Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 口腔生物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95054
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周涵怡zh_TW
dc.contributor.advisorHan-Yi E. Chouen
dc.contributor.author史貫今zh_TW
dc.contributor.authorKuan-Chin Shihen
dc.date.accessioned2024-08-26T16:27:59Z-
dc.date.available2024-08-27-
dc.date.copyright2024-08-26-
dc.date.issued2024-
dc.date.submitted2024-08-09-
dc.identifier.citationCampbell-Thompson, M., et al., Islet sympathetic innervation and islet neuropathology in patients with type 1 diabetes. Scientific Reports, 2021. 11(1): p. 6562.Hameed, I., et al., Type 2 diabetes mellitus: From a metabolic disorder to an inflammatory condition. World J Diabetes, 2015. 6(4): p. 598-612.Lizzo, J.M., A. Goyal, and V. Gupta, Adult Diabetic Ketoacidosis, in StatPearls. 2024, StatPearls PublishingCopyright © 2024, StatPearls Publishing LLC.: Treasure Island (FL).Pasquel, F.J. and G.E. Umpierrez, Hyperosmolar hyperglycemic state: a historic review of the clinical presentation, diagnosis, and treatment. Diabetes Care, 2014. 37(11): p. 3124-31.Katsarou, A., et al., Type 1 diabetes mellitus. Nat Rev Dis Primers, 2017. 3: p. 17016.Galicia-Garcia, U., et al., Pathophysiology of Type 2 Diabetes Mellitus. Int J Mol Sci, 2020. 21(17).Abujbara, M., et al., Effect of Insulin Injection Techniques on Glycemic Control Among Patients with Diabetes. Int J Gen Med, 2022. 15: p. 8593-8602.Heinemann, L., et al., Insulin pump risks and benefits: a clinical appraisal of pump safety standards, adverse event reporting, and research needs: a joint statement of the European Association for the Study of Diabetes and the American Diabetes Association Diabetes Technology Working Group. Diabetes Care, 2015. 38(4): p. 716-22.Güemes, A. and P. Georgiou, Review of the role of the nervous system in glucose homoeostasis and future perspectives towards the management of diabetes. Bioelectron Med, 2018. 4: p. 9.Gurtner, G.C., M.J. Callaghan, and M.T. Longaker, Progress and potential for regenerative medicine. Annu Rev Med, 2007. 58: p. 299-312.Govindasamy, V., et al., Differentiation of dental pulp stem cells into islet-like aggregates. J Dent Res, 2011. 90(5): p. 646-52.Jain, R. and E. Lammert, Cell-cell interactions in the endocrine pancreas. Diabetes Obes Metab, 2009. 11 Suppl 4: p. 159-67.Röder, P.V., et al., Pancreatic regulation of glucose homeostasis. Exp Mol Med, 2016. 48(3): p. e219.Roostalu, U., et al., 3D quantification of changes in pancreatic islets in mouse models of diabetes type I and II. Dis Model Mech, 2020. 13(12).Messina, G., et al., Autonomic nervous system in the control of energy balance and body weight: personal contributions. Neurol Res Int, 2013. 2013: p. 639280.Röder, P.V., et al., Pancreatic regulation of glucose homeostasis. Experimental & Molecular Medicine, 2016. 48(3): p. e219-e219.Mahadevan, V., Anatomy of the pancreas and spleen. Surgery (Oxford), 2019. 37(6): p. 297-301.Ahrén, B., Islet nerves in focus—defining their neurobiological and clinical role. Diabetologia, 2012. 55(12): p. 3152-3154.Faber, C.L., et al., CNS control of the endocrine pancreas. Diabetologia, 2020. 63(10): p. 2086-2094.Sanderson, M.J., et al., Fluorescence microscopy. Cold Spring Harb Protoc, 2014. 2014(10): p. pdb.top071795.Ahrén, B., Autonomic regulation of islet hormone secretion--implications for health and disease. Diabetologia, 2000. 43(4): p. 393-410.Sarker, G. and A.I. Domingos, A neuroimmunometabolic view on the cephalic phase of insulin release. Cell Metab, 2022. 34(7): p. 940-942.Berthoud, H.R., The vagus nerve, food intake and obesity. Regul Pept, 2008. 149(1-3): p. 15-25.Goodwin, M.L., Blood glucose regulation during prolonged, submaximal, continuous exercise: a guide for clinicians. J Diabetes Sci Technol, 2010. 4(3): p. 694-705.Thayer, J.F. and E. Sternberg, Beyond heart rate variability: vagal regulation of allostatic systems. Ann N Y Acad Sci, 2006. 1088: p. 361-72.Kulenović, A. and A. Sarac-Hadzihalilović, Blood vessels distribution in body and tail of pancreas- a comparative study of age related variation. Bosn J Basic Med Sci, 2010. 10(2): p. 89-93.Muratore, M., C. Santos, and P. Rorsman, The vascular architecture of the pancreatic islets: A homage to August Krogh. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2021. 252: p. 110846.Corbin, K.L., et al., A Practical Guide to Rodent Islet Isolation and Assessment Revisited. Biological Procedures Online, 2021. 23(1): p. 7.Tang, S.C., S.J. Peng, and H.J. Chien, Imaging of the islet neural network. Diabetes Obes Metab, 2014. 16 Suppl 1: p. 77-86.Pierzynowski, S.G., et al., Glucose homeostasis dependency on acini–islet–acinar (AIA) axis communication: a new possible pathophysiological hypothesis regarding diabetes mellitus. Nutrition & Diabetes, 2018. 8(1): p. 55.Jansson, L. and C. Hellerström, Stimulation by glucose of the blood flow to the pancreatic islets of the rat. Diabetologia, 1983. 25(1): p. 45-50.Carlbom, L., et al., Pancreatic perfusion and subsequent response to glucose in healthy individuals and patients with type 1 diabetes. Diabetologia, 2016. 59(9): p. 1968-72.Frikke-Schmidt, H., et al., Improved in vivo imaging method for individual islets across the mouse pancreas reveals a heterogeneous insulin secretion response to glucose. Sci Rep, 2021. 11(1): p. 603.Ravi, P.K., S.R. Singh, and P.R. Mishra, Redefining the tail of pancreas based on the islets microarchitecture and inter-islet distance: An immunohistochemical study. Medicine (Baltimore), 2021. 100(17): p. e25642.Wang, X., et al., Regional differences in islet distribution in the human pancreas--preferential beta-cell loss in the head region in patients with type 2 diabetes. PLoS One, 2013. 8(6): p. e67454.Kehm, R., et al., Age-related oxidative changes in pancreatic islets are predominantly located in the vascular system. Redox Biol, 2018. 15: p. 387-393.Li, N., et al., Aging and stress induced β cell senescence and its implication in diabetes development. Aging (Albany NY), 2019. 11(21): p. 9947-9959.Gunasekaran, U. and M. Gannon, Type 2 diabetes and the aging pancreatic beta cell. Aging (Albany NY), 2011. 3(6): p. 565-75.Butler, A.E., et al., Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes, 2003. 52(1): p. 102-10.Jansson, L., et al., Pancreatic islet blood flow and its measurement. Ups J Med Sci, 2016. 121(2): p. 81-95.Richards, O.C., S.M. Raines, and A.D. Attie, The role of blood vessels, endothelial cells, and vascular pericytes in insulin secretion and peripheral insulin action. Endocr Rev, 2010. 31(3): p. 343-63.Asma, A. and K. Noman, Molecular Basis of Blood Glucose Regulation, in Blood Glucose Levels, S. Leszek, Editor. 2019, IntechOpen: Rijeka. p. Ch. 2.D’Alessio, D.A., et al., Activation of the Parasympathetic Nervous System Is Necessary for Normal Meal-Induced Insulin Secretion in Rhesus Macaques1. The Journal of Clinical Endocrinology & Metabolism, 2001. 86(3): p. 1253-1259.Li, W.H., Functional analysis of islet cells in vitro, in situ, and in vivo. Semin Cell Dev Biol, 2020. 103: p. 14-19.Gromada, J. and T.E. Hughes, Ringing the dinner bell for insulin: muscarinic M3 receptor activity in the control of pancreatic beta cell function. Cell Metab, 2006. 3(6): p. 390-2.Zawalich, W.S., et al., Effects of muscarinic receptor type 3 knockout on mouse islet secretory responses. Biochem Biophys Res Commun, 2004. 315(4): p. 872-6.Gautam, D., et al., A critical role for beta cell M3 muscarinic acetylcholine receptors in regulating insulin release and blood glucose homeostasis in vivo. Cell Metab, 2006. 3(6): p. 449-61.Gautam, D., et al., Role of the M3 muscarinic acetylcholine receptor in beta-cell function and glucose homeostasis. Diabetes Obes Metab, 2007. 9 Suppl 2: p. 158-69.-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95054-
dc.description.abstract近年來,為了因應病人的難症與絕症,許多新創醫療應運而生,再生醫學為利用細胞或幹細胞技術進行移植治療,以修補或取代受損組織。由於牙髓幹細胞具有高分化能力及於成年人較易取得的雙重優勢,所以過去研究曾使用牙髓幹細胞分化出可移植到糖尿病人身上並且分泌胰島素的胰島細胞聚集體。不過,若要能讓人工胰島能因應糖尿病病人的生理狀況調控血糖,必須有血管與神經的參與,所以若能了解完整的神經架構,可以幫助再生胰島的架構建構,使移植入糖尿病的人工胰島能因應病人生理狀況調控血糖。神經如何調控血糖的恆定,主要是透過自律神經去調控,血糖上升時,副交感神經會釋放乙烯膽鹼促進Beta細胞製造胰島素降低血糖,來達到調節體內血糖的目標。過去研究主要把胰島依照血管或鄰近臟器分區,而本篇研究承先前實驗發現胰島有分布在主要血管周邊的Insulo-venous胰島,以及單獨分布在腺泡小葉當中的Insulo-acinar 胰島。為了瞭解兩者不同與可能對胰島素分泌的貢獻與主要功能。並主要以不進行切片行為來破壞其結構,保留最完整的功能性結構。將富含胰島部分分離,進行胰島與神經血與副交感神經血管免疫螢光染色了解其具體結構並推測其功能與內部模式,實驗發現 Insulo-venous系統之胰島其內部血管分布與主要血管較接近,且結構與模型均較為密集,且Insulo-acinar神經為pole to pole模式,實現單向神經控制胰島素的分泌,而 Insulo-venous神經模式是center to periphery模式,可以組織和綜合複雜神經訊息幫助胰島素分泌,對於Insulo-venous與Insulo-acinar的神經血管網絡的理解希望對未來人工胰島結構的確立以及血糖調控功能的協作有所幫助。zh_TW
dc.description.abstractIn recent years, in response to challenging and incurable diseases, many innovative medical approaches have emerged. Regenerative medicine, which uses cell or stem cell technology for transplantation therapy, aims to repair or replace damaged tissues. Due to the dual advantages of dental pulp stem cells, including their high differentiation potential and ease of accessibility in adults, past studies have used them to differentiate into islet cell aggregates that can be transplanted into diabetic patients and secrete insulin. However, to enable artificial islets to regulate blood glucose in response to the physiological conditions of diabetic patients, the participation of blood vessels and nerves is necessary. Understanding the complete neural architecture can aid in constructing the structure of regenerative islets, allowing transplanted artificial islets to regulate blood glucose in response to the patient's physiological state.The autonomic nervous system primarily regulates blood glucose homeostasis. When blood glucose levels rise, the parasympathetic nervous system releases acetylcholine to stimulate beta cells to produce insulin, thereby lowering blood glucose and achieving regulation. Past research mainly categorized islets based on blood vessels or nearby organs. This study builds on previous experiments that discovered the distribution of Insulo-venous islets around major blood vessels and Insulo-acinar islets isolated within acinar lobules. To understand the differences between these two types of islets, their potential contributions to insulin secretion, and their primary functions, we aimed to preserve the most intact functional structures without slicing or damaging them. We used immunofluorescence staining for islets, neurovasculature, and parasympathetic innervation to understand their specific structures and infer their functions and internal patterns.The experiment found that the internal vascular distribution of Insulo-venous islets is closer to major blood vessels, with a denser structure and model. The Insulo-acinar neural pattern follows a pole-to-pole model, achieving unidirectional neural control of insulin secretion. In contrast, the Insulo-venous neural pattern follows a center-to-periphery model, capable of organizing and integrating complex neural signals to aid insulin secretion. Understanding the neurovascular networks of Insulo-venous and Insulo-acinar islets is hoped to assist in establishing the structure of artificial islets and the collaborative regulation of blood glucose in the future.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-26T16:27:59Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-26T16:27:59Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsCONTENTS
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS v
LIST OF FIGURES viii
LIST OF TABLES viii
Chapter 1 Introduction 1
1.1 Regenerative medicine and diabetes 1
1.2 Pancreatic endocrine cell and glucose homeostasis 4
1.3 Region of pancreas and vaculature 6
1.4 Islet innervation in glucose homeostasis 6
1.5 Neural Innervation of Islets and the Issue of Regenerating Islet Nerves 7
1.6 Vasculature and neuronal network in islet microstructure 8
1.7 Experiment design and specific aim 10
Chapter 2 Materials and Methods 11
2.1 Experimental animals 11
2.2 IHC staining 11
2.3 Fixation and isolation of islets 11
2.4 Sample preparation for immunostaining 12
2.5 Immunostaining 12
2.6 Image projection and analysis 13
2.7 Fluorescent section staining 13
Chapter 3 Results 15
3.1 Distinguish between different regions of pancreas 15
3.2 Isolation of pancreatic islet tissue for immunofluorescence staining 16
3.3 Distinction of Insulo-acinar and Insulo-venous distribution islets 17
3.4 Gross vascularization pattern between Insulo-acinar and Insulo-venous islets 17
3.5 Analytics for intra-islet vascularization density 18
3.6 Model for intra-islet vascularization pattern 19
3.7 Gross innervation pattern between Insulo-acinar and Insulo-venous islets 19
3.8 Analytics for intra-islet innervation 20
3.9 Model for intra-islet innervation pattern 21
3.9.1 Analytics for intra-islet parasympathetic innervation 21
3.9.2 Gross M3 distribition pattern between Insulo-acinar and Insulo-venous islets 22
Chapter 4 Discussion 24
4.1 Pancreatic Islet Distribution and Insulin Secretion 24
4.2 The Significance and Regulatory Differences of Blood Vessels in Different islet models 27
4.3 The Importance and Regulatory Differences of Neurons in Different islet models 28
4.4 The Importance and Regulatory Differences of the Parasympathetic Nervous System in Different islet models 29
4.5 M3 and the parasympathetic nervous system involved in blood glucose regulation 30
Chapter 5 Conclusion 33
Chapter 6 References 35
Chapter 7 Figures and Tables 39
Chapter 8 SUPPLEMENTARY DATA 82

LIST OF FIGURES
Fig. 1 Immunohistochemistry of pancreatic sections stained for insulin 39
Fig. 2 Islets in different locations vary significantly in surrounding tissue 40
Fig. 3 Immunohistochemical staining for insulin and HE staining of splenic part pancreatic islets in young ,chow-fed , hfd diabetic mice 42
Fig. 4 Variation of islet diameter and beta cell count in young ,chow-fed , hfd diabetic mice 44
Fig. 5 Islets isolated without dithizone staining show clearer images with fluorescent staining 46
Fig. 6 Isolating islets through pancreas isolation and vascular-islet zoning 48
Fig. 7 Direct dissection for intact islet and surrounding tissue 50
Fig. 8 The vascular and lobular structures of the pancreas delineate two distinct patterns of islet distribution 52
Fig. 9 Confirmation of islet nerves and blood vessels staining after islet tissue isolation. 54
Fig. 10 Comparison of Macroscopic Vascular Anatomy of Insulo-venous and Insulo-acinar islet observed by low magnification confocal microscopy 55
Fig. 11 Comparison of Microscopic Vascular Anatomy of Insulo-venous and Insulo-acinar islet observed by high magnification confocal microscopy 58
Fig. 12 Representative images comparing image analysis of both Insulo-acinar and Insulo-venous islets within 3D reconstructions of Imaris 60
Fig. 13 Blood vessel and islet produce distinct staining patterns in Insulo-acinar and Insulo-venous islets 63
Fig. 14 Comparison of Macroscopic Neuron Anatomy of Insulo-venous and Insulo-acinar islet observed by low magnification confocal microscopy. 65
Fig. 15 Comparison of Macroscopic neuron innervation of Insulo-venous and Insulo-acinar islet observed in 3D reconstructions of Imaris 67
Fig. 16 Comparison of Microscopic neuron innervation of Insulo-venous andInsulo-acinar islet observed in 3D reconstructions of Imaris 69
Fig. 17 Representative images comparing image analysis of both Insulo-acinar and Insulo-venous islets neurons within 3D reconstructions of Imaris 71
Fig. 18 Neuron and islet produce distinct staining patterns in Insulo-acinar and Insulo-venous islets 74
Fig. 19 Representative images comparing image analysis of both Insulo-acinar and Insulo-venous islets parasympathetic neurons within 3D reconstructions of Imaris 76
Fig. 20 Immunofluorescent staining of Insulo-venous and Insulo-acinar slice with m3 79
Fig. 21 Alternative imaging systems utilized for studying the neurovascular systems of insulo-venous and insulo-acinar pancreatic islets: Leica Thunder 80
-
dc.language.isozh_TW-
dc.subject胰島血管微結構zh_TW
dc.subject胰島神經微結構zh_TW
dc.subject胰島分布zh_TW
dc.subject人工胰島zh_TW
dc.subject再生醫學zh_TW
dc.subjectArtificial isletsen
dc.subjectIslet neural microstructureen
dc.subjectIslet vascular microstructureen
dc.subjectRegenerative medicineen
dc.subjectIslet distributionen
dc.title探討人工胰島建構之要素: 血管與自主神經網絡zh_TW
dc.titleStudy on the neurovascular network of pancreatic islets to aid in construction of the artificial isleten
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李財坤;姜昱至zh_TW
dc.contributor.oralexamcommitteeTsai-Kun Li;Yu-Chih Chiangen
dc.subject.keyword再生醫學,人工胰島,胰島分布,胰島血管微結構,胰島神經微結構,zh_TW
dc.subject.keywordRegenerative medicine,Artificial islets,Islet distribution,Islet vascular microstructure,Islet neural microstructure,en
dc.relation.page89-
dc.identifier.doi10.6342/NTU202402945-
dc.rights.note未授權-
dc.date.accepted2024-08-10-
dc.contributor.author-college醫學院-
dc.contributor.author-dept口腔生物科學研究所-
顯示於系所單位:口腔生物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
4.8 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved