請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95051
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蔡丰喬 | zh_TW |
dc.contributor.advisor | Feng-Chiao Tsai | en |
dc.contributor.author | 林芸宇 | zh_TW |
dc.contributor.author | Yun-Yu Lin | en |
dc.date.accessioned | 2024-08-26T16:27:02Z | - |
dc.date.available | 2024-08-27 | - |
dc.date.copyright | 2024-08-26 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-08 | - |
dc.identifier.citation | 1.Worbs T, Hammerschmidt SI, Förster R. Dendritic cell migration in health and disease. Nat Rev Immunol. 2017;17(1):30-48. doi:10.1038/nri.2016.116
2.Simpson KJ, Selfors LM, Bui J, et al. Identification of genes that regulate epithelial cell migration using an siRNA screening approach. 2008;10(9). 3.Vitorino P, Meyer T. Modular control of endothelial sheet migration. Genes Dev. 2008;22(23):3268-3281. doi:10.1101/gad.1725808 4.Yamada E, Tsujikawa K, Itoh S, Kameda Y ichiro, Kohama Y, Yamamoto H. Molecular cloning and characterization of a novel human STE20-like kinase, hSLK. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 2000;1495(3):250-262. doi:10.1016/S0167-4889(99)00164-0 5.Garland B, Delisle S, Al-Zahrani KN, Pryce BR, Sabourin LA. The Ste20-like kinase – a Jack of all trades? Journal of Cell Science. Published online 2021. 6.Al-Zahrani KN, Baron KD, Sabourin LA. Ste20-like kinase SLK, at the crossroads: A matter of life and death. Cell Adhesion & Migration. 2013;7(1):1-10. doi:10.4161/cam.22495 7.Al‐Zahrani KN, Sekhon P, Tessier DR, et al. Essential role for the SLK protein kinase in embryogenesis and placental tissue development. Developmental Dynamics. 2014;243(5):640-651. doi:10.1002/dvdy.24106 8. O’Reilly PG, Wagner S, Franks DJ, et al. The Ste20-like Kinase SLK Is Required for Cell Cycle Progression through G2. Journal of Biological Chemistry. 2005;280(51):42383-42390. doi:10.1074/jbc.M510763200 9.Bagci H, Sriskandarajah N, Robert A, et al. Mapping the proximity interaction network of the Rho-family GTPases reveals signalling pathways and regulatory mechanisms. Nature Cell Biology. 2020;22. 10.Raftopoulou M, Hall A. Cell migration: Rho GTPases lead the way. Developmental Biology. 2004;265(1):23-32. doi:10.1016/j.ydbio.2003.06.003 11.Zaman R, Lombardo A, Sauvanet C, et al. Effector-mediated ERM activation locally inhibits RhoA activity to shape the apical cell domain. Journal of Cell Biology. 2021;220(6):e202007146. doi:10.1083/jcb.202007146 12.Svitkina T. The Actin Cytoskeleton and Actin-Based Motility. Cold Spring Harb Perspect Biol. 2018;10(1):a018267. doi:10.1101/cshperspect.a018267 13.Maître JL, Heisenberg CP. Three Functions of Cadherins in Cell Adhesion. Current Biology. 2013;23(14):R626-R633. doi:10.1016/j.cub.2013.06.019 14.Wells RG. The role of matrix stiffness in regulating cell behavior. Hepatology. 2008;47(4):1394-1400. doi:10.1002/hep.22193 15.Song Y, Ma X, Zhang M, et al. Ezrin Mediates Invasion and Metastasis in Tumorigenesis: A Review. Frontiers in Cell and Developmental Biology. 2020;8. 16.Fehon RG, McClatchey AI, Bretscher A. Organizing the cell cortex: the role of ERM proteins. Nat Rev Mol Cell Biol. 2010;11(4):276-287. doi:10.1038/nrm2866 17.Shabardina V, Kramer C, Gerdes B, et al. Mode of Ezrin-Membrane Interaction as a Function of PIP 2 Binding and Pseudophosphorylation. Biophysical Journal. 2016;110(12):2710-2719. doi:10.1016/j.bpj.2016.05.009 18.Barret C, Roy C, Montcourrier P, Mangeat P, Niggli V. Mutagenesis of the Phosphatidylinositol 4,5-Bisphosphate (Pip2) Binding Site in the Nh2-Terminal Domain of Ezrin Correlates with Its Altered Cellular Distribution. The Journal of Cell Biology. 2000;151(5):1067-1080. doi:10.1083/jcb.151.5.1067 19.Mathew C, Ghildyal R. CRM1 Inhibitors for Antiviral Therapy. Front Microbiol. 2017;8:1171. doi:10.3389/fmicb.2017.01171 20.Mudatsir M, Yufika A, Nainu F, et al. Antiviral Activity of Ivermectin Against SARS-CoV-2: An Old-Fashioned Dog with a New Trick—A Literature Review. Sci Pharm. 2020;88(3):36. doi:10.3390/scipharm88030036 21.Yu LY, Tseng TJ, Lin HC, et al. Synthetic dysmobility screen unveils an integrated STK40-YAP-MAPK system driving cell migration. Sci Adv. 2021;7:31. doi:0.1126/sciadv.abg2106 22.Luhovy AY, Jaberi A, Papillon J, Guillemette J, Cybulsky AV. Regulation of the Ste20-like Kinase, SLK. Journal of Biological Chemistry. 2012;287(8):5446-5458. doi:10.1074/jbc.M111.302018 23.Pelaseyed T, Viswanatha R, Sauvanet C, Filter JJ, Goldberg ML, Bretscher A. Ezrin activation by LOK phosphorylation involves a PIP2-dependent wedge mechanism. eLife. 2017;6:e22759. doi:10.7554/eLife.22759 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95051 | - |
dc.description.abstract | SLK(Ste20-like kinase)是一種絲胺酸/蘇胺酸蛋白激酶,參與了細胞遷移、細胞凋亡和細胞增殖等許多生物過程。它被確定為我們最近的合成運動障礙篩選的候選者之一,是因為我們觀察到透過同時抑制肌球蛋白活化劑ROCK和肌動蛋白調節劑SLK便可以協同性地增加集體細胞遷移的速度。儘管先前的研究表明SLK 可能直接抑制心肌細胞中的 RhoA-ROCK活性,但我們的結果並未揭示細胞遷移過程中 SLK和 ROCK 之間有直接訊號的相互作用。實驗結果還顯示,SLK knockdown改善了頭頸癌 SAS 細胞和人類皮膚角質細胞 HaCaT細胞的細胞排列整齊度和肌動蛋白結構。然後,就像之前文獻所報導的,我們證實 SLK能夠透過 Ezrin去改變肌動蛋白的結構。有趣的是,SLK knockdown對肌動蛋白結構的影響與Ezrin knockdown是極為相似的,但卻無法透過抑制Ezrin的磷酸化重現相似結果,顯示SLK 可能是透過非激酶的功能調節肌動蛋白。另外SLK knockdown可增加Ezrin從細胞質到細胞核的比例上升,但抑制Ezrin磷酸化則不會增加此現象,表示SLK是以非激酶依賴性方式調節Ezrin。
因此,我們推測非激酶依賴性方式的SLK-Ezrin組合會去調節肌動蛋白的細胞骨架以重塑細胞-細胞和細胞-基質黏附,這兩者對於細胞排列完整性和集體細胞遷移非常重要。我們現在正在致力於釐清非激酶依賴性方式的SLK-Ezrin如何調節黏附細胞骨架,最終目標是了解其在集體細胞遷移過程中與ROCK的協同合作模式。 | zh_TW |
dc.description.abstract | SLK (Ste20-like kinase) is a serine/threonine protein kinase involved in many biological processes including cell migration, apoptosis and cell proliferation. It was identified as one of the candidates from our recent screen of synthetic dysmobility, as collective cell migration could be synergistically increased by simultaneous suppression of myosin activator ROCK and actin modulator SLK. Although previous research suggested that SLK might directly suppress RhoA-ROCK activities in cardiomyocytes, our results did not reveal direct signaling interactions between SLK and ROCK during cell migration. Our data also showed that knockdown of SLK improved cell alignment and actin structure in head and neck cancer SAS cells and human keratinocytes HaCaT cells. Then, we confirmed that SLK altered actin structures through Ezrin as reported previously. Intriguingly, effects of SLK knockdown on actin could be repeated by Ezrin knockdown, but not by inhibitor of Ezrin phosphorylation, suggesting that SLK modulated actin by non-kinase function. Moreover, translocation of Ezrin from cytosol into nucleui was increased by SLK knockdown, but not by inhibitor of Ezrin phosphorylation, indicating that SLK regulated Ezrin in kinase-independent manners.
Therefore, we speculated that kinase-independent SLK-Ezrin regulates actin cytoskeletons to remodel cell-cell and cell-matrix adhesion, both of which are critical for cell sheet integrity and collective cell migration. We are now elucidating how kinase-independent SLK-Ezrin regulates adhesion cytoskeletons, with the ultimate goal of understanding its mode of synergistic collaboration with ROCK during collective cell migration. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-26T16:27:02Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-26T16:27:02Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 誌謝 1
摘要 2 Abstract 3 目次 5 圖次 7 表次 9 第一章 介紹 10 1.1 細胞遷移的重要性及目前研究進展 10 1.2 篩選出細胞遷移相關基因與訊息傳遞路徑交互作用:TWO-HIT SHRNA SCREENING 10 1.3 STE20-LIKE KINASE (SLK) 13 1.4 實驗室先前研究成果 14 1.5 近年文獻報告整理 16 1.6 研究目標 17 第二章 材料與方法 18 2.1 細胞培養與藥物處理 18 2.2 相關質體應用PLASMIDS 19 2.3 病毒製備LENTIVIRUS 19 2.4 KNOCKDOWN 20 2.5 免疫螢光染色 IMMUNOFLUORESCENCE 20 2.6 西方墨點法 WESTERN BLOTTING 21 2.7 CALCIUM DYNAMICS EGTA ASSAY 22 第三章 結果 23 3.1 SLK與MLC的關係 23 3.2 SLK影響細胞排列與形狀 28 3.3 SLK是否經由ERM影響ACTIN 30 3.4 SLK是否影響EZRIN出入細胞核 48 3.5 SLK是否會影響ECADHERIN 54 3.6 SLK是否會影響PAXILLIN 57 第四章 討論 59 4.1 調控SLK在SAS和HUVEC上有不同表現的可能原因 59 4.2 SLK以EZRIN調控ACTIN,但是與SLK KINASE功能較無相關 60 4.3 SLK調控EZRIN出入核,但是與SLK KINASE功能較無相關 60 4.4 確認SLK NON-KINASE FUNCTION對於EZRIN出入核的影響 61 4.5 確認不同磷酸化型態EZRIN對於ACTIN的影響:利用EZRIN-P2A-MEMERALD MUTANT 61 4.6 維持細胞形狀的可能性 62 4.7 SLK在不同細胞中的不同表現 63 4.8 假設圖 63 第五章 參考文獻 65 第六章 附錄 69 6.1 附圖 69 6.2 質體 MAPS 69 6.3 MATLAB程式稿 70 | - |
dc.language.iso | zh_TW | - |
dc.title | 探索 SLK 對黏著性細胞骨架的效應 | zh_TW |
dc.title | Exploring SLK effects on adhesion cytoskeleton | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 曾炳輝;郭津岑;林耿慧 | zh_TW |
dc.contributor.oralexamcommittee | Ping-Hui Tseng;Jean-Cheng Kuo;Keng-Hui Lin | en |
dc.subject.keyword | 細胞遷移,SLK,Ezrin,肌動蛋白動蛋白, | zh_TW |
dc.subject.keyword | cell migration,SLK,Ezrin,actin, | en |
dc.relation.page | 103 | - |
dc.identifier.doi | 10.6342/NTU202404055 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-08-09 | - |
dc.contributor.author-college | 醫學院 | - |
dc.contributor.author-dept | 藥理學研究所 | - |
顯示於系所單位: | 藥理學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf | 2.49 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。