Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95055
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡丰喬zh_TW
dc.contributor.advisorFeng-Chiao Tsaien
dc.contributor.author鄭耀斌zh_TW
dc.contributor.authorYAO-BIN ZHENGen
dc.date.accessioned2024-08-27T16:08:10Z-
dc.date.available2024-08-28-
dc.date.copyright2024-08-27-
dc.date.issued2024-
dc.date.submitted2024-07-31-
dc.identifier.citation1. Buzzetti, E., M. Pinzani, and E.A. Tsochatzis, The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism, 2016. 65(8): p. 1038-48.
2. Guo, X., et al., Non-Alcoholic Fatty Liver Disease (NAFLD) Pathogenesis and Natural Products for Prevention and Treatment. Int J Mol Sci, 2022. 23(24).
3. Pafili, K. and M. Roden, Nonalcoholic fatty liver disease (NAFLD) from pathogenesis to treatment concepts in humans. Mol Metab, 2021. 50: p. 101122.
4. Sangro, P., et al., Metabolic dysfunction-associated fatty liver disease (MAFLD): an update of the recent advances in pharmacological treatment. J Physiol Biochem, 2023. 79(4): p. 869-879.
5. Gofton, C., et al., MAFLD: How is it different from NAFLD? Clin Mol Hepatol, 2023. 29(Suppl): p. S17-S31.
6. Kim, K.H. and M.S. Lee, Pathogenesis of Nonalcoholic Steatohepatitis and Hormone-Based Therapeutic Approaches. Front Endocrinol (Lausanne), 2018. 9: p. 485.
7. Song, Z., A.M. Xiaoli, and F. Yang, Regulation and Metabolic Significance of De Novo Lipogenesis in Adipose Tissues. Nutrients, 2018. 10(10).
8. Zhang, X.Q., et al., Role of endoplasmic reticulum stress in the pathogenesis of nonalcoholic fatty liver disease. World J Gastroenterol, 2014. 20(7): p. 1768-76.
9. Gies, V., et al., Beyond Anti-viral Effects of Chloroquine/Hydroxychloroquine. Front Immunol, 2020. 11: p. 1409.
10. Nirk, E.L., F. Reggiori, and M. Mauthe, Hydroxychloroquine in rheumatic autoimmune disorders and beyond. EMBO Mol Med, 2020. 12(8): p. e12476.
11. Schrezenmeier, E. and T. Dorner, Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology. Nat Rev Rheumatol, 2020. 16(3): p. 155-166.
12. Pawlak-Bus, K. and P. Leszczynski, Hydroxychloroquine as an important immunomodulator: a novel insight into an old drug. Pol Arch Intern Med, 2024. 134(1).
13. Qiao, X., et al., Hydroxychloroquine Improves Obesity-Associated Insulin Resistance and Hepatic Steatosis by Regulating Lipid Metabolism. Front Pharmacol, 2019. 10: p. 855.
14. Hage, M.P., M.R. Al-Badri, and S.T. Azar, A favorable effect of hydroxychloroquine on glucose and lipid metabolism beyond its anti-inflammatory role. Ther Adv Endocrinol Metab, 2014. 5(4): p. 77-85.
15. Wong, S.K., Repurposing New Use for Old Drug Chloroquine against Metabolic Syndrome: A Review on Animal and Human Evidence. Int J Med Sci, 2021. 18(12): p. 2673-2688.
16. Eynaudi, A., et al., Differential Effects of Oleic and Palmitic Acids on Lipid Droplet-Mitochondria Interaction in the Hepatic Cell Line HepG2. Front Nutr, 2021. 8: p. 775382.
17. Park, H.R., et al., Lipotoxicity of palmitic Acid on neural progenitor cells and hippocampal neurogenesis. Toxicol Res, 2011. 27(2): p. 103-10.
18. Fasano, S., et al., Hydroxychloroquine daily dose, hydroxychloroquine blood levels and the risk of flares in patients with systemic lupus erythematosus. Lupus Sci Med, 2023. 10(1).
19. Doncheva, A.I., et al., Altered hepatic lipid droplet morphology and lipid metabolism in fasted Plin2-null mice. J Lipid Res, 2023. 64(12): p. 100461.
20. Najt, C.P., et al., Liver-specific loss of Perilipin 2 alleviates diet-induced hepatic steatosis, inflammation, and fibrosis. Am J Physiol Gastrointest Liver Physiol, 2016. 310(9): p. G726-38.
21. Tsai, T.H., et al., The constitutive lipid droplet protein PLIN2 regulates autophagy in liver. Autophagy, 2017. 13(7): p. 1130-1144.
22. Raudenska, M., J. Balvan, and M. Masarik, Crosstalk between autophagy inhibitors and endosome-related secretory pathways: a challenge for autophagy-based treatment of solid cancers. Mol Cancer, 2021. 20(1): p. 140.
23. Liu, L.Q., et al., Hydroxychloroquine potentiates the anti-cancer effect of bevacizumab on glioblastoma via the inhibition of autophagy. Biomed Pharmacother, 2019. 118: p. 109339.
24. Ameer, F., et al., De novo lipogenesis in health and disease. Metabolism, 2014. 63(7): p. 895-902.
25. Softic, S., D.E. Cohen, and C.R. Kahn, Role of Dietary Fructose and Hepatic De Novo Lipogenesis in Fatty Liver Disease. Dig Dis Sci, 2016. 61(5): p. 1282-93.
26. Sanders, F.W. and J.L. Griffin, De novo lipogenesis in the liver in health and disease: more than just a shunting yard for glucose. Biol Rev Camb Philos Soc, 2016. 91(2): p. 452-68.
27. Samuel, V.T., Fructose induced lipogenesis: from sugar to fat to insulin resistance. Trends Endocrinol Metab, 2011. 22(2): p. 60-5.
28. Geidl-Flueck, B. and P.A. Gerber, Fructose drives de novo lipogenesis affecting metabolic health. J Endocrinol, 2023. 257(2).
29. Tsuchida, T. and S.L. Friedman, Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol, 2017. 14(7): p. 397-411.
30. Biernacka, A., M. Dobaczewski, and N.G. Frangogiannis, TGF-beta signaling in fibrosis. Growth Factors, 2011. 29(5): p. 196-202.
31. Meng, X.M., D.J. Nikolic-Paterson, and H.Y. Lan, TGF-beta: the master regulator of fibrosis. Nat Rev Nephrol, 2016. 12(6): p. 325-38.
32. Yang, Y.M. and E. Seki, TNFalpha in liver fibrosis. Curr Pathobiol Rep, 2015. 3(4): p. 253-261.
33. Osawa, Y., et al., Tumor necrosis factor-alpha promotes cholestasis-induced liver fibrosis in the mouse through tissue inhibitor of metalloproteinase-1 production in hepatic stellate cells. PLoS One, 2013. 8(6): p. e65251.
34. Yu, X., et al., Autophagy-Related Activation of Hepatic Stellate Cells Reduces Cellular miR-29a by Promoting Its Vesicular Secretion. Cell Mol Gastroenterol Hepatol, 2022. 13(6): p. 1701-1716.
35. Hou, W. and W.K. Syn, Role of Metabolism in Hepatic Stellate Cell Activation and Fibrogenesis. Front Cell Dev Biol, 2018. 6: p. 150.
36. Chen, M., et al., Lipopolysaccharide mediates hepatic stellate cell activation by regulating autophagy and retinoic acid signaling. Autophagy, 2017. 13(11): p. 1813-1827.
37. Ying, H.Z., et al., PDGF signaling pathway in hepatic fibrosis pathogenesis and therapeutics (Review). Mol Med Rep, 2017. 16(6): p. 7879-7889.
38. Heckmann, B.L., et al., The autophagic inhibitor 3‐methyladenine potently stimulates PKA‐dependent lipolysis in adipocytes. British Journal of Pharmacology, 2012. 168(1): p. 163-171.
39. Wu, Y.T., et al., Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase. J Biol Chem, 2010. 285(14): p. 10850-61.
40. Weiskirchen, R. and F. Tacke, Cellular and molecular functions of hepatic stellate cells in inflammatory responses and liver immunology. Hepatobiliary Surg Nutr, 2014. 3(6): p. 344-63.
41. Gupta, G., F. Khadem, and J.E. Uzonna, Role of hepatic stellate cell (HSC)-derived cytokines in hepatic inflammation and immunity. Cytokine, 2019. 124: p. 154542.
42. Duan, Y., et al., Association of Inflammatory Cytokines With Non-Alcoholic Fatty Liver Disease. Front Immunol, 2022. 13: p. 880298.
43. Schuster, S., et al., Triggering and resolution of inflammation in NASH. Nat Rev Gastroenterol Hepatol, 2018. 15(6): p. 349-364.
44. Cai, J., X.J. Zhang, and H. Li, The Role of Innate Immune Cells in Nonalcoholic Steatohepatitis. Hepatology, 2019. 70(3): p. 1026-1037.
45. Park, S.J., et al., Major roles of kupffer cells and macrophages in NAFLD development. Front Endocrinol (Lausanne), 2023. 14: p. 1150118.
46. Tsai, C.S., et al., Thrombomodulin regulates monocye differentiation via PKCdelta and ERK1/2 pathway in vitro and in atherosclerotic artery. Sci Rep, 2016. 6: p. 38421.
47. Fujihara, M., et al., Molecular mechanisms of macrophage activation and deactivation by lipopolysaccharide: roles of the receptor complex. Pharmacol Ther, 2003. 100(2): p. 171-94.
48. Vincent, V., et al., A novel flow cytometry-based quantitative monocyte adhesion assay to estimate endothelial cell activation in vitro. Biotechniques, 2020. 68(6): p. 325-333.
49. Xu, K., et al., Monocyte Adhesion Assays for Detecting Endothelial Cell Activation in Vascular Inflammation and Atherosclerosis. Methods Mol Biol, 2022. 2419: p. 169-182.
50. Ende, G., et al., TNF-alpha-mediated adhesion of monocytes to endothelial cells-The role of ephrinA1. J Mol Cell Cardiol, 2014. 77: p. 125-35.
51. Tan, S.H., et al., Induction of autophagy by palmitic acid via protein kinase C-mediated signaling pathway independent of mTOR (mammalian target of rapamycin). J Biol Chem, 2012. 287(18): p. 14364-76.
52. Zhang, S., et al., The regulation, function, and role of lipophagy, a form of selective autophagy, in metabolic disorders. Cell Death Dis, 2022. 13(2): p. 132.
53. Nguyen, T.B., et al., DGAT1-Dependent Lipid Droplet Biogenesis Protects Mitochondrial Function during Starvation-Induced Autophagy. Dev Cell, 2017. 42(1): p. 9-21 e5.
54. Rambold, A.S., S. Cohen, and J. Lippincott-Schwartz, Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics. Dev Cell, 2015. 32(6): p. 678-92.
55. Lindner, P., et al., Cell death induced by the ER stressor thapsigargin involves death receptor 5, a non-autophagic function of MAP1LC3B, and distinct contributions from unfolded protein response components. Cell Commun Signal, 2020. 18(1): p. 12.
56. Korinkova, L., et al., Pathophysiology of NAFLD and NASH in Experimental Models: The Role of Food Intake Regulating Peptides. Front Endocrinol (Lausanne), 2020. 11: p. 597583.
57. Jha, P., et al., Role of adipose tissue in methionine-choline-deficient model of non-alcoholic steatohepatitis (NASH). Biochim Biophys Acta, 2014. 1842(7): p. 959-70.
58. Rinella, M.E., et al., Mechanisms of hepatic steatosis in mice fed a lipogenic methionine choline-deficient diet. J Lipid Res, 2008. 49(5): p. 1068-76.
59. Jiang, N., et al., Salvianolic acid B inhibits autophagy and activation of hepatic stellate cells induced by TGF-beta1 by downregulating the MAPK pathway. Front Pharmacol, 2022. 13: p. 938856.
60. Le, T.V., et al., Autophagy Inhibitor Chloroquine Downmodulates Hepatic Stellate Cell Activation and Liver Damage in Bile-Duct-Ligated Mice. Cells, 2023. 12(7).
61. Thoen, L.F., et al., A role for autophagy during hepatic stellate cell activation. J Hepatol, 2011. 55(6): p. 1353-60.
62. Tai, Y., et al., Myofibroblasts: Function, Formation, and Scope of Molecular Therapies for Skin Fibrosis. Biomolecules, 2021. 11(8).
63. Liu, T., et al., Optimization of differentiation and transcriptomic profile of THP-1 cells into macrophage by PMA. PLoS One, 2023. 18(7): p. e0286056.
64. Seo, M.H., et al., Exendin-4 Inhibits Hepatic Lipogenesis by Increasing beta-Catenin Signaling. PLoS One, 2016. 11(12): p. e0166913.
65. Lan, T., et al., Breviscapine alleviates NASH by inhibiting TGF-beta-activated kinase 1-dependent signaling. Hepatology, 2022. 76(1): p. 155-171.
66. Aron-Wisnewsky, J., et al., Gut microbiota and human NAFLD: disentangling microbial signatures from metabolic disorders. Nat Rev Gastroenterol Hepatol, 2020. 17(5): p. 279-297.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95055-
dc.description.abstractNAFLD(非酒精性脂肪肝病)由於肥胖、糖尿病、胰島素抵抗、基因遺傳及肝臟脂肪代謝紊亂等因素發展而來,導致肝臟脂肪積累。這種脂肪積累會引起肝損傷、炎症和纖維化,進而可能發展成NASH(非酒精性脂肪性肝炎)、肝硬化甚至肝癌。在一項回顧性研究中,我們測試了hydroxychloroquine (HCQ)對脂肪性肝炎患者的治療潛力。結果顯示,接受HCQ治療的患者在一個月內serum alanine transaminase(ALT)水平顯著降低(治療前94.1 ± 44.9 U/L vs. 治療後一個月46.7 ± 24.0 U/L,N=26,p < 0.001)。因此,HCQ在緩解脂肪性肝炎方面非常有效。

為了理解HCQ如何緩解脂肪性肝炎的機制,我們將HCQ應用於包括hepatocytes、stellate cells(fibroblast)和Kupffer cells (monocytes/macrophages)在內的肝臟常駐活細胞。結果顯示,治療濃度下(1.45-2.90 μM)的HCQ不影響HepG2細胞的活力。此外,當使用palmitic acid(PA)刺激肝臟free fatty acid(FFA)積累時,HCQ對肝臟內的脂肪積累沒有顯著影響。有趣的是,我們發現HCQ可以抑制飢餓誘導下的肝細胞油滴生成,HCQ不僅減少了細胞內的油滴數量,還抑制了新油滴的形成。

然而,在細胞活力和活性方面,我們觀察到肝臟星狀細胞(HSCs)對HCQ比HepG2細胞更為敏感。HCQ通過自噬抑制減少了活化HSC中的F-actin信號,但對α-SMA和Collagen I的mRNA和蛋白表達水平沒有影響。

在免疫微環境方面,我們利用ELISA測量了涉及肝臟發炎的關鍵inflammatory cytokines,包括IL-1β、IL-6和TNF-α。結果顯示,治療濃度下的HCQ並不抑制THP-1免疫細胞和HSCs的cytokine secretion。

總結來說,我們發現HCQ不會改變營養過剩誘導的油滴形成,但會抑制飢餓誘導的油滴生成。然而,它可能通過靶向肝臟星狀細胞的活力來減少纖維化。通過建立這些平台,我們對HCQ緩解NAFLD的機制有了更好的理解。因此,HCQ未來可能成為治療NAFLD的新型潛力藥物。
zh_TW
dc.description.abstractNAFLD (Non-Alcoholic Fatty Liver Disease) arises from factors such as obesity, diabetes, insulin resistance, genetics, and disruptions in liver fat metabolism, which result in the accumulation of fat in the liver. This accumulation can cause liver damage, inflammation, and fibrosis, potentially progressing to NASH (Non-Alcoholic Steatohepatitis), cirrhosis, or even liver cancer. In a previous retrospective study, we tested the therapeutic potential of hydroxychloroquine (HCQ) in patients with steatohepatitis. The results showed that the patients receiving HCQ had significantly reduced serum alanine transaminase (ALT) levels within one month (94.1 ± 44.9 U/L before HCQ vs. 46.7 ± 24.0 U/L one month after HCQ, N=26, p < 0.001). Therefore, HCQ is very effective in alleviating steatohepatitis.

To understand the mechanism of how HCQ alleviated steatohepatitis, we applied HCQ to resident live cells including hepatocytes, stellate cells (fibroblast), and Kupffer cells (monocytes/macrophages). HCQ at therapeutic concentrations (1.45-2.90 μM) did not impact the viability of HepG2 cells. Additionally, when free fatty acid (FFA) accumulation in the liver was stimulated using palmitic acid (PA), HCQ did not significantly influence lipid accumulation within the liver. Interestingly, we discovered that HCQ can inhibit starvation-induced lipid droplet biogenesis in hepatocytes. HCQ not only decreased the number of lipid droplets within the cells but also prevented the formation of new lipid droplets.

However, regarding cell viability and activity, we observed that hepatic stellate cells (HSCs) were more sensitive to HCQ than HepG2 cells. HCQ reduced F-actin signals in activated HSCs by inhibiting autophagy, but it did not impact the mRNA and protein expression levels of α-SMA and Collagen I.

In terms of the immune microenvironment, we utilized ELISA to measure key inflammatory cytokines involved in liver inflammation, including IL-1β, IL-6, and TNF-α. Our results indicated that HCQ, at therapeutic concentrations, did not inhibit cytokine secretion from THP-1 immune cells and HSCs.

In conclusion, we found that HCQ did not alter nutrient surplus-induced lipid droplet formation but inhibited starvation-induced lipid droplet formation. However, it may target the viability of hepatic stellate cells to reduce fibrosis. Through the establishment of these platforms, we have gained a better understanding of how HCQ alleviates NAFLD. Therefore, HCQ has the potential to become a novel therapeutic drug for NAFLD in the future.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-27T16:08:09Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-27T16:08:10Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
中文摘要 iii
Abstract v
Table of content vii
Figures and Legends xii
Tables xiv
Chapter 1 Introduction 1
1-1 Overview of nonalcoholic fatty acid liver disease (NAFLD) 1
1-2 Drug therapy in NAFLD 2
1-3 The background of using Hydroxychloroquine (HCQ) in treating steatohepatitis 3
1-4 The pathogenesis of NAFLD 9
1-5 Molecular mechanisms of HCQ 11
1-6 The possible mechanism of how HCQ relieve NAFLD 12
1-6-1 Regulation of lipid metabolism in hepatocytes 12
1-6-2 Regulating immune response to inhibit inflammation 13
1-7 Aim of the study 13
Chapter 2 Material and Methods 15
2-1 Cell culture 15
2-2 Palmitic acid assay 16
2-3 Lipogenesis assay 16
2-4 Oil red O staining 17
2-5 Myofibroblast differentiation assay 17
2-6 Immunofluorescence staining of stress fiber 18
2-7 Immunofluorescence staining of actin cytoskeleton and Collagen I 19
2-8 Cell Counting Kit-8 (CCK-8) assay 20
2-9 Protein extraction and western blotting 21
2-9-1 protein extraction 21
2-9-2 SDS-PAGE and protein transfer 22
2-9-3 Primary and secondary antibody incubation 22
2-9-4 Chemiluminescent detection and quantification 23
2-10 RNA isolation and quantitative real-time PCR (qPCR) 23
2-11 Enzyme-linked immunosorbent assay (ELISA) assay 25
2-12 Monocyte adhesion assay 26
Chapter 3 Result 28
3-1 HCQ may not affect lipid accumulation in the liver during PA addition 28
3-1-1 Platform and quantification method establishment 28
3-1-2 HCQ at therapeutic concentrations (1.45 - 2.90 μM) did not alter lipid accumulation induced by palmitic acid 28
3-1-3 HCQ did not affect PLIN2 protein levels under high PA treatment 34
3-2 HCQ may inhibit starvation-induced lipid droplet biogenesis, particularly affecting the formation of small lipid droplets in HepG2 cells 36
3-2-1 Platform and quantification method establishment 36
3-2-2 HCQ reduced the formation of small lipid droplets without impacting the formation of large lipid droplets during nutrient deprivation 40
3-2-3 HCQ did not affect PLIN2 protein levels under 72 hours of serum starvation 45
3-3 HCQ targeted the viability and activity of stellate cells via autophagy inhibition 47
3-3-1 Platform and quantification method establishment 47
3-3-2 TGF-β combined with FGFRi enhanced α-SMA and COL1A1 expression 51
3-3-3 HCQ may target the viability and activity of HSCs via autophagy inhibition 54
3-3-4 HCQ may not affect the mRNA and protein expression levels of α-SMA and COL1A1 60
3-3-5 HCQ may not decrease inflammatory cytokine secretion in HSCs 62
3-4 HCQ may not decrease inflammatory cytokine secretion in THP-1 monocytes and macrophages within the therapeutic range 65
3-4-1 The inflammatory cytokine secretion in immune cells was not affected by HCQ 65
3-4-2 HCQ may not inhibit THP-1 adhesion in activated endothelial cells 69
Chapter 4 Conclusion 72
Chapter 5 Discussion 73
5-1 High HCQ concentration increased lipid accumulation 73
5-2 Starvation-induced LD biogenesis was activated by autophagy 75
5-3 HCQ might indirectly affect ER budding through its impact on the autophagy process 78
5-4 Thapsigargin-induced ER stress did not induce hepatic cell lipogenesis 83
5-5 Induce lipid droplet biogenesis using serum starvation stress conditions 85
5-6 The different quantification methods for lipid droplet signals between the PA assay and the starvation-induced LD biogenesis assay 86
5-7 α-SMA was not significantly expressed in TGF-β combined with FGFRi activated HSCs 87
5-8 Autophagy activation may be important for HSC activation 89
5-9 HCQ weakened the actin stress fiber signal, which might not be attributed to changes in actin stress fiber biogenesis 89
5-10 HCQ can inhibit LPS-induced immune responses 92
5-11 HCQ may inhibit the differentiation process of PMA-induced THP-1 macrophages 93
5-12 Limitations of this study 95
5-12-1 We did not measure TG levels in HepG2 cells following the addition of PA 95
5-12-2 The choice of cell line in hepatocyte studies 95
5-12-3 We focused solely on an in vitro platform to observe the effects of HCQ in steatohepatitis 96
Chapter 6 Future works 97
Chapter 7 References 98
Chapter 8 Supplementary information 105
8-1 Fluorescence correction in Oil Red O signal 105
8-2 Quantification of Oil Red O signal 108
8-3 Background subtraction for lipid droplets 117
8-4 Quantification of lipid droplets diameter and signal 119
8-5 Fluorescence correction in F actin and COL1A1 signal 133
8-6 Quantification of F actin and COL1A1 signal 135
8-7 Quantification of THP-1 and HUVEC cell number 144
-
dc.language.isoen-
dc.subject免疫微環境zh_TW
dc.subject脂質生成zh_TW
dc.subject脂肪性肝炎zh_TW
dc.subject自噬抑制zh_TW
dc.subjectsteatohepatitisen
dc.subjectlipogenesisen
dc.subjectautophagy inhibitionen
dc.subjectimmune microenvironmenten
dc.title探討hydroxychloroquine如何緩解脂肪性肝炎zh_TW
dc.titleInvestigating how hydroxychloroquine relieves steatohepatitisen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林琬琬;楊宏志;王錦堂zh_TW
dc.contributor.oralexamcommitteeWan-Wan Lin;Hung-Chih Yang;Jin-Town Wangen
dc.subject.keyword脂肪性肝炎,脂質生成,自噬抑制,免疫微環境,zh_TW
dc.subject.keywordsteatohepatitis,lipogenesis,autophagy inhibition,immune microenvironment,en
dc.relation.page152-
dc.identifier.doi10.6342/NTU202402635-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-07-31-
dc.contributor.author-college醫學院-
dc.contributor.author-dept藥理學研究所-
dc.date.embargo-lift2029-07-30-
顯示於系所單位:藥理學科所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  此日期後於網路公開 2029-07-30
9.36 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved