Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95035
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳建甫zh_TW
dc.contributor.advisorChien-Fu Chenen
dc.contributor.author張淮瀚zh_TW
dc.contributor.authorHuai-Han Changen
dc.date.accessioned2024-08-26T16:22:13Z-
dc.date.available2024-08-27-
dc.date.copyright2024-08-26-
dc.date.issued2024-
dc.date.submitted2024-08-12-
dc.identifier.citationF. Zapata, J. M. Matey, G. Montalvo, and C. García-Ruiz, "Chemical classification of new psychoactive substances (NPS)," Microchemical Journal, vol. 163, 2021.
F. Schifano et al., "The clinical challenges of synthetic cathinones," Br J Clin Pharmacol, vol. 86, no. 3, pp. 410-419, Mar 2020.
H. Chou et al., "Synthetic cathinone poisoning from ingestion of drug-laced “instant coffee packets” in Taiwan," Human & Experimental Toxicology, vol. 40, no. 9, pp. 1403-1412, 2021.
A. M. Leffler, P. B. Smith, A. de Armas, and F. L. Dorman, "The analytical investigation of synthetic street drugs containing cathinone analogs," Forensic science international, vol. 234, pp. 50-56, 2014.
M. J. Valente, P. Guedes de Pinho, M. de Lourdes Bastos, F. Carvalho, and M. Carvalho, "Khat and synthetic cathinones: a review," Archives of toxicology, vol. 88, pp. 15-45, 2014.
M. Majchrzak, R. Celiński, P. Kuś, T. Kowalska, and M. Sajewicz, "The newest cathinone derivatives as designer drugs: an analytical and toxicological review," Forensic toxicology, vol. 36, pp. 33-50, 2018.
J. B. Zawilska and J. Wojcieszak, "Designer cathinones—an emerging class of novel recreational drugs," Forensic science international, vol. 231, no. 1-3, pp. 42-53, 2013.
M. Paillet-Loilier, A. Cesbron, R. Le Boisselier, J. Bourgine, and D. Debruyne, "Emerging drugs of abuse: current perspectives on substituted cathinones," Substance abuse and rehabilitation, pp. 37-52, 2014.
C. F. Oliver et al., "Synthetic cathinone adulteration of illegal drugs," Psychopharmacology, vol. 236, pp. 869-879, 2019.
N. Fontanals, R. Marcé, and F. Borrull, "Solid-phase extraction followed by liquid chromatography-high resolution mass spectrometry to determine synthetic cathinones in different types of environmental water samples," Journal of Chromatography A, vol. 1524, pp. 66-73, 2017.
S.-Y. Fan et al., "A LC-MS/MS method for determination of 73 synthetic cathinones and related metabolites in urine," Forensic Science International, vol. 315, p. 110429, 2020.
K. M. Mohamed, A. H. Al-Hazmi, A. M. Alasiri, and M. E.-S. Ali, "A GC–MS method for detection and quantification of cathine, cathinone, methcathinone and ephedrine in oral fluid," Journal of chromatographic science, vol. 54, no. 8, pp. 1271-1276, 2016.
G. Mercieca, S. Odoardi, M. Cassar, and S. S. Rossi, "Rapid and simple procedure for the determination of cathinones, amphetamine-like stimulants and other new psychoactive substances in blood and urine by GC–MS," Journal of pharmaceutical and biomedical analysis, vol. 149, pp. 494-501, 2018.
T. J. Trinklein, M. Thapa, L. A. Lanphere, J. A. Frost, S. M. Koresch, and J. H. Aldstadt III, "Sequential injection analysis coupled to on-line benchtop proton NMR: Method development and application to the determination of synthetic cathinones in seized drug samples," Talanta, vol. 231, p. 122355, 2021.
T. Cooman, C. E. Ott, K. A. Dalzell, A. Burns, E. Sisco, and L. E. Arroyo, "Screening of seized drugs utilizing portable Raman spectroscopy and direct analysis in real time-mass spectrometry (DART-MS)," Forensic Chemistry, vol. 25, p. 100352, 2021.
I. Razavipanah, E. Alipour, B. Deiminiat, and G. H. Rounaghi, "A novel electrochemical imprinted sensor for ultrasensitive detection of the new psychoactive substance “Mephedrone”," Biosensors and Bioelectronics, vol. 119, pp. 163-169, 2018.
L. McNeill et al., "Origami chips: Development and validation of a paper-based Lab-on-a-Chip device for the rapid and cost-effective detection of 4-methylmethcathinone (mephedrone) and its metabolite, 4-methylephedrine in urine," Forensic Chemistry, vol. 22, p. 100293, 2021.
P. Wägli, Y.-C. Chang, A. Homsy, L. Hvozdara, H. P. Herzig, and N. F. De Rooij, "Microfluidic droplet-based liquid–liquid extraction and on-chip IR spectroscopy detection of cocaine in human saliva," Analytical chemistry, vol. 85, no. 15, pp. 7558-7565, 2013.
E. Guler et al., "Mobile phone sensing of cocaine in a lateral flow assay combined with a biomimetic material," Analytical chemistry, vol. 89, no. 18, pp. 9629-9632, 2017.
T. Bu, P. Jia, X. Sun, Y. Liu, Q. Wang, and L. Wang, "Hierarchical molybdenum disulfide nanosheets based lateral flow immunoassay for highly sensitive detection of tetracycline in food samples," Sensors and Actuators B: Chemical, vol. 320, p. 128440, 2020.
Z. Rong et al., "Integrated fluorescent lateral flow assay platform for point-of-care diagnosis of infectious diseases by using a multichannel test cartridge," Sensors and Actuators B: Chemical, vol. 329, p. 129193, 2021.
E. B. Bahadır and M. K. Sezgintürk, "Lateral flow assays: Principles, designs and labels," TrAC Trends in Analytical Chemistry, vol. 82, pp. 286-306, 2016.
T. Guan et al., "An ultrasensitive microfluidic chip-based immunoassay for multiplex determination of 11 PDE-5 inhibitors in adulterated health foods," Sensors and Actuators B: Chemical, vol. 358, p. 131450, 2022.
F. Cui, M. Rhee, A. Singh, and A. Tripathi, "Microfluidic sample preparation for medical diagnostics," Annual review of biomedical engineering, vol. 17, no. 1, pp. 267-286, 2015.
K. F. Lei, "Microfluidic systems for diagnostic applications: A review," Journal of laboratory automation, vol. 17, no. 5, pp. 330-347, 2012.
M. Alidoust, M. Baharfar, M. Manouchehri, Y. Yamini, M. Tajik, and S. Seidi, "Emergence of microfluidic devices in sample extraction; an overview of diverse methodologies, principals, and recent advancements," TrAC Trends in Analytical Chemistry, vol. 143, p. 116352, 2021.
L. Capretto, W. Cheng, M. Hill, and X. Zhang, "Micromixing within microfluidic devices," Microfluidics: technologies and applications, pp. 27-68, 2011.
N. El-Sayed and M. Schneider, "Advances in biomedical and pharmaceutical applications of protein-stabilized gold nanoclusters," Journal of Materials Chemistry B, vol. 8, no. 39, pp. 8952-8971, 2020.
Z. Tan, H. Xu, G. Li, X. Yang, and M. M. Choi, "Fluorescence quenching for chloramphenicol detection in milk based on protein-stabilized Au nanoclusters," Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 149, pp. 615-620, 2015.
Y. Niu et al., "Fluorescence switch of gold nanoclusters stabilized with bovine serum albumin for efficient and sensitive detection of cysteine and copper ion in mice with Alzheimer's disease," Talanta, vol. 223, p. 121745, 2021.
C. Ding, Y. Xu, Y. Zhao, H. Zhong, and X. Luo, "Fabrication of BSA@ AuNC-based nanostructures for cell fluoresce imaging and target drug delivery," ACS applied materials & interfaces, vol. 10, no. 10, pp. 8947-8954, 2018.
Y. R. Chiou, H. M. Pang, Y. F. Huang, and C. F. Chen, "A Semi‐Automatic Environmental Monitoring Device for Mercury and Cobalt Ion Detection," Small, vol. 20, no. 8, p. 2303871, 2024.
M. Mishima, C. Huh, H. Nakamura, M. Fujio, and Y. Tsuno, "Electron affinities of benzaldehydes. Substituent effects on stabilities of aromatic radical anions," Tetrahedron letters, vol. 34, no. 26, pp. 4223-4226, 1993.
Y.-T. Yen, T.-Y. Chen, C.-Y. Chen, C.-L. Chang, S.-C. Chyueh, and H.-T. Chang, "A photoluminescent colorimetric probe of bovine serum albumin-stabilized gold nanoclusters for new psychoactive substances: cathinone drugs in seized street samples," Sensors, vol. 19, no. 16, p. 3554, 2019.
J. Xie, Y. Zheng, and J. Y. Ying, "Protein-directed synthesis of highly fluorescent gold nanoclusters," Journal of the American Chemical Society, vol. 131, no. 3, pp. 888-889, 2009.
I. Hamzi, S. Bouchakour, B. Mostefa-Kara, and D. Villemin, "Efficient Solvent Extraction of Phenol Using Imidazolium-Based Ionic Liquids," Chemistry Proceedings, vol. 14, no. 1, p. 25, 2023.
R. Roche and F. Yalcinkaya, "Incorporation of PVDF nanofibre multilayers into functional structure for filtration applications," Nanomaterials, vol. 8, no. 10, p. 771, 2018.
H. Abriyanto, "Hydrophilic modification of PVDF membrane: A review," Journal of Membranes and Materials, vol. 1, no. 1, pp. 1-9, 2021.
M. Bayareh, M. N. Ashani, and A. Usefian, "Active and passive micromixers: A comprehensive review," Chemical Engineering and Processing-Process Intensification, vol. 147, p. 107771, 2020.
L. K. Sørensen, "Determination of cathinones and related ephedrines in forensic whole-blood samples by liquid-chromatography–electrospray tandem mass spectrometry," Journal of Chromatography B, vol. 879, no. 11-12, pp. 727-736, 2011.
V. Jain, S. Bhagat, and S. Singh, "Bovine serum albumin decorated gold nanoclusters: A fluorescence-based nanoprobe for detection of intracellular hydrogen peroxide," Sensors and Actuators B: Chemical, vol. 327, p. 128886, 2021.
Y. T. Yen, Y. S. Lin, Y. J. Chang, M. T. Li, S. C. Chyueh, and H. T. Chang, "Nanomaterial‐Based Sensor Arrays With Deep Learning for Screening of Illicit Drugs," Advanced Materials Technologies, vol. 7, no. 11, p. 2200243, 2022.
P. Nath, M. Chatterjee, and N. Chanda, "Dithiothreitol-facilitated synthesis of bovine serum albumin–gold nanoclusters for Pb (II) ion detection on paper substrates and in live cells," ACS Applied Nano Materials, vol. 1, no. 9, pp. 5108-5118, 2018.
H. Stahnke, S. Kittlaus, G. n. Kempe, and L. Alder, "Reduction of matrix effects in liquid chromatography–electrospray ionization–mass spectrometry by dilution of the sample extracts: how much dilution is needed?," Analytical chemistry, vol. 84, no. 3, pp. 1474-1482, 2012.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95035-
dc.description.abstract本研究開發了一步驟攜帶式裝置用於檢測毒品卡西酮,將過濾、萃取及離子選擇之前處理步驟整合於微流體晶片內並結合側層流試片應用於複雜基質毒咖啡包之現場即時檢測。檢測平臺透過微流體純化晶片整合樣品前處理所需的繁瑣步驟,包含樣品過濾、被動式微混合器進行液液萃取及陽離子交換膜進行離子選擇,以達到複雜樣品的純化,從而降低基質對檢測結果的干擾。平臺採用牛血清白蛋白 (Bovine serum albumin; BSA) 作為配體 (Ligands) 合成出的金奈米團簇 (BSA-AuNCs) 作為檢測探針,並結合側層流試片進行檢測。BSA-AuNCs由於尺寸較小 (< 2 nm),在最高佔據分子軌域 (High Occupied Molecular Orbital; HOMO) 及最低未占分子領域 (Lowest Unoccupied Molecular Orbital; LUMO) 間會有類似分子的電子躍遷,並釋放出紅色的螢光。此種螢光特性使其作為檢測探針時,具有較靈敏且穩定的檢測效果,並僅需透過肉眼根據其螢光訊號強度即可進行結果判讀。卡西酮中的苯酮結構為良好的電子受體,具有較高的電子親和力。卡西酮將誘使BSA-AuNCs產生電子轉移,使BSA-AuNCs內部電子躍遷的能量產生變化。此能量變化導致BSA-AuNCs在經吸收特定波段光能後,其釋放的光能量也隨之改變,因而產生螢光淬滅。最後透過光強度偵測晶片來定量卡西酮濃度並達到現場檢測。本研究之檢測平臺對卡西酮類似物具有高選擇性,且可於12分鐘內完成卡西酮類毒咖啡包之純化及檢測,檢測線性範圍為0.5-5 mM,最低檢測極限為0.35 mM。最後,我們使用20個真實案例對系統的實用性進行了測試,並且能透過檢測系統中的閾值 (Threshold value),成功分辨出卡西酮類毒品咖啡包。我們期望此快速、易操作、低成本之卡西酮類毒品檢測平臺能提供給第一線執法人員,從而有效減少卡西酮類毒品氾濫。zh_TW
dc.description.abstractIn this work, we developed a one-step portable device for detecting the drug cathinone. This technique integrates traditional pretreatment methods, such as filtration, extraction, and ion selection, onto a microfluidic chip and a lateral flow assay for on-site detection. This detection device requires no multiple steps for sample pretreatment, thereby achieving purification and reducing matrix interference. Bovine serum albumin (BSA) was modified on gold nanoclusters (AuNCs) to create detection probes (BSA-AuNCs), which were used in a lateral flow assay. Due to their small size (< 2.0 nm), BSA-AuNCs exhibit molecular-like electron transitions between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), emitting red fluorescence. The phenyl-ketone structure in cathinone acts as a superior electron acceptor due to its high electron affinity, inducing electron transfer in BSA-AuNCs. These energy changes alter the emitted light energy of BSA-AuNCs after absorbing specific wavelengths of light, resulting in fluorescence quenching. This approach enables efficient quantification of cathinone through light-intensity differences. The detection device demonstrates high sensitivity and selectivity for cathinone analogs, with a linear range of 0.5-5 mM and a detection limit of 0.35 mM. We can complete the purification and detection of cathinone-containing coffee packets within 12 minutes. To demonstrate the device's practicality, we tested 20 real cases and successfully distinguished cathinone-containing coffee packets using the proposed threshold value in the detection system, showing that the device can be used by frontline officers to curb the proliferation of cathinone drugs.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-26T16:22:13Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-26T16:22:13Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
致謝 ii
摘要 iii
Abstract iv
目次 v
圖次 viii
第一章、前言與文獻回顧 1
1.1 新興精神活性物質 1
1.2 合成卡西酮類 1
1.2.1 合成卡西酮類之危害 1
1.2.2 合成卡西酮類之標準檢測方式 1
1.2.3 質子核磁共振波譜法 2
1.2.4 拉曼光譜法 3
1.2.5 電化學 4
1.2.6 紙基檢測平臺 5
1.3 微流體純化技術 6
1.4 側向流體檢測技術 7
1.5 本研究開發之攜帶式檢測裝置 9
第二章、實驗用品與步驟 11
2.1 實驗藥品與試劑 11
2.2 實驗設備 12
2.3 微流體純化晶片製作 14
2.4 BSA-AuNCs側層流試片製作 15
2.4.1 BSA-AuNCs合成 15
2.4.2 BSA-AuNCs修飾 15
2.4.3 BSA-AuNCs側層流試片製作 15
2.5 攜帶式檢測裝置製作 16
2.6 攜帶式檢測裝置之操作流程 16
2.7 微流體純化晶片最佳化條件測試之步驟 17
2.7.1 濾紙最佳化條件測試 17
2.7.2 液液萃取最佳化條件測試 17
2.8 BSA-AuNCs側層流試片最佳化條件測試之步驟 18
2.9 BSA-AuNCs側層流試片反應時間及儲存天數測試 18
2.10 檢測系統之選擇性及靈敏度測試 18
2.11 攜帶式檢測裝置效能比較 19
2.12 基質效應測試 19
2.13 真實樣品測試 20
第三章、結果與討論 21
3.1 微流體純化晶片最佳化條件測試 22
3.1.1 濾紙最佳化條件測試 22
3.1.2 液液萃取最佳化條件測試 23
3.2 BSA-AuNCs側層流試片最佳化條件測試 25
3.2.1 BSA-AuNCs材料鑑定 25
3.2.2 BSA-AuNCs側層流試片最佳化條件測試 26
3.3 BSA-AuNCs側層流試片反應時間及儲存天數測試 27
3.4 檢測系統之選擇性及靈敏度測試 28
3.5 攜帶式檢測裝置之效能比較 29
3.6 基質效應測試 30
3.7 真實樣品測試 31
第四章、結論與未來展望 33
參考文獻 34
-
dc.language.isozh_TW-
dc.subject卡西酮類毒品zh_TW
dc.subject金奈米團簇zh_TW
dc.subject側層流試片zh_TW
dc.subject樣品前處理zh_TW
dc.subject微流體晶片zh_TW
dc.subjectCathinoneen
dc.subjectSample purificationen
dc.subjectLateral flow assayen
dc.subjectBSA-AuNCsen
dc.subjectMicrofluidic chipen
dc.title微流體樣品處理元件結合金奈米團簇用於卡西酮毒咖啡包現場檢測zh_TW
dc.titleMicrofluidic Device Integrated with Gold Nanoclusters for on-site Methcathinone Detection in Instant Coffeeen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee余政儒;羅世強;顏堯德zh_TW
dc.contributor.oralexamcommitteeCheng-Ju Yu;Shyh-Chyang Luo;Yao-Te Yenen
dc.subject.keyword微流體晶片,樣品前處理,側層流試片,金奈米團簇,卡西酮類毒品,zh_TW
dc.subject.keywordMicrofluidic chip,Sample purification,Lateral flow assay,BSA-AuNCs,Cathinone,en
dc.relation.page37-
dc.identifier.doi10.6342/NTU202403766-
dc.rights.note未授權-
dc.date.accepted2024-08-13-
dc.contributor.author-college工學院-
dc.contributor.author-dept應用力學研究所-
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
3.97 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved