific Reports, 2017. 7(1): p. 44501. 8. Mason, S.A., Welch, V.G., and Neratko, J., Synthetic polymer contamination in bottled water. Frontiers in Chemistry, 2018. 6: p. 389699. 9. Shim, W.J., Song, Y.K., Hong, S.H., and Jang, M., Identification and quantification of microplastics using Nile red staining. Marine Pollution Bulletin, 2016. 113(1-2): p. 469-476. 10. United Nations Environment Programme, Marine plastic debris and microplastics: Global lessons and research to inspire action and guide policy change. 2023: United Nations Environment Programme (UNEP); Available from: https://www.unep.org/resources/publication/marine-plastic-debris-and-microplastics-global-lessons-and-research-inspire Accessed [30 March 2024] 11. Plastics Europe, Plastics – the fast facts 2023. 2023; Available from: https://plasticseurope.org/knowledge-hub/plastics-the-fast-facts-2023/ Accessed [30 March 2024] 12. Hoornweg, D. and Bhada-Tata, P., What a waste: A global review of solid waste management. 2012; Available from: https://openknowledge.worldbank.org/entities/publication/1a464650-9d7a-58bb-b0ea-33ac4cd1f73c Accessed [30 March 2024] 13. European Bioplastics. Bioplastics market development update 2023. 2023; Available from: https://www.european-bioplastics.org/market/ Accessed [30 March 2024] 14. Castro-Aguirre, E., Iniguez-Franco, F., Samsudin, H., Fang, X., and Auras, R., Poly (lactic acid)—mass production, processing, industrial applications, and end of life. Advanced Drug Delivery Reviews, 2016. 107: p. 333-366. 15. Swetha, T.A., Bora, A., Mohanrasu, K., Balaji, P., Raja, R., Ponnuchamy, K., Muthusamy, G., and Arun, A., A comprehensive review on polylactic acid (PLA)–synthesis, processing and application in food packaging. International Journal of Biological Macromolecules, 2023. 234: p. 123715. 16. Giese, A., Kerpen, J., Weber, F., and Prediger, J.r., A preliminary study of microplastic abrasion from the screw cap system of reusable plastic bottles by Raman microspectroscopy. ACS ES&T Water, 2021. 1(6): p. 1363-1368. 17. Nisticò, R., Polyethylene terephthalate (PET) in the packaging industry. Polymer Testing, 2020. 90: p. 106707. 18. Essential Chemical Industry (ECI). Polyesters. 2016; Available from: https://www.essentialchemicalindustry.org/polymers/polyesters.html Accessed [30 March 2024] 19. Essential Chemical Industry (ECI). Polycarbonates. 2017; Available from: http://www.essentialchemicalindustry.org/polymers/polycarbonates.html Accessed [30 March 2024] 20. Essential Chemical Industry (ECI). Poly(propene) (polypropylene). 2016; Available from: https://www.essentialchemicalindustry.org/polymers/polypropene.html Accessed [30 March 2024] 21. Giwa, A., Ahmed, M., and Hasan, S.W., Polymers for membrane filtration in water purification. Polymeric Materials for Clean Water, 2019: p. 167-190. 22. Essential Chemical Industry (ECI). Polyamides. 2018; Available from: https://www.essentialchemicalindustry.org/polymers/polyamides.html Accessed [30 March 2024] 23. Hidalgo-Ruz, V., Gutow, L., Thompson, R.C., and Thiel, M., Microplastics in the marine environment: A review of the methods used for identification and quantification. Environmental Science & Technology, 2012. 46(6): p. 3060-3075. 24. Sintim, H.Y., Bary, A.I., Hayes, D.G., Wadsworth, L.C., Anunciado, M.B., English, M.E., Bandopadhyay, S., Schaeffer, S.M., DeBruyn, J.M., and Miles, C.A., In situ degradation of biodegradable plastic mulch films in compost and agricultural soils. Science of The Total Environment, 2020. 727: p. 138668. 25. Pan, Z., Sun, X., Guo, H., Cai, S., Chen, H., Wang, S., Zhang, Y., Lin, H., and Huang, J., Prevalence of microplastic pollution in the northwestern pacific ocean. Chemosphere, 2019. 225: p. 735-744. 26. Chain, E.P.o.C.i.t.F., Presence of microplastics and nanoplastics in food, with particular focus on seafood. Efsa Journal, 2016. 14(6): p. e04501. 27. Gasperi, J., Wright, S.L., Dris, R., Collard, F., Mandin, C., Guerrouache, M., Langlois, V., Kelly, F.J., and Tassin, B., Microplastics in air: Are we breathing it in? Current Opinion in Environmental Science & Health, 2018. 1: p. 1-5. 28. McCormick, A.R., Hoellein, T.J., London, M.G., Hittie, J., Scott, J.W., and Kelly, J.J., Microplastic in surface waters of urban rivers: Concentration, sources, and associated bacterial assemblages. Ecosphere, 2016. 7(11): p. e01556. 29. Pappoe, C., Palm, L.M.N.-D., Denutsui, D., Boateng, C.M., Danso-Abbeam, H., and Serfor-Armah, Y., Occurrence of microplastics in gastrointestinal tract of fish from the gulf of guinea, ghana. Marine Pollution Bulletin, 2022. 182: p. 113955. 30. Balasaraswathi, S.R. and Rathinamoorthy, R., Synthetic textile and microplastic pollution: An analysis on environmental and health impact, in Sustainable approaches in textiles and fashion: Circular Economy and Microplastic Pollution. 2022, Springer. p. 1-20. 31. Kallenbach, E.M., Rødland, E.S., Buenaventura, N.T., and Hurley, R., Microplastics in terrestrial and freshwater environments. Microplastic in The Environment: Pattern and Process, 2022: p. 87-130. 32. Hussain, K.A., Romanova, S., Okur, I., Zhang, D., Kuebler, J., Huang, X., Wang, B., Fernandez-Ballester, L., Lu, Y., and Schubert, M., Assessing the release of microplastics and nanoplastics from plastic containers and reusable food pouches: Implications for human health. Environmental Science & Technology, 2023. 57(26): p. 9782-9792. 33. Zangmeister, C.D., Radney, J.G., Benkstein, K.D., and Kalanyan, B., Common single-use consumer plastic products release trillions of sub-100 nm nanoparticles per liter into water during normal use. Environmental Science & Technology, 2022. 56(9): p. 5448-5455. 34. Lu, Y., Zhang, Y., Deng, Y., Jiang, W., Zhao, Y., Geng, J., Ding, L., and Ren, H., Uptake and accumulation of polystyrene microplastics in zebrafish (Danio rerio) and toxic effects in liver. Environmental Science & Technology, 2016. 50(7): p. 4054-4060. 35. Lo, H.K.A. and Chan, K.Y.K., Negative effects of microplastic exposure on growth and development of Crepidula onyx. Environmental Pollution, 2018. 233: p. 588-595. 36. Wang, S., Zhong, Z., Li, Z., Wang, X., Gu, H., Huang, W., Fang, J.K.-H., Shi, H., Hu, M., and Wang, Y., Physiological effects of plastic particles on mussels are mediated by food presence. Journal of Hazardous Materials, 2021. 404: p. 124136. 37. Thornton Hampton, L.M., Brander, S.M., Coffin, S., Cole, M., Hermabessiere, L., Koelmans, A.A., and Rochman, C.M., Characterizing microplastic hazards: Which concentration metrics and particle characteristics are most informative for understanding toxicity in aquatic organisms? Microplastics and Nanoplastics, 2022. 2(1): p. 20. 38. Da Costa, J.P., Avellan, A., Mouneyrac, C., Duarte, A., and Rocha-Santos, T., Plastic additives and microplastics as emerging contaminants: Mechanisms and analytical assessment. TrAC Trends in Analytical Chemistry, 2023. 158: p. 116898. 39. Ashton, K., Holmes, L., and Turner, A., Association of metals with plastic production pellets in the marine environment. Marine Pollution Bulletin, 2010. 60(11): p. 2050-2055. 40. Bakir, A., Rowland, S.J., and Thompson, R.C., Enhanced desorption of persistent organic pollutants from microplastics under simulated physiological conditions. Environmental Pollution, 2014. 185: p. 16-23. 41. Andrady, A.L., Microplastics in the marine environment. Marine Pollution Bulletin, 2011. 62(8): p. 1596-1605. 42. Browne, M.A., Niven, S.J., Galloway, T.S., Rowland, S.J., and Thompson, R.C., Microplastic moves pollutants and additives to worms, reducing functions linked to health and biodiversity. Current Biology, 2013. 23(23): p. 2388-2392. 43. Tong, H., Jiang, Q., Hu, X., and Zhong, X., Occurrence and identification of microplastics in tap water from China. Chemosphere, 2020. 252: p. 126493. 44. Makhdoumi, P., Amin, A.A., Karimi, H., Pirsaheb, M., Kim, H., and Hossini, H., Occurrence of microplastic particles in the most popular Iranian bottled mineral water brands and an assessment of human exposure. Journal of Water Process Engineering, 2021. 39: p. 101708. 45. Praveena, S.M., Ariffin, N.I.S., and Nafisyah, A.L., Microplastics in Malaysian bottled water brands: Occurrence and potential human exposure. Environmental Pollution, 2022. 315: p. 120494. 46. Ding, H., Zhang, J., He, H., Zhu, Y., Dionysiou, D.D., Liu, Z., and Zhao, C., Do membrane filtration systems in drinking water treatment plants release nano/microplastics? Science of The Total Environment, 2021. 755: p. 142658. 47. Pivokonsky, M., Cermakova, L., Novotna, K., Peer, P., Cajthaml, T., and Janda, V., Occurrence of microplastics in raw and treated drinking water. Science of The Total Environment, 2018. 643: p. 1644-1651. 48. Schymanski, D., Goldbeck, C., Humpf, H.-U., and Fürst, P., Analysis of microplastics in water by micro-Raman spectroscopy: Release of plastic particles from different packaging into mineral water. Water Research, 2018. 129: p. 154-162. 49. Käppler, A., Fischer, D., Oberbeckmann, S., Schernewski, G., Labrenz, M., Eichhorn, K.-J., and Voit, B., Analysis of environmental microplastics by vibrational microspectroscopy: FTIR, Raman or both? Analytical and Bioanalytical Chemistry, 2016. 408: p. 8377-8391. 50. Okoffo, E.D. and Thomas, K.V., Quantitative analysis of nanoplastics in environmental and potable waters by pyrolysis-gas chromatography–mass spectrometry. Journal of Hazardous Materials, 2024. 464: p. 133013. 51. Kirstein, I.V., Hensel, F., Gomiero, A., Iordachescu, L., Vianello, A., Wittgren, H.B., and Vollertsen, J., Drinking plastics?–Quantification and qualification of microplastics in drinking water distribution systems by µFTIR and Py-GCMS. Water Research, 2021. 188: p. 116519. 52. Rocha-Santos, T. and Duarte, A.C., A critical overview of the analytical approaches to the occurrence, the fate and the behavior of microplastics in the environment. TrAC Trends in Analytical Chemistry, 2015. 65: p. 47-53. 53. Erni-Cassola, G., Gibson, M.I., Thompson, R.C., and Christie-Oleza, J.A., Lost, but found with Nile red: A novel method for detecting and quantifying small microplastics (1 mm to 20 μm) in environmental samples. Environmental Science & Technology, 2017. 51(23): p. 13641-13648. 54. Imhof, H.K., Laforsch, C., Wiesheu, A.C., Schmid, J., Anger, P.M., Niessner, R., and Ivleva, N.P., Pigments and plastic in limnetic ecosystems: A qualitative and quantitative study on microparticles of different size classes. Water Research, 2016. 98: p. 64-74. 55. Dümichen, E., Eisentraut, P., Bannick, C.G., Barthel, A.-K., Senz, R., and Braun, U., Fast identification of microplastics in complex environmental samples by a thermal degradation method. Chemosphere, 2017. 174: p. 572-584. 56. Wang, L., Zhang, J., Hou, S., and Sun, H., A simple method for quantifying polycarbonate and polyethylene terephthalate microplastics in environmental samples by liquid chromatography–tandem mass spectrometry. Environmental Science & Technology Letters, 2017. 4(12): p. 530-534. 57. Yan, M., Yang, J., Sun, H., Liu, C., and Wang, L., Occurrence and distribution of microplastics in sediments of a man-made lake receiving reclaimed water. Science of The Total Environment, 2022. 813: p. 152430. 58. Zhang, J., Wang, L., and Kannan, K., Polyethylene terephthalate and polycarbonate microplastics in pet food and feces from the United States. Environmental Science & Technology, 2019. 53(20): p. 12035-12042. 59. Zhang, J., Wang, L., and Kannan, K., Microplastics in house dust from 12 countries and associated human exposure. Environment International, 2020. 134: p. 105314. 60. Zhang, J., Wang, L., Trasande, L., and Kannan, K., Occurrence of polyethylene terephthalate and polycarbonate microplastics in infant and adult feces. Environmental Science & Technology Letters, 2021. 8(11): p. 989-994. 61. Zhang, Y., Peng, Y., Peng, C., Wang, P., Lu, Y., He, X., and Wang, L., Comparison of detection methods of microplastics in landfill mineralized refuse and selection of degradation degree indexes. Environmental Science & Technology, 2021. 55(20): p. 13802-13811. 62. Wang, L., Peng, Y., Xu, Y., Zhang, J., Zhang, T., Yan, M., and Sun, H., An in situ depolymerization and liquid chromatography–tandem mass spectrometry method for quantifying polylactic acid microplastics in environmental samples. Environmental Science & Technology, 2022. 56(18): p. 13029-13035. 63. Peng, C., Tang, X., Gong, X., Dai, Y., Sun, H., and Wang, L., Development and application of a mass spectrometry method for quantifying nylon microplastics in environment. Analytical Chemistry, 2020. 92(20): p. 13930-13935. 64. Češarek, U.k., Pahovnik, D., and Žagar, E., Chemical recycling of aliphatic polyamides by microwave-assisted hydrolysis for efficient monomer recovery. ACS Sustainable Chemistry & Engineering, 2020. 8(43): p. 16274-16282. 65. Klun, U. and Kržan, A., Rapid microwave induced depolymerization of polyamide-6. Polymer, 2000. 41(11): p. 4361-4365. 66. Barbonetti, A., Castellini, C., Di Giammarco, N., Santilli, G., Francavilla, S., and Francavilla, F., In vitro exposure of human spermatozoa to bisphenol A induces pro-oxidative/apoptotic mitochondrial dysfunction. Reproductive Toxicology, 2016. 66: p. 61-67. 67. Ferris, J., Mahboubi, K., MacLusky, N., King, W.A., and Favetta, L.A., BPA exposure during in vitro oocyte maturation results in dose-dependent alterations to embryo development rates, apoptosis rate, sex ratio and gene expression. Reproductive Toxicology, 2016. 59: p. 128-138. 68. Jiang, Y., Li, J., Xu, S., Zhou, Y., Zhao, H., Li, Y., Xiong, C., Sun, X., Liu, H., and Liu, W., Prenatal exposure to bisphenol A and its alternatives and child neurodevelopment at 2 years. Journal of Hazardous Materials, 2020. 388: p. 121774. 69. Vafeiadi, M., Roumeliotaki, T., Myridakis, A., Chalkiadaki, G., Fthenou, E., Dermitzaki, E., Karachaliou, M., Sarri, K., Vassilaki, M., and Stephanou, E.G., Association of early life exposure to bisphenol A with obesity and cardiometabolic traits in childhood. Environmental Research, 2016. 146: p. 379-387. 70. Taiwan Ministry of Health and Welfare, Sanitation standard for food utensils, containers and packages; Available from: https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=L0040019&kw Accessed [30 March 2024] 71. European Union (EU), Commission regulation (EU) 2018/213 of 12 February 2018 on the use of bisphenol a in varnishes and coatings intended to come into contact with food and amending regulation (EU) no 10/2011 as regards the use of that substance in plastic food contact materials; Available from: https://eur-lex.europa.eu/eli/reg/2018/213/oj Accessed [30 March 2024] 72. Ahsan, N., Ullah, H., Ullah, W., and Jahan, S., Comparative effects of bisphenol S and bisphenol A on the development of female reproductive system in rats; a neonatal exposure study. Chemosphere, 2018. 197: p. 336-343. 73. Lee, S.-J., Baek, S.-K., Kim, W., Quah, Y., Kim, S.-Y., Jeong, J.-S., Lee, J., and Yu, W.-J., Reproductive and developmental toxicity screening of bisphenol F by oral gavage in rats. Regulatory Toxicology and Pharmacology, 2022. 136: p. 105286. 74. Qiu, W., Liu, S., Chen, H., Luo, S., Xiong, Y., Wang, X., Xu, B., Zheng, C., and Wang, K.-J., The comparative toxicities of BPA, BPB, BPS, BPF, and BPAF on the reproductive neuroendocrine system of zebrafish embryos and its mechanisms. Journal of Hazardous Materials, 2021. 406: p. 124303. 75. Williams, M.J., Cao, H., Lindkvist, T., Mothes, T.J., and Schiöth, H.B., Exposure to the environmental pollutant bisphenol a diglycidyl ether (BADGE) causes cell over-proliferation in drosophila. Environmental Science and Pollution Research, 2020. 27: p. 25261-25270. 76. 張又儒, 以自動加壓流體萃取搭配極致液相層析/串聯式質譜術分析食品中鄰苯二甲酸酯類及雙酚類化合物, 國立臺灣大學環境衛生研究所. 2022. Chang. Y.R., Determination of Phthalate Esters and Bisphenols in Food Using Energized Dispersive Guided Extraction and Ultra-Performance Liquid Chromatography/Tandem Mass Spectrometry. 2022. 77. Karayannidis, G., Chatziavgoustis, A., and Achilias, D., Poly (ethylene terephthalate) recycling and recovery of pure terephthalic acid by alkaline hydrolysis. Advances in Polymer Technology: Journal of the Polymer Processing Institute, 2002. 21(4): p. 250-259. 78. Wan, B.-Z., Kao, C.-Y., and Cheng, W.-H., Kinetics of depolymerization of poly (ethylene terephthalate) in a potassium hydroxide solution. Industrial & Engineering Chemistry Research, 2001. 40(2): p. 509-514. 79. United States Environmental Protection Agency, Bisphenol A alternatives in thermal paper. Final Report, 2014; Available from: https://www.epa.gov/sites/default/files/2014-05/documents/bpa_final.pdf Accessed [30 June 2024] 80. Bäckström, E., Odelius, K., and Hakkarainen, M., Microwave assisted selective hydrolysis of polyamides from multicomponent carpet waste. Global Challenges, 2021. 5(7): p. 2000119. 81. Chen, J., Li, Z., Jin, L., Ni, P., Liu, G., He, H., Zhang, J., Dong, J., and Ruan, R., Catalytic hydrothermal depolymerization of Nylon 6. Journal of Material Cycles and Waste Management, 2010. 12: p. 321-325. 82. Iwaya, T., Sasaki, M., and Goto, M., Kinetic analysis for hydrothermal depolymerization of Nylon 6. Polymer Degradation and Stability, 2006. 91(9): p. 1989-1995. 83. Goto, M., Sasaki, M., and Hirose, T., Reactions of polymers in supercritical fluids for chemical recycling of waste plastics. Journal of Materials Science, 2006. 41: p. 1509-1515. 84. Lohmann, V., Jones, G.R., Truong, N.P., and Anastasaki, A., The thermodynamics and kinetics of depolymerization: What makes vinyl monomer regeneration feasible? Chemical Science, 2024. 15(3): p. 832-853. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95059 | - |
| dc.description.abstract | 塑膠因重量輕、穩定和耐用的特性,廣泛應用於飲用水包裝。塑膠微粒主要源自於大型塑膠製品的分解,其可做為有機物和環境污染物的載體。動物攝取塑膠微粒後可能導致發炎、氧化壓力增加或代謝功能紊亂。飲用水中的塑膠微粒目前主要透過立體顯微鏡、傅立葉變換紅外線光譜和拉曼光譜儀檢測。然而,這些方法有其限制,例如誤判其他微粒為塑膠、無法檢測到奈米級顆粒、以及不易比較不同研究間所測定的不同顆粒大小和數量。本研究欲透過解聚和極致液相層析/串聯式質譜儀分析飲用水中聚對苯二甲酸乙二醇酯(PET)、聚碳酸酯(PC)、聚醯胺6 (PA 6)、聚醯胺66 (PA 66)和聚乳酸(PLA)的塑膠微粒。根據解聚單體(即對苯二甲酸(TPA)、六種雙酚類(BPs)、6-氨基己酸(6-ACA)、己二酸(AA)和乳酸(LA))的濃度個別計算五種塑膠微粒的濃度。
本研究完成極致液相層析/串聯式質譜儀分析10種待測物的質譜參數與層析條件優化。游離源為UniSpray,雙酚A二環氧甘油醚(BADGE)與6-ACA以正電模式分析,其餘五種雙酚類、TPA、LA與AA以負電模式分析。BADGE和6-ACA於Ascentis Express F5 (30 × 2.1 mm, 2.0 µm)管柱,使用5-mM醋酸銨/0.4%醋酸水溶液與甲醇的移動相組成,可產生良好峰形;五種BPs則於F5管柱,以Milli-Q水與甲醇為移動相,可產生尖銳峰型。此外,TPA、AA和LA無法在Atlantis Premier BEH C18 AX (50 × 2.1 mm, 1.7 μm)管柱上良好滯留,因而改用親水作用層析(HILIC);TPA、AA 和LA於ACQUITY UPLC BEH Amide (50 × 2.1 mm, 1.7 μm)管柱,使用20-mM醋酸銨水溶液和20-mM醋酸銨於90%乙腈/10% Milli-Q水的移動相組成,可有良好的滯留與分離。 本研究測試五種塑膠微粒之解聚效率。PET、PC及PLA於1.0克氫氧化鉀和20毫升正戊醇於135°C反應45分鐘,可達99%以上最佳解聚效率;PA 6和PA 6因無法在鹼條件下進行解聚,另以回流酸水解之方式進行PA 6與PA 66解聚,與40%硫酸水溶液於115°C反應五小時之解聚效率分別為2.0%與14%;使用微波輔助酸水解法進行PA 6和PA 66的解聚,與2.76 M鹽酸水溶液於170°C反應30分鐘後解聚效率分別為2.4%和35%。PA 6和PA 66於微波酸水解系統中的解聚效率相較回流酸水解略有提升,且大幅縮短反應時間,但仍需進一步優化微波酸解聚參數,以提高PA 6和PA 66的解聚效率。 為了濃縮樣本中的待測物並減少干擾,本研究使用Waters Oasis HLB µElution plates (2 mg)優化固相萃取的淨化條件。當樣本為中性時,6種BPs的滯留率為100%,6-ACA、TPA、AA和LA無法被完全滯留。將樣本調整至pH 2.5時,除6-ACA (15%)和LA (-23%)外,其他待測物在吸附劑上的滯留率皆在90%以上;樣本經由酸化有助於提升分析物在固相萃取的吸附效果。另吸附劑換用Waters Oasis WAX (2 mg)時,調整樣本為pH 4.5與6.0,六種BPs、TPA和AA的滯留率均為100%;6-ACA和LA則仍無法被有效吸附,滯留率僅分別為15%與41%。未來需測試Oasis MAX的固相萃取條件,以提升對於6-ACA和LA的吸附效果。 本研究最適化10種塑膠單體的儀器分析方法以及可同時解聚PET、PC與PLA之反應條件。PA 6和PA 66之解聚及6-ACA和LA之固相萃取方法進一步優化後,將可應用於飲用水中五種塑膠微粒之分析。 | zh_TW |
| dc.description.abstract | Plastics are widely used for drinking water bottles because of their low weight, high stability, and durability. Microplastics (MPs) are primarily caused by the breakdown of large plastic items and can carry organic matter and environmental pollutants. Ingestion of MPs would cause inflammation, increase oxidative stress, or disable animal metabolic function. MPs in drinking water are mainly detected using stereomicroscopy, Fourier-transform infrared spectroscopy, and Raman spectroscopy. However, these methods have several limitations, including false positives, the incapability to detect nanoparticles, and the difficulties in comparing particle sizes and numbers among different investigations. This study aimed to develop a method for determining polyethylene terephthalate (PET), polycarbonate (PC), polyamide 6 (PA 6), polyamide (PA 66), and polylactic acid (PLA) MPs in drinking water using depolymerization and ultra-performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS). Five categories of MPs in drinking water were quantified based on the concentrations of their depolymerized monomers: terephthalic acid (TPA), six bisphenols (BPs), 6-aminocaproic acid (6-ACA), adipic acid (AA), and lactic acid (LA).
The chromatographic conditions and mass spectrometric parameters were optimized for the ten analytes using UPLC-MS/MS with UniSpray ionization; Bisphenol A diglycidyl ether (BADGE) and 6-ACA were ionized at the positive mode, and five BPs, TPA, LA, and AA were ionized at the negative mode. BADGE and 6-ACA formed good peak shapes on an Ascentis Express F5 column (30 × 2.1 mm, 2.0 µm) using the mobile phase compositions of 5-mM ammonium acetate/0.4% acetic acid(aq) and methanol. The five BPs produced sharp peaks on the F5 column using the mobile phase compositions of Milli-Q water and methanol. TPA, AA, and LA could not be retained effectively on an Atlantis Premier BEH C18 AX column (50 × 2.1 mm, 1.7 μm); therefore, hydrophilic interaction liquid chromatography (HILIC) was tested, and they were retained and separated well with an ACQUITY UPLC BEH Amide column (50 × 2.1 mm, 1.7 μm) using the mobile phase compositions of 20-mM ammonium acetate(aq) and 20-mM ammonium acetate in 90% acetonitrile/10% Milli-Q water. This study tested the efficiencies of chemical depolymerization into monomers on five targeted MPs. The optimal MP depolymerization conditions of PET, PC, and PLA were reacting with 1.0 g of potassium hydroxide in 20 mL of 1-pentanol at 135°C for 45 minutes, with the depolymerization efficiencies above 99%. In contrast, PA 6 and PA 66 could not be depolymerized under basic conditions. Furthermore, five hours of reflux acid hydrolysis was tested for the depolymerization of PA 6 and PA 66, reacting with 40% H2SO4(aq) at 115°C, resulting in depolymerization efficiencies of 2.0% and 29%, respectively. When microwave-assisted acid hydrolysis was performed with 2.76 M HCl(aq) at 170°C for 30 minutes, PA 6 and PA 66 depolymerization efficiencies were 2.4% and 35%, respectively. The depolymerization efficiencies of PA 6 and PA 66 in the microwave-assisted acid hydrolysis system were slightly higher than reflux acid hydrolysis, and the reaction time was much shorter. Further optimization of the parameters for microwave acid depolymerization is required to improve the depolymerization efficiency of PA 6 and PA 66. The solid-phase extraction (SPE) conditions for cleanup were tested using Oasis HLB µElution plates (2 mg, Waters Corporation) to concentrate the analytes and reduce interference in water samples. When water samples were neutral, the retention rates of six BPs were 100%, while 6-ACA, TPA, AA, and LA could not be retained. After acidification of the sample to pH 2.5, almost all analytes were retained above 90% on the adsorbent, except for 6-ACA (15%) and LA (-23%); acidification of samples improved the SPE retention of the analytes. Additionally, the retention of the analytes was tested using Oasis WAX (2 mg, Waters Corporation). At sample pH 4.5 and 6.0, the six BPs, TPA, and AA retentions were 100%; however, only 15% and 41% of 6-ACA and LA were retained, respectively. Further testing of the SPE conditions using Oasis MAX would be needed to improve the retention of 6-ACA and LA. This study optimized parameters of instrumental analysis on ten monomers of MPs and the conditions for simultaneous depolymerization of PET, PC, and PLA. After further optimizing the depolymerization of PA 6 and PA 66 and the SPE conditions for 6-ACA and LA, the validated method could be applied to analyze five categories of MPs in drinking water. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-27T16:09:46Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-27T16:09:46Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii Abstract v Contents viii List of Figures xi List of Tables xiii Chapter 1 Introduction 1 1.1 Plastic types and production 1 1.2 Sources of microplastics 2 1.3 Potential hazards of microplastics 3 1.4 Microplastics in drinking water 4 1.5 Depolymerization method of microplastics 6 1.6 Objectives 9 Chapter 2 Material and Methods 11 2.1 Chemicals and materials 11 2.2 Sample preparation 13 2.2.1 Depolymerization 13 2.2.1.1 PET, PC, and PLA MPs 13 2.2.1.2 PA 6 and PA 66 MPs 14 2.2.2 Solid-phase extraction 16 2.3 Instrument analysis 17 2.4 Quantification of microplastics 20 2.5 Identification, quantitation, and data analysis 21 2.6 Quality assurance and quality control 22 Chapter 3 Results and Discussion 25 3.1 Optimization of UPLC parameters 25 3.1.1 BADGE and 6-ACA 25 3.1.2 BPs 27 3.1.3 TPA, AA, and LA 28 3.2 Optimization of UniSpray ionization parameters 32 3.3 Optimization of sample preparation 33 3.3.1 Depolymerization 33 3.3.1.1 Basic depolymerization 34 3.3.1.2 Acid depolymerization 37 3.3.2 Solid-phase extraction 40 3.4 IDLs, IQLs, and ranges of calibration curves 42 3.5 Limitation and Future Work 42 Chapter 4 Conclusions 45 References 47 Figures 56 Tables 76 | - |
| dc.language.iso | en | - |
| dc.subject | 塑膠微粒 | zh_TW |
| dc.subject | 飲用水 | zh_TW |
| dc.subject | 固相萃取 | zh_TW |
| dc.subject | 解聚 | zh_TW |
| dc.subject | 液相層析/串聯式質譜術 | zh_TW |
| dc.subject | liquid chromatography/tandem mass spectrometry | en |
| dc.subject | solid-phase extraction | en |
| dc.subject | microplastics | en |
| dc.subject | drinking water | en |
| dc.subject | depolymerization | en |
| dc.title | 以解聚搭配極致液相層析/串聯式質譜術分析飲用水中塑膠微粒 | zh_TW |
| dc.title | Determination of Microplastics in Drinking Water Using Depolymerization and Ultra-Performance Liquid Chromatography/Tandem Mass Spectrometry | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 蕭伊倫;陳鑫昌;蔡詩偉 | zh_TW |
| dc.contributor.oralexamcommittee | I-Lun Hsiao;Hsin-Chang Chen;Shih-Wei Tsai | en |
| dc.subject.keyword | 塑膠微粒,液相層析/串聯式質譜術,解聚,固相萃取,飲用水, | zh_TW |
| dc.subject.keyword | microplastics,liquid chromatography/tandem mass spectrometry,depolymerization,solid-phase extraction,drinking water, | en |
| dc.relation.page | 92 | - |
| dc.identifier.doi | 10.6342/NTU202404092 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-09 | - |
| dc.contributor.author-college | 公共衛生學院 | - |
| dc.contributor.author-dept | 食品安全與健康研究所 | - |
| dc.date.embargo-lift | 2026-08-08 | - |
| 顯示於系所單位: | 食品安全與健康研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 4.1 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
