請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95047
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 楊家榮 | zh_TW |
dc.contributor.advisor | Chia-Ron Yang | en |
dc.contributor.author | 蔡豐隆 | zh_TW |
dc.contributor.author | Feng-Lung Tsai | en |
dc.date.accessioned | 2024-08-26T16:25:46Z | - |
dc.date.available | 2024-08-27 | - |
dc.date.copyright | 2024-08-26 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-12 | - |
dc.identifier.citation | 1. Siegel, R. L.; Giaquinto, A. N.; Jemal, A. Cancer statistics, 2024. CA Cancer J Clin. 2024, 74, 12-49. doi: 10.3322/caac.21820.
2. Health Promotion, Ministry of Health and Welfare. Taiwan cancer registry introduction. http://tcr.cph.ntu.edu.tw/main.php?Page=N1. 3. Rawla, P.; Sunkara, T.; Barsouk, A. Epidemiology of colorectal cancer: incidence, mortality, survival, and risk factors. Gastroenterol. Rev. 2019, 14, 89-103. https://doi.org/10.5114/pg.2018.81072. 4. Shek, D.; Akhuba, L.; Carlino, M. S.; Nagrial, A.; Moujaber, T.; Read, S. A.; Gao, B.; Ahlenstiel, G. Immune-checkpoint inhibitors for metastatic colorectal cancer: A systematic review of clinical outcomes. Cancers. 2021, 13, 4345-4359. https://doi.org/10.3390/cancers13174345. 5. Vogel, J. D.; Felder, S. I.; Bhama, A. R.; Hawkins, A. T.; Langenfeld, S. J.; Shaffer, V. O.; Thorsen, A. J.; Weiser, M. R.; Chang, G. J.; Lightner, A. L.; Feingold, D. L.; Paquette, I. M. The American society of colon and rectal surgeons clinical practice guidelines for the management of colon cancer. Dis Colon Rectum. 2022, 65, 148-177. https://doi.org/10.1097/DCR.0000000000002323. 6. Biller, L.H.; Schrag, D. Diagnosis and treatment of metastatic colorectal cancer: A review. JAMA. 2021, 325, 669-685. https://doi.org/10.1001/jama.2021.0106. 7. Cervantes, A.; Adam, R.; Roselló, S.; Arnold, D.; Normanno, N.; Taïeb, J.; Seligmann, J.; De Baere, T.; Osterlund, P.; Yoshino, T.; Martinelli, E.; ESMO guidelines committee. metastatic colorectal cancer: ESMO clinical practice guideline for diagnosis, treatment and follow-up. Ann Oncol. 2023, 34, 10-32. doi: 10.1016/j.annonc.2022.10.003. 8. Hanahan, D.; Weinberg, R. A. The hallmarks of cancer. Cell. 2000, 100, 57-70. doi: 10.1016/s0092-8674(00)81683-9. 9. Hanahan, D.; Weinberg, R. A. Hallmarks of cancer: the next generation. Cell. 2011, 144, 646-674. https://doi.org/10.1016/j.cell.2011.02.013 10. Hanahan, D. Hallmarks of cancer: new dimensions. Cancer Discov. 2022, 12, 31-46. https://doi.org/10.1158/2159-8290.CD-21-1059 11. Yu, X.; Zhao, H.; Wang, R.; Chen, Y.; Ouyang, X.; Li, W.; Sun, Y.; Peng, A. Cancer epigenetics: from laboratory studies and clinical trials to precision medicine. Cell Death Discov. 2024, 10, 28. https://doi.org/10.1038/s41420-024-01803-z. 12. Ilango S.; Paital B.; Jayachandran P.; Padma PR.; Nirmaladevi R. Epigenetic alterations in cancer. Front Biosci (Landmark Ed). 2020, 25, 1058-1109. doi: 10.2741/4847. PMID: 32114424. 13. Nepali K.; Liou J.P. Recent developments in epigenetic cancer therapeutics: clinical advancement and emerging trends. J Biomed Sci. 2021, 28, 27. doi: 10.1186/s12929-021-00721-x 14. Park, S. Y.; Kim, J. S. A short guide to histone deacetylases including recent progress on class II enzymes. Exp Mol Med. 2020, 52, 204-212. https://doi.org/10.1038/s12276-020-0382-4. 15. Jung, G.; Hernández-Illán, E.; Moreira, L.; Balaguer, F.; Goel, A. Epigenetics of colorectal cancer: biomarker and therapeutic potential. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 111-130. https://doi.org/10.1038/s41575-019-0230-y. 16. Lao, V.V.; Grady, W.M. Epigenetics and colorectal cancer. Nat. Rev. Gastroenterol. Hepatol. 2011, 8, 686-700. https://doi.org/10.1038/nrgastro.2011.173. 17. Schneider, A.; Chatterjee, S.; Bousiges, O.; Selvi, B. R.; Swaminathan, A.; Cassel, R.; Blanc, F.; Kundu, T. K.; Boutillier, A. L. Acetyltransferases (HATs) as targets for neurological therapeutics. Neurotherapeutics. 2013, 10, 568-588. https://doi.org/10.1007/s13311-013-0204-7. 18. Li, Y.; Seto, E. HDACs and HDAC inhibitors in cancer development and therapy. Cold Spring Harb Perspect Med. 2016, 6, a026831. doi:10.1101/cshperspect.a026831 19. Deleu, S.; Menu, E.; Valckenborgh, E. V.; Van Camp, B.; Fraczek, J.; Vande Broek, I.; Rogiers, V.; Vanderkerken, K. Histone deacetylase inhibitors in multiple myeloma. Hematol Rev. 2009, 1, e9. https://doi.org/10.4081/hr.2009.e9. 20. Liang, T.; Wang, F.; Elhassan, R. M.; Cheng, Y.; Tang, X.; Chen, W.; Fang, H.; Hou, X. Targeting histone deacetylases for cancer therapy: Trends and challenges. Acta Pharm Sin B. 2023, 13, 2425-2463. doi: 10.1016/j.apsb.2023.02.007. 21. Luan, Y.; Liu, H.; Luan, Y.; Yang, Y.; Yang, J., Ren, KD. New insight in HDACs: Potential therapeutic targets for the treatment of atherosclerosis. Front Pharmacol. 2022, 13, 863677. doi:10.3389/fphar.2022.863677 22. Uba, A.İ.; Yelekçi, K. Exploration of the binding pocket of histone deacetylases: the design of potent and isoform-selective inhibitors. Turk J Biol. 2017, 41, 901-918. https://doi.org/10.3906/biy-1701-26. 23. Frazer, C.; Young, P. G. (2012). Phosphorylation mediated regulation of cdc25 activity, localization and stability. InTech. 2012, 395-436. doi: 10.5772/48315 24. Jin, H.; Liang, L.; Liu, L.; Deng, W.; Liu, J. HDAC inhibitor DWP0016 activates p53 transcription and acetylation to inhibit cell growth in U251 glioblastoma cells. J. Cell. Biochem. 2013, 114, 1498-1509. https://doi.org/10.1002/jcb.24491. 25. Glozak, M.A.; Sengupta, N.; Zhang, X.; Seto, E. Acetylation and deacetylation of non-histone proteins. Gene. 2005, 363, 15-23. https://doi.org/10.1016/j.gene.2005.09.010. 26. Lee, H.Y.; Nepali, K.; Huang, F.I.; Chang, C.Y.; Lai, M.J.; Li, Y.H.; Huang, H.L.; Yang, C.R.; Liou, J.P. (N-Hydroxycarbonylbenylamino)quinolines as selective histone deacetylase 6 inhibitors suppress growth of multiple myeloma in vitro and in vivo. J. Med. Chem. 2018, 61, 905-917. https://doi.org/10.1021/acs.jmedchem.7b01404. 27. Chen, C.; Wei, M.; Wang, C.; Sun, D.; Liu, P.; Zhong, X.; He, Q.; Yu, W. The histone deacetylase HDAC1 activates HIF1α/VEGFA signal pathway in colorectal cancer. Gene. 2020, 754, 144851. https://doi.org/10.1016/j.gene.2020.144851. 28. Weichert, W.; Röske, A.; Niesporek, S.; Noske, A.; Buckendahl, A.C.; Dietel, M.; Gekeler, V.; Boehm, M.; Beckers, T.; Denkert, C. Class I histone deacetylase expression has independent prognostic impact in human colorectal cancer: specific role of class I histone deacetylases in vitro and in vivo. Clin. Cancer Res. 2008, 14, 1669-1677. https://doi.org/10.1158/1078-0432.CCR-07-0990. 29. Shinke, G.; Yamada, D.; Eguchi, H.; Iwagami, Y.; Asaoka, T.; Noda, T.; Wada, H.; Kawamoto, K.; Gotoh, K.; Kobayashi, S.; Takeda, Y.; Tanemura, M.; Mori, M.; Doki, Y. Role of histone deacetylase 1 in distant metastasis of pancreatic ductal cancer. Cancer Sci. 2018, 109, 2520–2531. https://doi.org/10.1111/cas.13700. 30. Zhao, H.; Yu, Z.; Zhao, L.; He, M.; Ren, J.; Wu, H.; Chen, Q.; Yao, W.; Wei, M. HDAC2 overexpression is a poor prognostic factor of breast cancer patients with increased multidrug resistance-associated protein expression who received anthracyclines therapy. Jpn J Clin Oncol. 2016, 46, 893-902. https://doi.org/10.1093/jjco/hyw096. 31. Hayashi, A.; Horiuchi, A.; Kikuchi, N.; Hayashi, T.; Fuseya, C.; Suzuki, A.; Konishi, I.; Shiozawa, T. Type-specific roles of histone deacetylase (HDAC) overexpression in ovarian carcinoma: HDAC1 enhances cell proliferation and HDAC3 stimulates cell migration with downregulation of E-cadherin. Int J Cancer. 2010, 127, 1332-1346. https://doi.org/10.1002/ijc.25151. 32. Wang, Z.; Tang, F.; Hu, P.; Wang, Y.; Gong, J.; Sun, S.; Xie, C. HDAC6 promotes cell proliferation and confers resistance to gefitinib in lung adenocarcinoma. Oncol Rep. 2016, 36, 589-597. doi: 10.3892/or.2016.4811. 33. Yano, M.; Miyazawa, M.; Ogane, N.; Ogasawara, A.; Hasegawa, K.; Narahara, H.; Yasuda, M. Up-regulation of HDAC6 results in poor prognosis and chemoresistance in patients with advanced ovarian high-grade serous carcinoma. Anticancer Res. 2021, 41, 1647-1654. doi: 10.21873/anticanres.14927. 34. Vuletić, A.; Mirjačić Martinović, K.; Spasić, J. Role of histone deacetylase 6 and histone deacetylase 6 inhibition in colorectal cancer. Pharmaceutics. 2023, 16, 54. doi: 10.3390/pharmaceutics16010054. 35. Chen, C.H.; Lee, C.H.; Liou, J.P.; Teng, C.M.; Pan, S.L. Molecular mechanisms underlying the antitumor activity of (E)-N-hydroxy-3-(1-(4-methoxyphenylsulfonyl)-1,2,3,4-tetrahydroquinolin-6-yl)acrylamide in human colorectal cancer cells in vitro and in vivo. Oncotarget 2015, 6, 35991-36002. https://doi.org/10.18632/oncotarget.5475. 36. He, P.; Li, K.; Li, S.B.; Hu, T.T.; Guan, M.; Sun, F.Y.; Liu, W.W. Upregulation of AKAP12 with HDAC3 depletion suppresses the progression and migration of colorectal cancer. Int. J. Oncol. 2018, 52, 1305-1316. https://doi.org/10.3892/ijo.2018.4284. 37. Wilson, A.J.; Byun, D.S.; Popova, N.; Murray, L.B.; L’Italien, K.; Sowa, Y.; Arango, D.; Velcich, A.; Augenlicht, L.H.; Mariadason, J.M. Histone deacetylase 3 (HDAC3) and other class I HDACs regulate colon cell maturation and p21 expression and are deregulated in human colon cancer. J. Biol. Chem. 2006, 281, 13548-13558. https://doi.org/10.1074/jbc.M510023200. 38. Parveen, R.; Harihar, D.; Chatterji, B. P. Recent histone deacetylase inhibitors in cancer therapy. Cancer. 2023, 129, 3372-3380. https://doi.org/10.1002/cncr.34974. 39. Liu, Y. M.; Liou, J. P. An updated patent review of histone deacetylase (HDAC) inhibitors in cancer (2020 - present). Expert Opin Ther Pat. 2023, 33, 349-369. https://doi.org/10.1080/13543776.2023.2219393. 40. Bondarev, A.D.; Attwood, M.M.; Jonsson, J.; Chubarev, V.N.; Tarasov, V.V.; Schiöth, H.B. Recent developments of HDAC inhibitors: Emerging indications and novel molecules. Br. J. Clin. Pharmacol. 2021, 87, 4577-4597. https://doi.org/10.1111/bcp.14889 41. Mann, B. S.; Johnson, J. R.; Cohen, M. H.; Justice, R.; Pazdur, R. FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist. 2007, 12, 1247-1252. https://doi.org/10.1634/theoncologist.12-10-1247. 42. Chun, P. Histone deacetylase inhibitors in hematological malignancies and solid tumors. Arch Pharm Res. 2015, 38, 933-949. https://doi.org/10.1007/s12272-015-0571-1. 43. Bush, E. W.; McKinsey, T. A. Protein acetylation in the cardiorenal axis: The promise of histone deacetylase inhibitors. Circ Res. 2010, 106, 272-284. https://doi.org/10.1161/CIRCRESAHA.109.209338 44. Duvic, M.; Vu, J. Update on the treatment of cutaneous T-cell lymphoma (CTCL): Focus on vorinostat. Biologics. 2007, 1, 377-392. 45. Zeng, H.; Qu, J.; Jin, N.; Xu, J.; Lin, C.; Chen, Y.; Yang, X.; He, X.; Tang, S.; Lan, X.; Yang, X.; Chen, Z.; Huang, M.; Ding, J.; Geng, M. Feedback activation of leukemia inhibitory factor receptor limits response to histone deacetylase inhibitors in breast cancer. Cancer Cell. 2016, 30, 459-473. https://doi.org/10.1016/j.ccell.2016.08.001. 46. Slingerland, M.; Guchelaar, H. J.; Gelderblom, H. Histone deacetylase inhibitors: an overview of the clinical studies in solid tumors. Anti-Cancer Drugs. 2014, 25, 140-149. https://doi.org/10.1097/CAD.0000000000000040. 47. Du, L.; Musson, D. G.; Wang, A. Q. Stability studies of vorinostat and its two metabolites in human plasma, serum and urine. J Pharm Biomed Anal. 2006, 42(5), 556-564. https://doi.org/10.1016/j.jpba.2006.05.005. 48. Vu Khanh Hoa Le; Pham, T. P. D.; Truong, D. H. Delivery systems for vorinostat in cancer treatment: An updated review. J Drug Deliv Sci Technol. 2021, 61, 1773-2247. https://doi.org/10.1016/j.jddst.2021.102334. 49. Martinet, N.; Bertrand, P. Interpreting clinical assays for histone deacetylase inhibitors. Cancer Manag Res. 2011, 3, 117-141. https://doi.org/10.2147/CMR.S9661. 50. Lee, H.Y.; Chang, C.Y.; Su, C.J.; Huang, H.L.; Mehndiratta, S.; Chao, Y.H.; Hsu, C.M.; Kumar, S.; Sung, T.Y.; Huang, Y.Z. 2-(Phenylsulfonyl)quinoline N-hydroxyacrylamides as potent anticancer agents inhibiting histone deacetylase. Eur. J. Med. Chem. 2016, 122, 92-101. https://doi.org/10.1016/j.ejmech.2016.06.023. 51. West, A.C.; Johnstone, R.W. New and emerging HDAC inhibitors for cancer treatment. J. Clin. Investig. 2014, 124, 30-39. https://doi.org/10.1172/JCI69738. 52. Ding, L.; Cao, J.; Lin, W.; Chen, H.; Xiong, X.; Ao, H.; Yu, M.; Lin, J.; Cui, Q. The roles of cyclin-dependent kinases in cell-cycle progression and therapeutic strategies in human breast cancer. Int. J. Mol. Sci. 2020, 21, 1960. https://doi.org/10.3390/ijms21061960. 53. Dash, B.C.; El-Deiry, W.S. Phosphorylation of p21 in G2/M promotes cyclin B-Cdc2 kinase activity. Mol. Cell. Biol. 2005, 25, 3364-3387. https://doi.org/10.1128/MCB.25.8.3364-3387.2005. 54. Escargueil, A.E.; Larsen, A.K. Mitosis-specific MPM-2 phosphorylation of DNA topoisomerase II alpha is regulated directly by protein phosphatase 2A. Biochem. J. 2007, 403, 235-242. https://doi.org/10.1042/BJ20061460. 55. Huang, Y.C.; Huang, F.I.; Mehndiratta, S.; Lai, S.C.; Liou, J.P.; Yang, C.R. Anticancer activity of MPT0G157, a derivative of indolylbenzenesulfonamide, inhibits tumor growth and angiogenesis. Oncotarget. 2015, 6, 18590-18601. https://doi.org/10.18632/oncotarget.4068. 56. Tu, H.J.; Lin, Y.J.; Chao, M.W.; Sung, T.Y.; Wu, Y.W.; Chen, Y.Y.; Lin, M.H.; Liou, J.P.; Pan, S.L.; Yang, C.R. The anticancer effects of MPT0G211, a novel HDAC6 inhibitor, combined with chemotherapeutic agents in human acute leukemia cells. Clin. Epigenet. 2018, 10, 162. https://doi.org/10.1186/s13148-018-0595-8. 57. Qin, J.; Wen, B.; Liang, Y.; Yu, W.; Li, H. Histone modifications and their role in colorectal cancer (Review). Pathol. Oncol. Res. 2020, 26, 2023-2033. https://doi.org/10.1007/s12253-019-00663-8. 58. Müller, B.M.; Jana, L.; Kasajima, A.; Lehmann, A.; Prinzler, J.; Budczies, J.; Klaus-Jurgen, W.; Dietel, M.; Weichert, W.; Denkert, C. Differential expression of histone deacetylases HDAC1, 2 and 3 in human breast cancer-overexpression of HDAC2 and HDAC3 is associated with clinicopathological indicators of disease progression. BMC Cancer 2013, 13, 215. https://doi.org/10.1186/1471-2407-13-215. 59. Weichert, W.; Röske, A.; Gekeler, V.; Beckers, T.; Stephan, C.; Jung, K.; Fritzsche, F.R.; Niesporek, S.; Denkert, C.; Dietel, M.; et al. Histone deacetylases 1, 2 and 3 are highly expressed in prostate cancer and HDAC2 expression is associated with shorter PSA relapse time after radical prostatectomy. Br. J. Cancer. 2008, 98, 604-610. https://doi.org/10.1038/sj.bjc.6604199. 60. Weichert, W.; Röske, A.; Gekeler, V.; Beckers, T.; Ebert, M.P.; Pross, M.; Dietel, M.; Denkert, C.; Rocken, C. Association of patterns of class I histone deacetylase expression with patient prognosis in gastric cancer: a retrospective analysis. Lancet Oncol. 2008, 9, 139-148. https://doi.org/10.1016/S1470-2045(08)70004-4. 61. Minamiya, Y.; Ono, T.; Saito, H.; Takahashi, N.; Ito, M.; Mitsui, M.; Motoyama, S.; Ogawa, J. Expression of histone deacetylase 1 correlates with a poor prognosis in patients with adenocarcinoma of the lung. Lung Cancer. 2011, 74, 300-304. https://doi.org/10.1016/j.lungcan.2011.02.019. 62. Quint, K.; Agaimy, A.; Di Fazio, P.; Montalbano, R.; Steindorf, C.; Jung, R.; Hellerbrand, C.; Hartmann, A.; Sitter, H.; Neureiter, D.; et al. Clinical significance of histone deacetylases 1, 2, 3, and 7: HDAC2 is an independent predictor of survival in HCC. Virchows Arch. 2011, 459, 129-139. https://doi.org/10.1007/s00428-011-1103-0. 63. Stypula-Cyrus, Y.; Damania, D.; Kunte, D.P.; Cruz, M.D.; Subramanian, H.; Roy, H.K.; Backman, V. HDAC up-regulation in early colon field carcinogenesis is involved in cell tumorigenicity through regulation of chromatin structure. PLoS ONE. 2013, 8, e64600. https://doi.org/10.1371/journal.pone.0064600. 64. Bhaskara, S.; Chyla, B.J.; Amann, J.M.; Knutson, S.K.; Cortez, D.; Sun, Z.W.; Hiebert, S.W. Deletion of histone deacetylase 3 reveals critical roles in S phase progression and DNA damage control. Mol. Cell. 2008, 30, 61-72. https://doi.org/10.1016/j.molcel.2008.02.030. 65. Senese, S.; Zaragoza, K.; Minardi, S.; Muradore, I.; Ronzoni, S.; Passafaro, A.; Bernard, L.; Draetta, G.F.; Alcalay, M.; Seiser, C. Role for histone deacetylase 1 in human tumor cell proliferation. Mol. Cell. Biol. 2007, 27, 4784-4795. https://doi.org/10.1128/mcb.00494-07. 66. Lin, C. L.; Tsai, M. L.; Lin, C. Y.; Hsu, K. W.; Hsieh, W. S.; Chi, W. M.; Huang, L. C.; Lee, C. H. HDAC1 and HDAC2 double knockout triggers cell apoptosis in advanced thyroid cancer. Int J Mol Sci. 2019, 20, 454. https://doi.org/10.3390/ijms20020454 67. Eckschlager, T.; Plch, J.; Stiborova, M.; Hrabeta, J. Histone deacetylase inhibitors as anticancer drugs. Int. J. Mol. Sci. 2017, 18, 1414. https://doi.org/10.3390/ijms18071414. 68. Mrakovcic, M.; Kleinheinz, J.; Fröhlich, L.F. p53 at the crossroads between different types of HDAC inhibitor-mediated cancer cell death. Int. J. Mol. Sci. 2019, 20, 2415. https://doi.org/10.3390/ijms20102415. 69. Bao, L.; Diao, H.; Dong, N.; Su, X.; Wang, B.; Mo, Q.; Yu, H.; Wang, X.; Chen, C. Histone deacetylase inhibitor induces cell apoptosis and cycle arrest in lung cancer cells via mitochondrial injury and p53 up-acetylation. Cell Biol. Toxicol. 2016, 32, 469-482. https://doi.org/10.1007/s10565-016-9347-8. 70. Ryu, J.K.; Lee, W.J.; Lee, K.H.; Hwang, J.H.; Kim, Y.T.; Yoon, Y.B.; Kim, C.Y. SK-7041, a new histone deacetylase inhibitor, induces G2-M cell cycle arrest and apoptosis in pancreatic cancer cell lines. Cancer Lett. 2006, 237, 143-154. https://doi.org/10.1016/j.canlet.2005.05.040. 71. Luchenko, V.L.; Litman, T.; Chakraborty, A.R.; Heffner, A.; Devor, C.; Wilkerson, J.; Stein, W.; Robey, R.W.; Bangiolo, L.; Levens, D.; et al. Histone deacetylase inhibitor-mediated cell death is distinct from its global effect on chromatin. Mol. Oncol. 2014, 8, 1379-1392. https://doi.org/10.1016/j.molonc.2014.05.001. 72. Ahmed, D.; Eide, P.W.; Eilertsen, I.A.; Danielsen, S.A.; Eknæs, M.; Hektoen, M.; Lind, G.E.; Lothe, R.A. Epigenetic and genetic features of 24 colon cancer cell lines. Oncogenesis. 2013, 2, e71. https://doi.org/10.1038/oncsis.2013.35. 73. Di Gennaro, E.; Bruzzese, F.; Pepe, S.; Leone, A.; Delrio, P.; Subbarayan, P. R.; Avallone, A.; Budillon, A. Modulation of thymidilate synthase and p53 expression by HDAC inhibitor vorinostat resulted in synergistic antitumor effect in combination with 5FU or raltitrexed. Cancer Biol Ther, 2009, 8, 782-791. https://doi.org/10.4161/cbt.8.9.8118. 74. LaBonte, M.J.; Wilson, P.M.; Fazzone, W.; Groshen, S.; Lenz, H.J.; Ladner, R.D. DNA microarray profiling of genes differentially regulated by the histone deacetylase inhibitors vorinostat and LBH589 in colon cancer cell lines. BMC Med. Genom. 2009, 2, 67. https://doi.org/10.1186/1755-8794-2-67. 75. Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol. 2007, 35, 495-516. https://doi.org/10.1080/01926230701320337. 76. Henderson, C.; Mizzau, M.; Paroni, G.; Maestro, R.; Schneider, C.; Brancolini, C. Role of caspases, Bid, and p53 in the apoptotic response triggered by histone deacetylase inhibitors trichostatin-A (TSA) and suberoylanilide hydroxamic acid (SAHA). J. Biol. Chem. 2003, 278, 12579-12589. https://doi.org/10.1074/jbc.M213093200. 77. Lee, H.Y.; Tang, D.W.; Liu, C.Y.; Cho, E.C. A novel HDAC1/2 inhibitor suppresses colorectal cancer through apoptosis induction and cell cycle regulation. Chem. Biol. Interact. 2022, 352, 109778. https://doi.org/10.1016/j.cbi.2021.109778. 78. Bär, S.I.; Pradhan, R.; Biersack, B.; Nitzsche, B.; Höpfner, M.; Schobert, R. New chimeric HDAC inhibitors for the treatment of colorectal cancer. Arch. Pharm. 2023, 356, e2200422. https://doi.org/10.1002/ardp.202200422. 79. Ojha, R.; Nepali, K.; Chen, C.H.; Chuang, K.H.; Wu, T.Y.; Lin, T.E.; Hsu, K.C.; Chao, M.W.; Lai, M.J.; Lin, M.H.; et al. Isoindoline scaffold-based dual inhibitors of HDAC6 and HSP90 suppressing the growth of lung cancer in vitro and in vivo. Eur. J. Med. Chem. 2020, 190, 112086. https://doi.org/10.1016/j.ejmech.2020.112086. 80. Xu, W.; Xu, B.; Yao, Y.; Yu, X.; Shen, J. The novel HDAC inhibitor AR-42-induced anti-colon cancer cell activity is associated with ceramide production. Biochem. Biophys. Res. Commun. 2015, 463, 545-550. https://doi.org/10.1016/j.bbrc.2015.05.078. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95047 | - |
dc.description.abstract | 大腸直腸癌(Colorectal Cancer, CRC)是全球最常見的癌症之一,其在全球及台灣的發病率仍然很高。雖然傳統療法如化療和手術在治療大腸直腸癌方面已取得不錯的療效,但復發率以及晚期或轉移性大腸直腸癌的死亡率依然居高不下。因此,開發和探索新的藥物治療大腸直腸癌仍然是一個重要的研究目標。
組蛋白去乙醯酶(histone deacetylases, HDACs)與組蛋白乙醯轉化酶(histone acetyltransferase, HAT) 通過對組蛋白進行乙醯化和去乙醯化,調控組蛋白與DNA的纏繞而影響核小體的結構,進而影響基因表達。這種組蛋白以及非組蛋白受質的乙醯化平衡對細胞功能具有重要影響。在腫瘤發展中,組蛋白去乙醯酶扮演著多重關鍵角色,與癌症的發生及進展密切相關。組蛋白去乙醯酶的過度表現已被證實與多種癌症的發生和預後不良有關。特別是在大腸直腸癌中,組蛋白去乙醯酶的過度表達與患者的高死亡率顯著相關。 組蛋白去乙醯酶抑制劑(HDACIs)以組蛋白去乙醯酶作為抑制目標,在多項研究中證明其在癌症治療中具有抗癌效果。至今為止,已有五種組蛋白去乙醯酶抑制劑核准上市使用在血液腫瘤的治療上。然而,這些藥物僅核准適用於血液腫瘤。其在投予在實體腫瘤模式下的療效與安全性概況尚需進一步研究。在先前研究MPT0G236一個新型全方位組蛋白去乙醯酶抑制劑再多種不同癌症細胞株中展現良好的抑制效果。為了探索具更有效針且可應用在實體腫瘤的組蛋白去乙醯酶抑制劑,本研究聚焦於MPT0G236在大腸直腸癌的抗癌效果以及其作用機制的探討。 在本研究中,我們選用了HCT-116和HT-29這兩株大腸直腸癌細胞株。經MPT0G236處理後,結果顯示MPT0G236能有效降低HCT-116和HT-29細胞的活性並抑制其增殖。同時,當MPT0G236處理正常的人臍靜脈內皮細胞(Human Umbilical Vein Endothelial Cells, HUVECs)時,其對MPT0G236的敏感性相對於大腸直腸癌細胞較低,這表明MPT0G236對癌細胞具有選擇性毒性,而對正常細胞的影響較小。進一步的實驗顯示,MPT0G236對不同亞型的組蛋白去乙醯酶具有選擇性抑制效果,尤其對第I型(包括HDAC1、HDAC2和HDAC3)以及第IIb型(HDAC6)的活性展現出顯著的抑制作用。在奈米莫爾濃度範圍內,MPT0G236即可達到百分之五十的抑制濃度,且其抑制效果優於SAHA。此外,MPT0G236亦抑制了HCT-116和HT-29細胞中的組蛋白去乙醯酶活性,導致受質α-微管蛋白與組蛋白乙醯化水平(Acety-α-Tubulin和乙醯化組蛋白)的累積,呈現出濃度依賴性,且效果顯著優於SAHA。 在我們的研究中,通過流式細胞儀和西方墨點法分析顯示,MPT0G236處理大腸直腸癌細胞後,能夠調節細胞週期相關因子的表現,如p-MPM2、p-cdc2(Y15)、cyclin B1和cdc25C,促使大腸直腸癌細胞進入分裂前期/有絲分裂期的細胞週期阻滯(G2/M arrest)。此外,研究結果還表明,MPT0G236能夠通過凋亡蛋白依賴性途徑誘導大腸直腸癌細胞進入凋亡程序,活化外源性(extrinsic)和內源性(intrinsic)途徑的凋亡蛋白酶(caspase 8、caspase 9),以及下游的凋亡蛋白酶-3和PARP的裂解。這些結果表明,MPT0G236可以通過誘導細胞凋亡和細胞週期停滯來抑制大腸直腸癌細胞的增殖。 總結來說,我們的研究證實了MPT0G236在大腸直腸癌細胞中展現出顯著的抗癌效果,為一有潛力的新型的組蛋白去乙醯酶抑制劑,可作為大腸直腸癌及其他實體腫瘤的治療的後續發展,也為大腸直腸癌治療提供了新的思路和可能性,為未來的藥物開發研究奠定了基礎。 | zh_TW |
dc.description.abstract | Colorectal cancer (CRC) is one of the most commonly diagnosed malignancies, with high incidence rates both worldwide and in Taiwan. Although traditional treatments such as chemotherapy and surgery have shown satisfactory efficacy in treating CRC, the recurrence rate and mortality of advanced or metastatic CRC remain high. Therefore, developing and exploring new drug therapies for CRC continues to be an important research objective.
Histone deacetylases (HDACs) and histone acetyltransferases (HATs) regulate gene expression by modulating the acetylation and deacetylation of histones and non-histone substrates. The balance of histone and non-histone acetylation is crucial for cellular function, affecting the structural properties of histones and nucleosomes and also involved in the recruitment of oncogenic transcription factors. In tumor progression, HDACs play multiple critical roles and are closely associated with the development and progression of cancer. Overexpression of HDACs has been linked to the onset of various cancers and poor prognosis. Particularly in CRC, overexpression of HDACs is significantly correlated with high mortality rates in patients. HDAC inhibitors (HDACIs), have demonstrated anticancer effects in various of research. To date, five HDACIs have been approved for clinical use in treating hematologic malignancies. However, these drugs are only approved for hematologic cancers, and their efficacy and safety profiles in solid tumor models require further investigation. Research is still exploring more potent HDACIs for potential use in solid tumors in the future. In this study, we selected HCT-116 and HT-29 CRC cell lines. Treatment with MPT0G236 demonstrated a significant reduction in the viability and proliferation of both HCT-116 and HT-29 cells. Additionally, when MPT0G236 was applied to normal human umbilical vein endothelial cells (HUVECs), the sensitivity of these cells to MPT0G236 was relatively lower compared to CRC cells, indicating that MPT0G236 exhibits selective toxicity towards cancer cells with minimal impact on normal cells. Further experiments revealed that MPT0G236 selectively inhibits different HDAC subtypes, especially class I HDACs (including HDAC1, HDAC2, and HDAC3) and class IIb HDAC6, showing significant inhibitory effects, achieving an IC50 in the nanomolar concentration range. Its inhibitory effect was better than that of SAHA. Moreover, MPT0G236 inhibited HDAC activity in HCT-116 and HT-29 cells, leading to the accumulation of acetylated α-tubulin and acetylated histones, showing a concentration-dependent effect, with efficacy notably better than SAHA. Our research, using flow cytometry and Western blot analysis, demonstrated that MPT0G236 treatment modulates the expression of cell cycle-related factors, such as p-MPM2, p-cdc2 (Y15), cyclin B1, and cdc25C, causing CRC cells to undergo G2/M phase cell cycle arrest. Additionally, the results indicated that MPT0G236 induces apoptosis in CRC cells through a caspase-dependent pathway, activating both extrinsic and intrinsic apoptotic pathways, including activation of caspase 8, caspase 9, and caspase-3, and cleavage of PARP. These findings suggest that MPT0G236 inhibits CRC cell by inducing apoptosis and causing cell cycle arrest. In summary, our study confirms that MPT0G236 exhibits significant anticancer effects in CRC cells, representing a promising new HDAC inhibitor with potential for development as a treatment for CRC and other solid tumors. This study provides new insights and possibilities for CRC treatment and lays the foundation for future drug development research. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-26T16:25:46Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-26T16:25:46Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 致謝……………………………………………………………............................ ii
中文摘要………………………………………………………………………… iv Abstract………………………………………………………………………….. vii Contents…………………………………………………………………………… x Abbreviations……………………………………………………………………... xi 1. Introduction……………………………………………………………........... 1 1.1 Aim of study……………………………………………………………… 1 1.2 Literature review…………………………………………………………. 4 2. Materials & methods………………………………………………………… 41 2.1 Materials…………………………………………………………….......... 41 2.2 Methods……………………………………………………………........... 42 3. Results and discussion……………………………………………………….. 46 3.1 Results……………………………………………………………............. 46 3.2 Discussion……………………………………………………………....... 53 4. Conclusion…………………………………………………………….......…... 78 5. Publication…………………………………………………………….....…... 80 6. References……………………………………………………………............... 81 | - |
dc.language.iso | en | - |
dc.title | 新型全方位HDAC抑制劑MPT0G236對大腸直腸癌細胞的抗癌研究 | zh_TW |
dc.title | Anticancer study of a novel pan-HDAC inhibitor MPT0G236 in colorectal cancer cells | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 博士 | - |
dc.contributor.oralexamcommittee | 潘秀玲;顧記華;許麗卿;孔繁璐 | zh_TW |
dc.contributor.oralexamcommittee | Shiow-Lin Pan;JI-HUA GU;Lih-Ching Hsu;Fan-Lu Kung | en |
dc.subject.keyword | 大腸直腸癌,組蛋白去乙醯酶抑制劑,細胞週期停滯,細胞凋亡, | zh_TW |
dc.subject.keyword | Colorectal cancer,HDAC inhibitors,cell cycle arrest,apoptosis, | en |
dc.relation.page | 92 | - |
dc.identifier.doi | 10.6342/NTU202404176 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2024-08-12 | - |
dc.contributor.author-college | 醫學院 | - |
dc.contributor.author-dept | 藥學研究所 | - |
顯示於系所單位: | 藥學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 目前未授權公開取用 | 4.67 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。