請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95038完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 江伯倫 | zh_TW |
| dc.contributor.advisor | Bor-Luen Chiang | en |
| dc.contributor.author | 謝豐謄 | zh_TW |
| dc.contributor.author | Feng-Teng Hsieh | en |
| dc.date.accessioned | 2024-08-26T16:23:06Z | - |
| dc.date.available | 2024-08-27 | - |
| dc.date.copyright | 2024-08-26 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-07 | - |
| dc.identifier.citation | Wang, Y., Liu, J., Burrows, P. D., Wang, J. Y. (2020). B Cell development and maturation. Adv Exp Med Biol, 1254, 1-22.
Eibel, H., Kraus, H., Sic, H., Kienzler, A. K., Rizzi, M. (2014). B cell biology: an overview. Curr Allergy Asthma Rep, 14(5), 434. Khan, W. N., Allman, D. (2019) Editorial overview: B cell shades of diversity and memory. Curr Opin Immunol, 57, 3-6. Suan, D., Sundling, C., Brink, R. (2017) Plasma cell and memory B cell differentiation from the germinal center. Curr Opin Immunol, 45, 97-102. Rastogi, I., Jeon, D., Moseman, J. E., Muralidhar, A., Potluri, H. K., McNeel, D. G. Role of B cells as antigen presenting cells. (2022). Front Immunol, 13, 954936. Vazquez, M. I., Catalan-Dibene, J., Zlotnik, A. B cells responses and cytokine production are regulated by their immune microenvironment. (2015). Cytokine, 74(2):318-26. de Gruijter, N. M., Jebson, B., Rosser, E. C. Cytokine production by human B cells: role in health and autoimmune disease. (2022). Clin Exp Immunol, 210(3):253-262. Fillatreau, S., Sweenie, C. H., McGeachy, M. J., Gray, D., Anderton, S.M. (2002). B cells regulate autoimmunity by provision of IL-10. Nat Immunol, 3(10), 944-950. Matsushita, T., Fujimoto, M., Hasegawa M, Komura K, Takehara K, Tedder T. F., Sato, S. (2006). Inhibitory role of CD19 in the progression of experimental autoimmune encephalomyelitis by regulating cytokine response. Am J Pathol, 168(3), 812-821. Watanabe, A., Rei, O. (2007). CD19 expression in B cells is important for suppression of contact hypersensitivity. Am J Pathol, 171(2), 560-570. Mizoguchi, A., Mizoguchi, E., Takedatsu, H., Blumberg, R. S., Bhan, A. K. (2002). Chronic intestinal inflammatory condition generates IL-10-producing regulatory B cell subset characterized by CD1d upregulation. Immunity, 16(2), 219-30. Mauri, C., Gray, D., Mushtaq, N., Londei, M. (2003). Prevention of arthritis by interleukin 10-producing B cells. J Exp Med, 197(4):489-501. Tadmor, T., Zhang, Y., Cho, H. M., Podack, E. R., Rosenblatt, J. D. (2011). The absence of B lymphocytes reduces the number and function of T-regulatory cells and enhances the anti-tumor response in a murine tumor model. Cancer Immunol Immunother, 60(5):609-19. Jansen, K., Cevhertas, L., Ma, S., Satitsuksanoa, P., Akdis, M., van de Veen, W. (2021). Regulatory B cells, A to Z. Allergy, 76(9), 2699-2715. Miles, K., Simpson, J., Brown, S., Cowan, G., Gray, D., Gray, M. (2018) Immune tolerance to apoptotic self is mediated primarily by regulatory B1a cells. Front Immunol, 8, 1952. Wu, Z. (2014). CX3CR1(+) B cells show immune suppressor properties. J Biol Chem, 289(33), 22630-22635. Yanaba, K., Bouaziz, J. D., Haas, K. M., Poe, J. C., Fujimoto, M., Tedder, T. F. (2008). A regulatory B cell subset with a unique CD1dhiCD5+ phenotype controls T cell-dependent inflammatory responses. Immunity, 28(5), 639-50. Matsushita, T., Tedder, T. F. (2011). Identifying regulatory B cells (B10 cells) that produce IL-10 in mice. Methods Mol Biol, 677, 99-111. Chaudhry, M. S., Karadimitris, A. (2014). Role and regulation of CD1d in normal and pathological B cells. J Immunol, 193(10), 4761-4768. Taher, T. E., Bystrom, J., Mignen, O., Pers, J. O., Renaudineau, Y., Mageed, R. A. (2020). CD5 and B lymphocyte responses: multifaceted effects through multitudes of pathways and channels. Cell Mol Immunol, 17(11), 1201-1203. Wang, K., Tao, L., Su, J., Zhang, Y., Zou, B., Wang, Y., Zou, M. et al. (2017). TLR4 supports the expansion of FasL+CD5+CD1dhi regulatory B cells, which decreases in contact hypersensitivity. Mol Immunol, 87, 188-199. Matsushita, T., Yanaba, K., Bouaziz, J. D., Fujimoto, M., Tedder, T. F. (2008). Regulatory B cells inhibit EAE initiation in mice while other B cells promote disease progression. J Clin Invest, 118(10), 3420-3430. Yanaba, K., Yoshizaki, A., Asano, Y., Kadono, T., Tedder, T. F., Sato, S. (2011). IL-10-producing regulatory B10 cells inhibit intestinal injury in a mouse model. Am J Pathol, 178(2), 735-743. Yang, M., Deng, J., Liu, Y., Ko, K. H., Wang, X., Jiao, Z., Wang, S. et al. (2012). IL-10-producing regulatory B10 cells ameliorate collagen-induced arthritis via suppressing Th17 cell generation. Am J Pathol, 180(6), 2375-2385. Watanabe, R., Ishiura, N., Nakashima, H., Kuwano, Y., Okochi, H., Tamaki, K., Sato, S. et al. (2010). Regulatory B cells (B10 cells) have a suppressive role in murine lupus: CD19 and B10 cell deficiency exacerbates systemic autoimmunity. J Immunol, 184(9), 4801-4809. Horikawa, M., Weimer, E. T., DiLillo, D. J., Venturi, G. M., Spolski, R., Leonard, W. J., Heise, M. T. et al. (2013). Regulatory B cell (B10 Cell) expansion during Listeria infection governs innate and cellular immune responses in mice. J Immunol, 190(3), 1158-68. Andreu, Z., Yáñez-Mó, M. (2014). Tetraspanins in extracellular vesicle formation and function. Front Immunol, 5, 442. Hemler, M. E. (2005). Tetraspanin functions and associated microdomains. Nat Rev Mol Cell Biol, 6(10), 801-811. Braza, F., Chesne, J., Durand, M., Dirou, S., Brosseau, C., Mahay, G., Cheminant, M. A. et al. (2015). A regulatory CD9(+) B-cell subset inhibits HDM-induced allergic airway inflammation. Allergy, 70(11), 1421-1431. Sun, J., Wang, J., Pefanis, E., Chao, J., Rothschild, G., Tachibana, I., Chen, J. K. et al. (2015). Transcriptomics identify CD9 as a marker of murine IL-10-competent regulatory B cells. Cell Rep, 13(6), 1110-1117. Brosseau, C., Durand, M., Colas, L., Durand, E., Foureau, A., Cheminant, M. A., Bouchaud, G. et al. (2018). CD9+ regulatory B cells induce T cell apoptosis via IL-10 and are reduced in severe asthmatic patients. Front Immunol, 9, 3034. Li, M., Wang, H., Ni, Y., Li, C., Xu, X., Chang, H., Xu, Z. et al. (2022). Helminth-induced CD9+ B-cell subset alleviates obesity-associated inflammation via IL-10 production. Int J Parasitol, 52(2-3), 111-123. Cerutti, A., Cols, M., Puga, I. (2013). Marginal zone B cells: virtues of innate-like antibody-producing lymphocytes. Nat Rev Immunol, 13(2), 118-132. Palm, A. E., Kleinau, S. (2021). Marginal zone B cells: From housekeeping function to autoimmunity? J Autoimmun, 119, 102627. Weill, J. C., Weller, S., Reynaud, C. A. (2009) Human marginal zone B cells. Annu Rev Immunol, 27, 267-285. Bankoti, R., Gupta, K., Levchenko, A., Stäger, S. (2012). Marginal zone B cells regulate antigen-specific T cell responses during infection. J Immunol, 188(8), 3961-3971. Doyon-Laliberté, K., Aranguren, M., Poudrier, J., Roger, M. (2022). Marginal zone B-cell populations and their regulatory potential in the context of HIV and other chronic inflammatory conditions. Int J Mol Sci, 23(6), 3372. Kuchroo, V. K., Dardalhon, V., Xiao, S., Anderson, A. C. (2008). New roles for TIM family members in immune regulation. Nat Rev Immunol, 8(8),577-580. Xiao, S., Najafian, N., Reddy, J., Albin, M., Zhu, C., Jensen, E., Imitola, J. et al. (2007). Differential engagement of Tim-1 during activation can positively or negatively costimulate T cell expansion and effector function. J Exp Med, 204(7), 1691-1702. Degauque, N., Mariat, C., Kenny, J., Zhang, D., Gao, W., Vu, M. D., Alexopoulos, S.et al. (2008). Immunostimulatory Tim-1-specific antibody deprograms Tregs and prevents transplant tolerance in mice. J Clin Invest, 118(2), 735-741. Ding, Q., Yeung, M., Camirand, G., Zeng, Q., Akiba, H., Yagita, H., Chalasani, G. et al. (2011). Regulatory B cells are identified by expression of TIM-1 and can be induced through TIM-1 ligation to promote tolerance in mice. J Clin Invest, 121(9), 3645-3656. Xiao, S., Brooks, C. R., Zhu, C., Wu, C., Sweere, J. M., Petecka, S., Yeste, A. et al. (2012). Defect in regulatory B-cell function and development of systemic autoimmunity in T-cell Ig mucin 1 (Tim-1) mucin domain-mutant mice. Proc Natl Acad Sci U S A, 109(30), 12105-12110. Yeung, M. Y., Ding, Q., Brooks, C. R., Xiao, S., Workman, C. J., Vignali, D. A., Ueno, T. et al. (2015). TIM-1 signaling is required for maintenance and induction of regulatory B cells. Am J Transplant, 15(4), 942-53. Bod, L., Kye, Y. C., Shi, J., Torlai Triglia, E., Schnell, A., Fessler, J., Ostrowski, S. M. et al. (2023). B-cell-specific checkpoint molecules that regulate anti-tumour immunity. Nature, 619(7969), 348-356. Mahajan, V. S., Mattoo, H., Sun, N., Viswanadham, V., Yuen, G. J., Allard-Chamard, H., Ahmad, M. et al. (2021). B1a and B2 cells are characterized by distinct CpG modification states at DNMT3A-maintained enhancers. Nat Commun, 12(1), 2208. Hardy, R. R., Hayakawa, K. (2015). Perspectives on fetal derived CD5+ B1 B cells. Eur J Immunol, 45(11), 2978-84. Montecino-Rodriguez, E., Fice, M., Casero, D., Berent-Maoz, B., Barber, C. L., Dorshkind, K. (2016). Distinct genetic networks orchestrate the emergence of specific waves of fetal and adult B-1 and B-2 development. Immunity, 45(3), 527-539. Sindhava, V. J. and Bondada, S. (2012). Multiple regulatory mechanisms control B-1 B cell activation. Front Immunol, 2012(3), 372. Stall, A. M., Wells, S. M., Lam, K. P. (1996). B-1 cells: unique origins and functions. Semin Immunol, 8(1), 45-59. Montecino-Rodriguez, E. and Dorshkind, K. (2012). B-1 B cell development in the fetus and adult. Immunity, 36(1), 13-21. Zhang, X., Deriaud, E., Jiao, X., Braun, D., Leclerc, C., Lo-Man, R. (2007). Type I interferons protect neonates from acute inflammation through interleukin 10-producing B cells. J Exp Med, 204(5), 1107-1118. Kobayashi, T., Oishi, K., Okamura, A., Maeda, S., Komuro, A., Hamaguchi, Y., Fujimoto, M. et al. (2019). Regulatory B1a cells suppress melanoma tumor immunity via IL-10 production and inhibiting T helper type 1 cytokine production in tumor-infiltrating CD8+ T cells. J Invest Dermatol, 139(7), 1535-1544. Kaku, H., Cheng, K. F., Al-Abed, Y., Rothstein, T. L. (2014). A novel mechanism of B cell-mediated immune suppression through CD73 expression and adenosine production. J Immunol, 193(12), 5904-5913. Macpherson, A. J. (2006). IgA adaptation to the presence of commensal bacteria in the intestine. Curr Top Microbiol Immunol, 308, 117-136. Macpherson, A. J., Harris, N. L. (2004). Interactions between commensal intestinal bacteria and the immune system. Nat Rev Immunol, 4(6), 478-485. Steele, L., Mayer, L., Berin, M. C. (2012). Mucosal immunology of tolerance and allergy in the gastrointestinal tract. Immunol Res, 54(1-3), 75-82. Batista, F. D., Harwood, N. E. (2009). The who, how and where of antigen presentation to B cells. Nat Rev Immunol, 9(1), 15-27. Spencer, J., Bemark, M. (2023). Human intestinal B cells in inflammatory diseases. Nat Rev Gastroenterol Hepatol, 20(4), 254-265. Pabst, O., Nowosad, C. R. (2023). B cells and the intestinal microbiome in time, space and place. Semin Immunol, 69, 101806. Liu, Z.Q., Wu, Y., Song, J. P., Liu, X., Liu, Z., Zheng, P. Y., Yang, P. C. (2013) Tolerogenic CX3CR1+ B cells suppress food allergy-induced intestinal inflammation in mice. Allergy, 68(10), 1241-1248. Dorshkind, K., Montecino-Rodriguez, E., Signer, R. A. (2009) The aging immune system: is it ever too old to become young again? Nat Rev Immunol, 9(1), 57-62. Kline, K. A., Bowdish, D. M. (2015). Infection in an aging population. Curr Opin Microbiol, 29, 63-67. Frasca, D., Blomberg, B.B. (2016). Inflammaging decreases adaptive and innate immune responses in mice and humans. Biogerontology, 17(1), 17-19. Linton, P. J., Dorshkind, K. (2004). Age-related changes in lymphocyte development and function. Nat Immunol, 5(2), 133-139. Briceño, O., Lissina, A., Wanke, K., Afonso, G., von Braun, A., Ragon, K., Miquel, T. et al. (2016) Reduced naïve CD8(+) T-cell priming efficacy in elderly adults. Aging Cell, 15(1), 14-21. Wertheimer, A. M., Bennett, M. S., Park, B., Uhrlaub, J. L., Martinez, C., Pulko, V., Currier, N. L. et al. (2014). Aging and cytomegalovirus infection differentially and jointly affect distinct circulating T cell subsets in humans. J Immunol, 192(5), 2143-2155. Lages, C. S., Suffia, I., Velilla, P. A., Huang, B., Warshaw. G., Hildeman, D. A., Belkaid, Y. et al. (2008). Functional regulatory T cells accumulate in aged hosts and promote chronic infectious disease reactivation. J Immunol, 181(3),1835-1848. Guo, Z., Wang, G., Wu, B., Chou, W. C., Cheng, L., Zhou, C., Lou, J. et al. (2020). DCAF1 regulates Treg senescence via the ROS axis during immunological aging. J Clin Invest, 130(11), 5893-5908. Kogut, I., Scholz, J. L., Cancro, M. P., Cambier, J. C. (2012). B cell maintenance and function in aging. Semin Immunol, 24(5), 342-349. Naradikian, M. S., Hao, Y., Cancro, M.P. (2016). Age-associated B cells: key mediators of both protective and autoreactive humoral responses. Immunol Rev, 269(1), 118-129. Almanan, M., Raynor, J., Ogunsulire, I., Malyshkina, A., Mukherjee, S., Hummel, S. A., Ingram, J. T. et al. (2020). IL-10-producing Tfh cells accumulate with age and link inflammation with age-related immune suppression. Sci Adv, 6(31), eabb0806. Lages, C. S., Suffia, I., Velilla, P. A., Huang, B., Warshaw, G., Hildeman, D. A., Belkaid, Y. et al. (2008). Functional regulatory T cells accumulate in aged hosts and promote chronic infectious disease reactivation. J Immunol, 181(3), 1835-1848. Guo, Z., Wang, G., Wu, B., Chou, W.C., Cheng, L., Zhou, C., Lou, J. et al. (2020). DCAF1 regulates Treg senescence via the ROS axis during immunological aging. J Clin Invest, 130(11),5893-5908. Johnston, R. D., Logan, R. F. (2008). What is the peak age for onset of IBD? Inflamm Bowel Dis, 14 Suppl 2, S4- Fu, Q., Lee, K. M., Huai, G., Deng, K., Agarwal, D., Rickert, C. G., Feeney, N. et al. (2021). Properties of regulatory B cells regulating B cell targets. Am J Transplant, 21(12), 3847-3857. Liu, Y., Luo, Y., Zhu, T., Jiang, M., Tian, Z., Tang, G., Liang, X. (2021). Regulatory B cells dysregulated T cell function in an IL-35-dependent way in patients with chronic hepatitis B. Front Immunol, 12, 653198. Xie, M., Zhu, Y., Zhou, Y. et al. (2023). Interleukin-35 -producing B cells rescues inflammatory bowel disease in a mouse model via STAT3 phosphorylation and intestinal microbiota modification. Cell Death Discov, 9, 67 de la Fuente, A. G., Dittmer, M., Heesbeen, E. J. et al. (2024). Ageing impairs the regenerative capacity of regulatory T cells in mouse central nervous system remyelination. Nat Commun, 15(1), 1870. Deng, B., Zhang, W., Zhu, Y., Li, Y., Li, D., Li, B. (2022). FOXP3+regulatory T cells and age-related diseases. FEBS J, 289(2), 319-335. Chekol A. E., Asmamaw D. T., Mengie A. T., Dagnew B. N., Agegnehu T. A., Tilahun M. Z. (2021). The role of regulatory B cells in health and diseases: A systemic review. J Inflamm Res, 14, 75-84 Alam, M. S., Cavanaugh, C., Pereira, M., Babu, U., Williams, K. (2020). Susceptibility of aging mice to listeriosis: Role of anti-inflammatory responses with enhanced Treg-cell expression of CD39/CD73 and Th-17 cells. Int J Med Microbiol, 310(2), 151397. Michaud, M., Balardy, L., Moulis, G., Gaudin, C., Peyrot, C., Vellas, B., Cesari, M. et al. (2013). Proinflammatory cytokines, aging, and age-related diseases. J Am Med Dir Assoc, 14(12), 877-82. Rosser, E. C., Oleinika, K., Tonon, S., Doyle, R., Bosma, A., Carter, N. A., Harris, K. A. et al. (2014). Regulatory B cells are induced by gut microbiota-driven interleukin-1β and interleukin-6 production. Nat Med, 20(11), 1334-9. Evans, J. G., Chavez-Rueda, K. A., Eddaoudi, A., Meyer-Bahlburg, A., Rawlings, D. J., Ehrenstein, M. R., Mauri, C. (2007). Novel suppressive function of transitional 2 B cells in experimental arthritis. J Immunol, 178(12), 7868-78. Song, Y., Shen, H., Schenten, D., Shan, P., Lee, P. J., Goldstein, D. R. (2012). Aging enhances the basal production of IL-6 and CCL2 in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol, 32(1), 103-9. Rosser, E. C., Mauri, C. (2015). Regulatory B cells: origin, phenotype, and function. Immunity, 42(4), 607-12. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95038 | - |
| dc.description.abstract | 調節性 B 細胞 (Regulatory B cells, Bregs)是一類對免疫調節至關重要的B細胞,其定義主要依賴於它們產生的IL-10、IL-35和TGF-β等功能性分子,而不像Tregs一樣有明確的標誌分子(如Foxp3)。本研究探討了不同年齡組別小鼠脾臟和腹膜沖洗細胞以及Peyer’s patches中的Bregs族群,也對其功能性分子IL-10以及TGF-β的表現進行探討。我們將實驗分為成年組、中年組與老年組小鼠,並使用流式細胞儀分析Bregs族群,檢測脾臟中B10細胞(CD1dhiCD5+)、CD9+ B細胞、CD21hiCD23- MZ B細胞和Tim-1+ B細胞,這些Bregs族群在老化過程中呈現上升的趨勢。在腹膜沖洗細胞中,我們發現B1a細胞在中年組的比例也有增加的趨勢。這可能表示在老化過程中,腹腔中聚集了B1a細胞。而後我們分析了PP中的tolerogenic B cells (TolBC) 族群,結果顯示其比例在成年組和中年組之間保持相對一致,然而在老年組中卻顯著的上升,這些細胞的誘導Treg細胞的能力仍需要進一步研究。然後我們探討脾臟Bregs中IL-10+細胞的比例:我們發現在中年組脾臟B細胞中,IL-10+細胞的比例在脾臟Breg族群有上升的趨勢,這可能與免疫調節和老化過程有關,而將Breg純化出來進行功能性探討發現,B10、CD9+ B、B1a細胞分泌IL-10的能力在中年組相較於成年組有增加的情況,TGF-β的分泌則沒有顯著的差別,各Breg誘導T細胞死亡在年紀間沒有差別,誘導Treg分化的能力也在年紀組別間沒有顯著差別,然而,CD9+ B細胞、B1a細胞在中年組抑制T細胞增殖的能力顯著高於成年組,顯示老化可能使Breg的能力增加。整體而言,大部份Breg族群與IL-10在中年組中有增加的趨勢,並且抑制T細胞的功能也隨之上升,然而這背後的分子機制以及造成差異的原因仍有待進一步確認。 | zh_TW |
| dc.description.abstract | Regulatory B cells (Bregs) are a crucial subset of B cells involved in immune regulation, primarily defined by their production of functional molecules such as IL-10, IL-35, and TGF-β, unlike Tregs which have clear markers like Foxp3. This study investigated Breg populations in the spleen, peritoneal lavage cells, and Peyer's patches of mice from different age groups, focusing on the expression of functional molecules IL-10 and TGF-β. We divided the studying groups into young-adult, middle-aged, and old mice groups and used flow cytometry to analyze Breg populations. In the spleen, we examined B10 cells (CD1dhiCD5+), CD9+ B cells, CD21hiCD23- marginal zone (MZ) B cells, and Tim-1+ B cells, all of which showed an increasing trend with aging. In peritoneal cavity cells, we observed an increase in the proportion of B1a cells in the middle-aged and old group, indicating an accumulation of B1a cells in the peritoneum during aging. Next, we analyzed the tolerogenic B cells (TolBC) population in Peyer's patches. The results showed that its proportion remained relatively consistent between the adult and middle-aged groups but significantly increased in the old group. The ability of these cells to induce Treg cells still requires further investigation. We then examined the proportion of IL-10+ cells among splenic Bregs and found an increasing trend in the middle-aged group, which might be related to immune regulation and aging. Functional analysis of purified Bregs revealed that B10, CD9+ B, and B1a cells had an increased ability to secrete IL-10 in the middle-aged group compared to the young-adult group, while the secretion of TGF-β did not show significant differences. The ability of different Breg subsets to induce T cell death and Treg differentiation did not significantly vary with age. However, CD9+ B cells and B1a cells in the middle-aged group showed a significantly higher ability to inhibit T cell proliferation than those in the adult group, suggesting that aging might affect Breg function. Overall, most Breg populations and IL-10 production showed an increasing trend in the middle-aged group, along with an enhanced ability to inhibit T cell proliferation. However, the underlying molecular mechanisms and reasons for these changes still require further investigation. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-26T16:23:06Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-26T16:23:06Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
誌謝 II 中文摘要 IV Abstract V Abbreviation VII Content VIII Contents of Figures XIII Chapter 1. Introduction 1 Part I. Background 2 1. Overview of regulatory B cells 2 1.1 Regulatory B cells (Bregs) 2 1.1.1 Splenic regulatory B cell subsets 4 1.1.1.1 B10 cell (CD19+CD1dhiCD5+) 4 1.1.1.2 CD9+ B cells (CD19+CD9+) 5 1.1.1.3 Marginal zone B cells (CD19+CD21hiCD23-) 6 1.1.1.4 Tim-1+ B cells (CD19+Tim-1+) 6 1.1.2 Peritoneal regulatory B cell subsets 7 1.1.3 Intestinal mucosa-derived regulatory B cell subset 9 2. Aging immune system 10 2.1 T cell compartment 10 2.2 B cell compartment 11 Part II. Statement of the Motives 11 Part III. Study Aims 12 Chapter 2. Materials and Methods 13 Part I. Materials 14 1. Animals 14 2. Cell culture 14 2.1 Culture medium and buffer 14 2.2 MACS cell purification 15 2.3 Mitogen used in cell culture 16 2.4 Proliferation assay 16 2.5 CFSE assay 17 3. Flow cytometry 17 3.1 Buffer 17 3.2 Antibodies used for flow cytometry 18 3.3 Device used for analysis 18 4. Enzyme-linked immunosorbent assay (ELISA) 19 Part II. Methods 20 1. Preparation of lymphocytes 20 1.1 Splenocytes 20 1.2 Peritoneal wash-out cells (PWCs) 20 1.3 B220+ B cells isolation 20 1.4 CD4+CD25- and CD4+CD25+ T cells (nTreg) isolation 21 1.5 Regulatory B cells isolation 22 1.6 Stimulation of B cells 22 2. Flow cytometry 22 2.1 Surface-marker staining 22 2.2 Intracellular staining 23 3. Suppression assay 24 3.1 Regulatory B cell activation 24 3.2 Suppression assay by [3H]-incorporation assay 24 3.3 Suppression assay by CFSE 24 4. Enzyme-linked immunosorbent assay (ELISA) 25 5. Statistical analysis 26 Chapter 3. Results 27 1. Regulatory B cells population in the spleen show an increasing trend with age 28 2. The population of B1a cells in peritoneal wash-out cells (PWCs) shows an increasing trend with age 29 3. The population of the tolerogenic B cells (TolBCs) in Peyer’s patches (PP) shows an increasing trend with age 29 4. The overlap among B10 cells (CD1dhiCD5+), CD9+ B cells, and MZ B cells (CD21hiCD23-) in young-adult, middle-aged and old mice 30 5. The proportion of IL-10+ cells in splenic Bregs shows an increasing trend with age 31 6. The proportion of FasL+ cells in Breg cells did not vary with age 33 7. In vitro protocol for activating purified Breg cells and assessing their functionality 33 8. The purity of purified cells 34 9. IL-10 production by purified Breg cells increased with age 34 10. TGF-β production by purified Breg cells did not significantly vary with age 35 11. The ability of B10 cells to induce T cell death did not significantly vary with age 36 12. CD9+ B cells and B1a cells did not significantly induce T cell death 36 13. The ability of B10 cells and CD9+ B cells to induce Tregs does not significantly change with age 37 14. B1a cells did not significantly induce Treg cells 37 15. The suppressive function of B10 cells did not significantly change with age 38 16. CD9+ B cells of the middle-aged mice had better suppressive function 38 17. B1a cells of the middle-aged mice had better suppressive function 39 Chapter 4. Discussion 40 Figures 47 References 78 | - |
| dc.language.iso | en | - |
| dc.subject | IL-10 | zh_TW |
| dc.subject | 調節性B細胞 | zh_TW |
| dc.subject | 老化 | zh_TW |
| dc.subject | 免疫調節 | zh_TW |
| dc.subject | TGF-β | zh_TW |
| dc.subject | TGF-β | en |
| dc.subject | Immune regulation | en |
| dc.subject | Aging | en |
| dc.subject | IL-10 | en |
| dc.subject | Regulatory B cells | en |
| dc.title | 探討年齡對調節性B細胞的族群與功能差異的影響 | zh_TW |
| dc.title | Study on Population and Functional Characterization of Regulatory B Cells Among Different Age Groups | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 繆希椿;劉峰誠 | zh_TW |
| dc.contributor.oralexamcommittee | Shi-Chuen Miaw;Feng-Cheng Liu | en |
| dc.subject.keyword | 調節性B細胞,IL-10,TGF-β,免疫調節,老化, | zh_TW |
| dc.subject.keyword | Regulatory B cells,IL-10,TGF-β,Immune regulation,Aging, | en |
| dc.relation.page | 88 | - |
| dc.identifier.doi | 10.6342/NTU202403576 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-08 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 免疫學研究所 | - |
| 顯示於系所單位: | 免疫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 12.05 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
