Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 免疫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95057
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李建國zh_TW
dc.contributor.advisorChien-Kuo Leeen
dc.contributor.author廖華暘zh_TW
dc.contributor.authorHua-Yang Liaoen
dc.date.accessioned2024-08-27T16:09:09Z-
dc.date.available2024-08-28-
dc.date.copyright2024-08-27-
dc.date.issued2024-
dc.date.submitted2024-08-13-
dc.identifier.citationAlcantara-Hernandez, M., R. Leylek, L. E. Wagar, E. G. Engleman, T. Keler, M. P. Marinkovich, M. M. Davis, G. P. Nolan and J. Idoyaga (2017). "High-Dimensional Phenotypic Mapping of Human Dendritic Cells Reveals Interindividual Variation and Tissue Specialization." Immunity 47(6): 1037-1050 e1036.
Andor, N., C. C. Maley and H. P. Ji (2017). "Genomic Instability in Cancer: Teetering on the Limit of Tolerance." Cancer Res 77(9): 2179-2185.
Bao, M. and Y. J. Liu (2013). "Regulation of TLR7/9 signaling in plasmacytoid dendritic cells." Protein Cell 4(1): 40-52.
Belz, G. T. and S. L. Nutt (2012). "Transcriptional programming of the dendritic cell network." Nat Rev Immunol 12(2): 101-113.
Black, B. L. and E. N. Olson (1998). "Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins." Annu Rev Cell Dev Biol 14: 167-196.
Cibrian, D. and F. Sanchez-Madrid (2017). "CD69: from activation marker to metabolic gatekeeper." Eur J Immunol 47(6): 946-953.
Collin, M. and V. Bigley (2018). "Human dendritic cell subsets: an update." Immunology 154(1): 3-20.
Deczkowska, A., O. Matcovitch-Natan, A. Tsitsou-Kampeli, S. Ben-Hamo, R. Dvir-Szternfeld, A. Spinrad, O. Singer, E. David, D. R. Winter, L. K. Smith, A. Kertser, K. Baruch, N. Rosenzweig, A. Terem, M. Prinz, S. Villeda, A. Citri, I. Amit and M. Schwartz (2017). "Mef2C restrains microglial inflammatory response and is lost in brain ageing in an IFN-I-dependent manner." Nat Commun 8(1): 717.
Dong, C., X. Z. Yang, C. Y. Zhang, Y. Y. Liu, R. B. Zhou, Q. D. Cheng, E. K. Yan and D. C. Yin (2017). "Myocyte enhancer factor 2C and its directly-interacting proteins: A review." Prog Biophys Mol Biol 126: 22-30.
Fitzgerald-Bocarsly, P., J. Dai and S. Singh (2008). "Plasmacytoid dendritic cells and type I IFN: 50 years of convergent history." Cytokine Growth Factor Rev 19(1): 3-19.
Guilliams, M., F. Ginhoux, C. Jakubzick, S. H. Naik, N. Onai, B. U. Schraml, E. Segura, R. Tussiwand and S. Yona (2014). "Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny." Nat Rev Immunol 14(8): 571-578.
Herglotz, J., L. Unrau, F. Hauschildt, M. Fischer, N. Kriebitzsch, M. Alawi, D. Indenbirken, M. Spohn, U. Muller, M. Ziegler, W. Schuh, H. M. Jack and C. Stocking (2016). "Essential control of early B-cell development by Mef2 transcription factors." Blood 127(5): 572-581.
Jego, G., A. K. Palucka, J. P. Blanck, C. Chalouni, V. Pascual and J. Banchereau (2003). "Plasmacytoid dendritic cells induce plasma cell differentiation through type I interferon and interleukin 6." Immunity 19(2): 225-234.
Khiem, D., J. G. Cyster, J. J. Schwarz and B. L. Black (2008). "A p38 MAPK-MEF2C pathway regulates B-cell proliferation." Proc Natl Acad Sci U S A 105(44): 17067-17072.
Lee, J., Y. J. Zhou, W. Ma, W. Zhang, A. Aljoufi, T. Luh, K. Lucero, D. Liang, M. Thomsen, G. Bhagat, Y. Shen and K. Liu (2017). "Lineage specification of human dendritic cells is marked by IRF8 expression in hematopoietic stem cells and multipotent progenitors." Nat Immunol 18(8): 877-888.
Leylek, R., M. Alcantara-Hernandez, Z. Lanzar, A. Ludtke, O. A. Perez, B. Reizis and J. Idoyaga (2019). "Integrated Cross-Species Analysis Identifies a Conserved Transitional Dendritic Cell Population." Cell Rep 29(11): 3736-3750 e3738.
Li, J. H., A. Zhou, C. D. Lee, S. N. Shah, J. H. Ji, V. Senthilkumar, E. T. Padilla, A. B. Ball, Q. Feng, C. G. Bustillos, L. Riggan, A. Greige, A. S. Divakaruni, F. Annese, J. A. Cooley Coleman, S. A. Skinner, C. W. Cowan and T. E. O'Sullivan (2024). "MEF2C regulates NK cell effector functions through control of lipid metabolism." Nat Immunol 25(5): 778-789.
Liu, Y., A. Beyer and R. Aebersold (2016). "On the Dependency of Cellular Protein Levels on mRNA Abundance." Cell 165(3): 535-550.
Maeda, T., K. Murata, T. Fukushima, K. Sugahara, K. Tsuruda, M. Anami, Y. Onimaru, K. Tsukasaki, M. Tomonaga, R. Moriuchi, H. Hasegawa, Y. Yamada and S. Kamihira (2005). "A novel plasmacytoid dendritic cell line, CAL-1, established from a patient with blastic natural killer cell lymphoma." Int J Hematol 81(2): 148-154.
Merad, M., P. Sathe, J. Helft, J. Miller and A. Mortha (2013). "The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting." Annu Rev Immunol 31: 563-604.
Molkentin, J. D., B. L. Black, J. F. Martin and E. N. Olson (1996). "Mutational analysis of the DNA binding, dimerization, and transcriptional activation domains of MEF2C." Mol Cell Biol 16(6): 2627-2636.
Rashid, A. J., C. J. Cole and S. A. Josselyn (2014). "Emerging roles for MEF2 transcription factors in memory." Genes Brain Behav 13(1): 118-125.
Ravi Sundar Jose Geetha, A., K. Fischer, O. Babadei, G. Smesnik, A. Vogt, E. Platanitis, M. Muller, M. Farlik and T. Decker (2024). "Dynamic control of gene expression by ISGF3 and IRF1 during IFNbeta and IFNgamma signaling." EMBO J 43(11): 2233-2263.
Sasaki, I., K. Hoshino, T. Sugiyama, C. Yamazaki, T. Yano, A. Iizuka, H. Hemmi, T. Tanaka, M. Saito, M. Sugiyama, Y. Fukuda, T. Ohta, K. Sato, A. Ainai, T. Suzuki, H. Hasegawa, N. Toyama-Sorimachi, H. Kohara, T. Nagasawa and T. Kaisho (2012). "Spi-B is critical for plasmacytoid dendritic cell function and development." Blood 120(24): 4733-4743.
Satpathy, A. T., X. Wu, J. C. Albring and K. M. Murphy (2012). "Re(de)fining the dendritic cell lineage." Nat Immunol 13(12): 1145-1154.
Swiecki, M. and M. Colonna (2015). "The multifaceted biology of plasmacytoid dendritic cells." Nat Rev Immunol 15(8): 471-485.
Tussiwand, R. and E. L. Gautier (2015). "Transcriptional Regulation of Mononuclear Phagocyte Development." Front Immunol 6: 533.
Vogel, C. and E. M. Marcotte (2012). "Insights into the regulation of protein abundance from proteomic and transcriptomic analyses." Nat Rev Genet 13(4): 227-232.
Westermann, L., Y. Li, B. Gocmen, M. Niedermoser, K. Rhein, J. Jahn, I. Cascante, F. Scholer, N. Moser, B. Neubauer, A. Hofherr, Y. L. Behrens, G. Gohring, A. Kottgen, M. Kottgen and T. Busch (2022). "Wildtype heterogeneity contributes to clonal variability in genome edited cells." Sci Rep 12(1): 18211.
Wilker, P. R., M. Kohyama, M. M. Sandau, J. C. Albring, O. Nakagawa, J. J. Schwarz and K. M. Murphy (2008). "Transcription factor Mef2c is required for B cell proliferation and survival after antigen receptor stimulation." Nat Immunol 9(6): 603-612.
Xu, Z., T. Yoshida, L. Wu, D. Maiti, L. Cebotaru and E. J. Duh (2015). "Transcription factor MEF2C suppresses endothelial cell inflammation via regulation of NF-kappaB and KLF2." J Cell Physiol 230(6): 1310-1320.
Xue, C. and E. C. Greene (2021). "DNA Repair Pathway Choices in CRISPR-Cas9-Mediated Genome Editing." Trends Genet 37(7): 639-656.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95057-
dc.description.abstract樹突狀細胞(DCs),包括漿細胞樣樹突狀細胞(pDCs)和經典樹突狀細胞(cDCs),在橋接先天免疫和適應性免疫中發揮著至關重要的作用。雖然cDCs根據發育過程中的表面標記和轉錄因子分為cDC1和cDC2,但pDCs仍然是異質的。多種轉錄因子對pDCs的發育和命運至關重要,但這些調節因子的詳細網絡仍然不明。此前,我們已經確定Mef2c是pDC發育的關鍵轉錄因子。Mef2c在小鼠中的缺失導致骨髓(BM)、脾臟(SP)和淋巴結(LN)中pDC數量和頻率的減少。此外,Mef2c缺失的BM在體外也顯示出pDC發育受損,這表明pDC發育的缺陷是由BM前體細胞中Mef2c的喪失引起的。與pDC發育相關的關鍵轉錄因子如Tcf4、Spib和Runx2在缺乏Mef2c的情況下表現減少。此外,與對照組相比,Mef2c缺失的pDCs在穩態下的pDC特異性標誌物如Siglec-H、BST2和B220的表面表達也減少,這表明Mef2c可能是pDC特異性基因的上游調節因子。由於Siglec-H已知是pDC功能的負調節因子,我們推測Mef2c也可能在調節中起作用。事實上,使用CpG或R848刺激BM衍生的DCs顯示pDCs和cDC2s中CD40、MHC II和PD-L1的表達增加,而cDC1s則沒有。此外,未刺激或TLR刺激誘導的促炎細胞因子如IL-6、TNF-a和IL-12p40以及I型干擾素(IFN-I)的表達在缺乏Mef2c的情況下也增加,這表明Mef2c負向調節pDCs和可能cDC2s的功能。總之,我們將Mef2c定義為pDC發育的新型正向調節因子和pDC功能的負向調節因子。zh_TW
dc.description.abstractDendritic cells (DCs), including plasmacytoid DC (pDCs) and classical DC (cDCs), play a crucial role in bridging innate adaptive immunity. While cDCs are classified into cDC1 and cDC2 based on surface markers and transcription factors during development, pDC remains heterogeneous. Various transcription factors are critical for the development and fate of pDCs, but the detailed network of these regulators remains elusive. We have previously identified Mef2c as a critical transcription factor (TF) for pDC development. Mef2c deletion in mice resulted in reduced number and frequency of pDC population in the bone marrow (BM), spleen (SP), and lymph nodes (LN). Moreover, Mef2cKO BM also showed impaired pDC development in vitro, suggesting that the defect of pDC development was intrinsic to the loss of Mef2c in BM progenitors. Interestingly, TFs critical for pDC development, such as Tcf4, Spib, and Runx2, were found to be decreased in the absence of Mef2c. Moreover, the surface expression of pDC-specific markers, such as Siglec-H, BST2, and B220, was also reduced in Mef2KO pDCs compared to the control at a steady state, suggesting that Mef2c might be upstream of pDC-specific genes. Since Siglec-H is known to be a negative regulator of pDC function, we reasoned that Mef2c might also play a regulatory role. Indeed, stimulation of BM-derived DCs with CpG or R848 showed a higher expression of CD40, MHC II, and PD-L1 in pDCs and cDC2s but not cDC1s. Additionally, basal and TLR-stimulation-induced expression of proinflammatory cytokines, such as IL-6, TNF, and IL-12p40, and type I IFN (IFN-I) was also increased in the absence of Mef2c, suggesting that Mef2c negatively regulates pDCs’ and maybe cDC2’s functions. In sum, we define the dual roles of Mef2c as a novel positive regulator for pDC development and a negative regulator for pDC functions.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-27T16:09:09Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-27T16:09:09Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
致謝 ii
摘要 iii
Abstract iv
Content vi
Chapter I Introduction 1
1.1 The classification of Dendritic cells 2
1.2 The Origin of DCs 3
1.3 Transcription factor Mef2c 4
1.4 Rationale and Specific Aim 6
Chapter II Materials and Methods 8
2.1 Mice 9
2.2 Western blotting 9
2.3 Cell preparation for flow cytometry 10
2.4 In vitro development of DCs from iHSPCs 11
2.5 Lentivirus Transduction 11
2.6 RT-QPCR 12
2.7 In vitro CRISPR Cas9-mediated deletion in iHSPC by RNP transfection 12
2.8 In vitro development of BM-derived pDC 12
2.9 Sorting of in vitro BMDCs 13
2.10 Statistical analysis 14
Table 1. Antibodies 14
Table 2. Primers 15
Chapter III Results 17
3.1 Mef2c positively regulates the expression of pDC-specific surface markers and transcription factors. 18
3.2 MEF2C, IKZF1 deficiency increased HLA-DR expression in response to R848 stimulation in vitro. 19
3.3 MEF2C deficiency does not affect the expression of TNFA and IFNB in 20
Response to R848 stimulation 20
3.4 Mef2c knockout in an iHSPC cell line decreases the generation of pDCs but not in cDCs 21
3.5 Mef2c deficiency in iHSPC increases activation marker expression in pDCs in response to TLR7 stimulation 22
3.6 Mef2c deficiency increases the expression of maturation markers in BM-derived pDC, cDC2, but not cDC1 in response to TLR7 Stimulation 22
3.7 Mef2c deficiency increased cytokine production of BM-derived pDC in response to TLR7 Stimulation 23
Chapter IV Discussion 24
4.1 Differential regulation of surface markers by Mef2c across different pDC sources 25
4.2 Potential mechanisms for negative regulation of pDC function by Mef2c 26
4.3 Mef2c knockdown CAL-1 cells did not consistently exhibit the expected functional phenotypes 27
4.4 Unexpected Result of Mef2c-KO iHSPCs in vitro differentiation. 27
4.5 Interferon signaling and ISG signaling in Mef2c- deficient pDCs 28
Chapter V Figures 30
Figure 1. Mef2c deficiency impairs the development of BM-derived pDCs in vitro. 32
Figure 2. Mef2c positively regulates the expression of pDC-specific surface markers and transcription factors. 35
Figure 3. Knockdown of Mef2c in CAL-1 cells increases basal and induced HLA-DR expression in response to R848 stimulation. 36
Figure 4. Knockdown of IKZF1 but not IKZF3 in CAL-1 cells increases basal and TLR stimulation-induced HLA-DR expression. 38
Figure 5. MEF2C knockdown does not affect TLR stimulation-induced expression of TNFa and IFNB in CAL-1, a human pDC cell line. 41
Figure 6. Mef2c knockout in an iHSPC cell line decreases the generation of pDCs but not cDCs. 43
Figure 7. Mef2c negatively regulates the expression of basal and TLR-stimulation-induced activation markers on iHSPC-derived pDCs. 45
Figure 8. Mef2c negatively regulates the expression of activation markers on iHSPC-derived cDCs in response to R848 stimulation. 47
Figure 9. Mef2c negatively regulates TLR stimulation-induced expression of activation markers on pDCs. 49
Figure 10. Mef2c negatively regulates TLR stimulation-induced expression of activation markers on cDC2s. 51
Figure 11. Mef2c does not affect the expression of basal and TLR stimulation-induced activation markers on BM-derived cDC1s. 53
Figure 12. Mef2c negatively regulates basal and TLR stimulation-induced expression of inflammatory cytokines and an ISG on pDCs. 55
Figure 13. Dual regulatory roles of Mef2c in pDC development and function. 56
Chapter VI References 57
-
dc.language.isoen-
dc.titleMef2c調控基因之鑑定及漿狀樹突細胞的發育和功能的研究zh_TW
dc.titleIdentification of Genes Regulated by Mef2c-mediated pDC Development and Functionen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee徐立中;葛一樊zh_TW
dc.contributor.oralexamcommitteeLi-Chung Hsu;Ivan Dzhagaloven
dc.subject.keyword促發炎激素,干擾素,功能,漿狀樹突細胞,Mef2c,zh_TW
dc.subject.keywordMef2c,Function,Plasmacytoid cells,Pro-inflammatory cytokine,Interferon,en
dc.relation.page60-
dc.identifier.doi10.6342/NTU202404252-
dc.rights.note未授權-
dc.date.accepted2024-08-13-
dc.contributor.author-college醫學院-
dc.contributor.author-dept免疫學研究所-
顯示於系所單位:免疫學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  目前未授權公開取用
7.73 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved