Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95040
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝之真zh_TW
dc.contributor.advisorChih-Chen Hsiehen
dc.contributor.author蘇子恩zh_TW
dc.contributor.authorTzu-En Suen
dc.date.accessioned2024-08-26T16:23:44Z-
dc.date.available2024-08-27-
dc.date.copyright2024-08-26-
dc.date.issued2024-
dc.date.submitted2024-08-12-
dc.identifier.citation1. 蔡翌凡, 利用布朗動態法研究基材形貌對DNA在脂雙層上擴散及伸展行為之影響, in 化學工程學研究所. 2022, 國立台灣大學. p. 1-130.
2. 姜奕安, 利用布朗動態法研究基材曲率對脂質排列及DNA在脂雙層上自發伸展機制及侷限行為之影響, in 化學工程學研究所. 2020, 國立臺灣大學. p. 1-96.
3. 張名熠, 以布朗動態法研究表面正電荷密度及溶液離子強度對DNA在脂雙層上擴散行為之影響, in 化學工程學研究所. 2018, 國立臺灣大學: 台北市. p. 1-82.
4. Chang, C.-M., et al., Anomalous diffusion of DNA on a supported cationic lipid membrane. EPL (Europhysics Letters), 2015. 109(3): p. 38002.
5. Olson, D.J., et al., Electrophoresis of DNA adsorbed to a cationic supported bilayer. Langmuir, 2001. 17(23): p. 7396-7401.
6. Kahl, V., et al., Conformational dynamics of DNA‐electrophoresis on cationic membranes. Electrophoresis, 2009. 30(8): p. 1276-1281.
7. Manning, G.S., The persistence length of DNA is reached from the persistence length of its null isomer through an internal electrostatic stretching force. Biophysical journal, 2006. 91(10): p. 3607-3616.
8. 王靜寬, 模擬 DNA 於脂雙層上自發展開之行為, in 化學工程學研究所. 2016, 國立台灣大學. p. 1-83.
9. Teraoka, I., Polymer Solutions: an Introduction to Physical Properties 2002. John Wiley & Sons: New York, NY.
10. Gedde, U.W. and M.S. Hedenqvist, Conformations in Polymers, in Fundamental Polymer Science. 2019, Springer. p. 37-74.
11. MacKintosh, F.C., Active diffusion: the erratic dance of chromosomal loci. Proceedings of the National Academy of Sciences, 2012. 109(19): p. 7138-7139.
12. 張恩誠, 以隨機旋轉動力學法模擬侷限於二維狹縫中DNA之行為, in 化學工程學研究所. 2012, 國立臺灣大學: 台北市. p. 1-100.
13. Liu, Y., et al., Influences of three kinds of springs on the retraction of a polymer ellipsoid in dissipative particle dynamics simulation. Journal of Polymer Science Part B: Polymer Physics, 2010. 48(23): p. 2484-2489.
14. Huang, A. and A. Bhattacharya, DNA confined in a two-dimensional strip geometry. EPL (Europhysics Letters), 2014. 106(1): p. 18004.
15. Clark, M.A., J. Choi, and M. Douglas, Biology 2e. 2018: Rice University.
16. Lee, Y.-C., T.F. Taraschi, and N. Janes, Support for the shape concept of lipid structure based on a headgroup volume approach. Biophysical journal, 1993. 65(4): p. 1429.
17. Israelachvili, J.N., Intermolecular and surface forces. 2011: Academic press.
18. McMahon, H.T. and E. Boucrot, Membrane curvature at a glance. Journal of cell science, 2015. 128(6): p. 1065-1070.
19. Callan-Jones, A., B. Sorre, and P. Bassereau, Curvature-driven lipid sorting in biomembranes. Cold Spring Harbor perspectives in biology, 2011. 3(2): p. a004648.
20. 郭厚均, DNA 於脂雙層上自發伸展機制及侷限行為之研究, in 臺灣大學化學工程學研究所學位論文. 2016. p. 1-95.
21. Huang, M.-J., et al., Coarse-grain model for lipid bilayer self-assembly and dynamics: Multiparticle collision description of the solvent. The Journal of Chemical Physics, 2012. 137(5): p. 055101.
22. Skjevik, Å.A., et al., Simulation of lipid bilayer self-assembly using all-atom lipid force fields. Physical Chemistry Chemical Physics, 2016. 18(15): p. 10573-10584.
23. Cooke, I.R. and M. Deserno, Coupling between lipid shape and membrane curvature. Biophysical journal, 2006. 91(2): p. 487-495.
24. Terzi, M.M. and M. Deserno, Lipid membranes: From self-assembly to elasticity, in The Role of Mechanics in the Study of Lipid Bilayers. 2018, Springer. p. 105-166.
25. Cooke, I.R. and M. Deserno, Solvent-free model for self-assembling fluid bilayer membranes: stabilization of the fluid phase based on broad attractive tail potentials. The Journal of chemical physics, 2005. 123(22): p. 224710.
26. Dorfman, K.D., et al., Beyond Gel Electrophoresis: Microfluidic Separations, Fluorescence Burst Analysis, and DNA Stretching. Chemical Reviews, 2013. 113(4): p. 2584-2667.
27. Mazloomi, K. and N.B. Sulaiman. Retarding Forces Cancellation in Electrolyte Solutions-An Electrical Approach. 2013.
28. Stellwagen, E. and N.C. Stellwagen, Electrophoretic Mobility of DNA in Solutions of High Ionic Strength. Biophysical Journal, 2020. 118(11): p. 2783-2789.
29. Dalal, M., A Textbook of Physical Chemistry. Dalal Institute.
30. Maier, B. and J.O. Rädler, Conformation and self-diffusion of single DNA molecules confined to two dimensions. Physical review letters, 1999. 82(9): p. 1911.
31. Xie, A.F. and S. Granick, Phospholipid membranes as substrates for polymer adsorption. Nature Materials, 2002. 1(2): p. 129-133.
32. Maier, B. and J.O. Rädler, Conformation and Self-Diffusion of Single DNA Molecules Confined to Two Dimensions. Physical Review Letters, 1999. 82(9): p. 1911-1914.
33. Maier, B. and J.O. Rädler, DNA on fluid membranes: a model polymer in two dimensions. Macromolecules, 2000. 33(19): p. 7185-7194.
34. Olson, D.J., et al., Electrophoresis of DNA adsorbed to a cationic supported bilayer. Langmuir, 2001. 17(23): p. 7396-7401.
35. 王柏翔, DNA 於脂雙層上擴散行為受離子強度與膜電荷密度影響之研究, in 化學工程學研究所. 2018, 國立臺灣大學. p. 1-78.
36. Hochrein, M.B., et al., DNA molecules on periodically microstructured lipid membranes: localization and coil stretching. Physical Review E, 2007. 75(2): p. 021901.
37. Sorre, B., et al., Curvature-driven lipid sorting needs proximity to a demixing point and is aided by proteins. Proceedings of the National Academy of Sciences, 2009. 106(14): p. 5622-5626.
38. Baumgart, T., et al., Thermodynamics and mechanics of membrane curvature generation and sensing by proteins and lipids. Annual review of physical chemistry, 2011. 62: p. 483-506.
39. Kamal, M.M., et al., Measurement of the membrane curvature preference of phospholipids reveals only weak coupling between lipid shape and leaflet curvature. Proceedings of the National Academy of Sciences, 2009. 106(52): p. 22245-22250.
40. Nkodo, A.E., et al., Diffusion coefficient of DNA molecules during free solution electrophoresis. Electrophoresis, 2001. 22(12): p. 2424-32.
41. Heller, C., T. Duke, and J.L. Viovy, Electrophoretic mobility of DNA in gels. II. Systematic experimental study in agarose gels. Biopolymers, 2004. 34(2): p. 249-259.
42. Dias, R., et al., Polyion adsorption onto catanionic surfaces. A Monte Carlo study. The Journal of Physical Chemistry B, 2005. 109(23): p. 11781-11788.
43. Saxton, M.J., Anomalous diffusion due to obstacles: a Monte Carlo study. Biophysical journal, 1994. 66(2): p. 394-401.
44. Li, J., et al., Effects of surface roughness on the self-diffusion dynamics of a single polymer. Soft Matter, 2018. 14(18): p. 3550-3556.
45. Li, J., et al., Unusual self-diffusion behaviors of polymer adsorbed on rough surfaces. The Journal of Chemical Physics, 2019. 150(6): p. 064902.
46. Yu, S., et al., Anomalous Diffusion of Polyelectrolyte Segments on Supported Charged Lipid Bilayers. Entropy, 2023. 25(5): p. 16.
47. 梁祐榮, 於脂雙層上利用表面電泳拉伸DNA以加速建立基因圖譜之研究, in 化學工程學研究所. 2021, 國立臺灣大學. p. 1-132.
48. Goetz, R. and R. Lipowsky, Computer simulations of bilayer membranes: self-assembly and interfacial tension. The Journal of chemical physics, 1998. 108(17): p. 7397-7409.
49. Goetz, R., G. Gompper, and R. Lipowsky, Mobility and elasticity of self-assembled membranes. Physical review letters, 1999. 82(1): p. 221.
50. Van Gunsteren, W. and H. Berendsen, Algorithms for Brownian dynamics. Molecular Physics, 1982. 45(3): p. 637-647.
51. Kohlmeyer, A. and J. Vermaas, TopoTools. 2017, Zenodo.
52. Buyong, T., Spatial Data Analysis for Geographic Information Science. 2007.
53. Hassan A. Karimi, B.K., Geospatial Data Science Techniques and Applications. 2020.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95040-
dc.description.abstract脂雙層因其與生物分子的高相容性,被廣泛應用於研究中。許多學者利用脂雙層作為平台,來操作和觀察DNA等生物分子的行為。在脂雙層上進行電泳,有助於研究生物分子的動態特性及其在不同環境下的反應,這對於了解細胞膜的物理化學特性、生物分子間的相互作用,以及開發新型醫療檢測技術具有重要意義。先前的實驗結果顯示,當DNA在脂雙層上電泳時,電泳遷移率會隨著直流電場和溶液離子強度的增加而上升,這與DNA在自由溶液中電泳時完全不同。因此,我們推論這些現象和DNA與脂雙層之間的相互作用有關,但實驗無法清楚揭示這些現象的機制,數值模擬成為理解這些機制的最佳方法。
本實驗室先前利用布朗動態法(Brownian dynamics, BD)模擬並分析DNA於脂雙層上的擴散行為,不但重現實驗中觀察的現象,並證實次擴散現象是由基材表面不平整引起的位能井造成的。接下來,我們將利用此模擬系統探討DNA在脂雙層上電泳的非預期現象。為了理解DNA與脂雙層之間的相互作用,我們先模擬了DNA在脂雙層上的電泳,發現電泳遷移率也會隨著直流電場和溶液離子強度增加而上升,與實驗結果一致。在成功重現這些實驗結果後,我們觀察DNA與脂雙層的互動情形。模擬結果顯示,當電場強度上升時,脂雙層中的正電脂質逐漸出現分佈不均勻的現象,且DNA部分鏈段在正電脂質密度較低的地方出現脫附。
因此,我們利用網格分析法計算正電脂質密度的變異數,量化其離散程度。結果顯示,隨著直流電場與溶液離子強度增加,正電脂質的密度變異數上升,且DNA鏈段脫離脂雙層靜電位能範圍的平均程度增加。為了更聚焦在對DNA產生靜電位能的帶正電脂質,我們計算了吸附於DNA上的正電脂質數目,發現該數目會隨著直流電場與溶液離子強度上升而下降。另外,由於帶負電的DNA與正電脂質移動方向相反,當電場強度和溶液離子強度上升時,吸附於DNA上的正電脂質數目減少,我們認為這會導致DNA受到正電脂質反向的拖曳力下降,進而使DNA電泳速度上升。因此,我們計算了吸附於DNA上的正電脂質數目與DNA電泳速度隨時間的變化,發現它們具有高度的負相關性。這代表電泳遷移率為電場的函數,是因為吸附於DNA上的正電脂質數目隨電場改變所造成的。
最後,為理解正電脂質分布不均的原因,我們計算了正電脂質的佩克萊數(Péclet number,Pe)。結果顯示,隨著直流電場強度增加,正電脂質佩克萊數上升。當電場強度使佩克萊數遠大於1時,流動的效果超過擴散的效應,導致正電脂質在脂雙層中分佈不均,模擬結果顯示佩克萊數上升,正電脂質的密度變異數就會越高。
zh_TW
dc.description.abstractLipid bilayers are widely used as platforms to observe and manipulate the behavior of biomolecules such as DNA and proteins. Conducting electrophoresis of biomolecules on lipid bilayers helps studying the dynamic properties of biomolecules and their responses to electric field. This is crucial for understanding cell membrane properties, biomolecular interactions, and developing new applications. Previous experimental results showed that DNA electrophoretic mobility on lipid bilayers increases with the DC electric field and solution ionic strength. These phenomena are very different from those in free solutions and not yet understood. We speculated that these phenomena are related to the interactions between DNA and the lipid bilayers. However, the mechanisms could not be elucidated through experiments alone, making molecular simulations an optimal method for understanding these mechanisms.
Our laboratory has previously used Brownian dynamics (BD) simulations to investigate the anaomalous DNA diffusion on lipid bilayers. In this research, we further utilized the same simulation system to investigate unexpected phenomena in DNA electrophoresis on lipid bilayers. We first simulated DNA electrophoresis on the bilayer and found that simulated electrophoretic mobility increases with the DC electric field and solution ionic strength, consistent with experimental results. Along with the increasing DNA mobility, we also observed that the positively charged lipids in the bilayer exhibited increasingly uneven distribution, and some segments of the DNA detached from regions with low positive lipid density.
We quantified the inhomogeneity of positively charged lipid distribution and found it increases with the electric field and ionic strength, leading to greater degree of DNA detachment. As DNA segments detach from lipid bilayers, the number of positively charged lipids adsorbed onto DNA decreases. The reduction in adsorbed lipids reduces the drag force applied on DNA, causing the increase of DNA electrophoretic mobility.
Finally, to understand the cause of the uneven distribution of positively charged lipids, we calculated the Péclet number (Pe) for the positive lipids. The results indicated that with an increase in DC electric field strength, the Péclet number rose. When the electric field strength increased such that the Péclet number was significantly greater than 1, the convective effects dominated over diffusion, leading to an uneven distribution of positively charged lipids in the lipid bilayer. The simulation results showed that as the Péclet number increased, so did the variance in positive lipid density.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-26T16:23:43Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-26T16:23:44Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents謝辭 i
摘要 iii
Abstract v
目次 vii
圖次 x
表次 xxiv
符號表 xxv
第1章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
第2章 文獻回顧 3
2.1 DNA的物理性質 3
2.1.1 去氧核糖核苷酸(DNA) 3
2.1.2 堅韌長度(Persistence length) 4
2.1.3 輪廓長度(Contour length, Lc) 5
2.1.4 環動半徑(Radius of gyration) 5
2.1.5 擴散行為(Diffusion behavior) 7
2.2 DNA高分子模型 8
2.2.1 Bead-spring model 10
2.3 脂質 12
2.3.1 脂質結構 12
2.3.2 脂質構型與自組裝 13
2.3.3 膜曲率與脂質於彎曲面排序(Lipid sorting) 15
2.4 脂質模型 16
2.4.1 模擬脂質構型對脂質排序之影響 16
2.4.2 模擬尾基之間的疏水作用力對脂質自組裝之影響 19
2.5 電動力學 21
2.5.1 電雙層 21
2.5.2 帶電粒子在溶液中的受力情形 24
2.5.3 電泳 26
2.6 實驗上DNA在脂雙層上的行為 27
2.6.1 DNA吸附於帶正電脂雙層 27
2.6.2 DNA之電泳行為 39
2.7 模擬上DNA吸附於脂雙層上行為之研究 50
2.7.1 模擬高分子在二維平面之行為 51
2.7.2 模擬DNA在脂雙層平面上的擴散行為 56
2.7.3 基材形貌對DNA在脂雙層上自發性伸展及次擴散的影響 60
2.8 本研究之目的與模擬策略設計 69
第3章 模擬方法 71
3.1 布朗動態法(BD) 71
3.2 本研究脂質模型 74
3.2.1 體積排斥力 75
3.2.2 FENE彈簧力 76
3.2.3 靜電作用力 77
3.2.4 疏水作用力 78
3.3 脂質與基材間的作用力 79
3.4 本研究DNA模型 80
3.5 週期性邊界(Period boundary conditions, PBC) 81
3.6 模擬參數 81
第4章 結果與討論 83
4.1 模擬直流電場與離子強度對DNA在脂雙層上電泳行為之影響 83
4.1.1 模擬直流電場與離子強度和DNA電泳遷移率關係與實驗結果之比較 84
4.1.2 直流電場與離子強度對DNA在脂雙層上電泳影響之總結 88
4.2 探討直流電場與離子強度如何影響DNA電泳遷移率 89
4.2.1 改變直流電場強度對DNA在脂雙層上行為的影響 89
4.2.2 改變離子強度對DNA在脂雙層上行為的影響 93
4.2.3 評估帶正電脂質分布情形 95
4.3 探討正電脂質分布之效應 103
4.3.1 正電脂質分布對DNA電泳行為之影響 104
4.3.2 正電脂質不均勻分布原因之分析 123
第5章 結論 127
第6章 參考文獻 130
-
dc.language.isozh_TW-
dc.title利用布朗動態法研究電場與離子強度對DNA吸附於脂雙層上電泳行為之影響zh_TW
dc.titleUsing Brownian Dynamics Simulations to Investigate the Effects of Electric Field and Ionic Strength on Electrophoresis of DNA Adsorbed on Lipid Bilayersen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李旻璁;游琇伃;趙玲zh_TW
dc.contributor.oralexamcommitteeMing-Tsung Lee;Hsiu-Yu Yu;Ling Chaoen
dc.subject.keywordDNA,脂雙層,布朗動態法,DNA電泳,直流電場,離子強度,zh_TW
dc.subject.keywordDNA,Lipid bilayers,Brownian dynamics,DNA electrophoresis,direct current (DC) field,ionic strength,en
dc.relation.page133-
dc.identifier.doi10.6342/NTU202402868-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-13-
dc.contributor.author-college工學院-
dc.contributor.author-dept化學工程學系-
dc.date.embargo-lift2029-08-06-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  目前未授權公開取用
10.24 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved