請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95031完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林靖愉 | zh_TW |
| dc.contributor.advisor | CHING-YU LIN | en |
| dc.contributor.author | 李品萱 | zh_TW |
| dc.contributor.author | PinXuan Li | en |
| dc.date.accessioned | 2024-08-26T16:21:03Z | - |
| dc.date.available | 2024-08-27 | - |
| dc.date.copyright | 2024-08-26 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-07 | - |
| dc.identifier.citation | Aas, C. B., Fuglei, E., Herzke, D., Yoccoz, N. G., & Routti, H. (2014). Effect of body condition on tissue distribution of perfluoroalkyl substances (PFASs) in Arctic fox (Vulpes lagopus). Environmental Science & Technology, 48(19), 11654-11661. https://doi.org/10.1021/es503147n
Alesio, J. L., Slitt, A., & Bothun, G. D. (2022). Critical new insights into the binding of poly- and perfluoroalkyl substances (PFAS) to albumin protein. Chemosphere, 287. https://doi.org/10.1016/j.chemosphere.2021.131979 Annunziato, M., Bashirova, N., Eeza, M. N. H., Lawson, A., Fernandez-Lima, F., Tose, L. V., Matysik, J., Alia, A., & Berry, J. P. (2024). An Integrated Metabolomics-Based Model, and Identification of Potential Biomarkers, of Perfluorooctane Sulfonic Acid Toxicity in Zebrafish Embryos. Environmental Toxicology and Chemistry, 43(4), 896-914. https://doi.org/https://doi.org/10.1002/etc.5824 Araújo, A. M., Carvalho, F., Guedes de Pinho, P., & Carvalho, M. (2021). Toxicometabolomics: Small Molecules to Answer Big Toxicological Questions. Metabolites, 11(10). https://doi.org/10.3390/metabo11100692 Arefhosseini, S., Roshanravan, N., Tutunchi, H., Rostami, S., Khoshbaten, M., & Ebrahimi-Mameghani, M. (2023). Myo-inositol supplementation improves cardiometabolic factors, anthropometric measures, and liver function in obese patients with non-alcoholic fatty liver disease. Frontiers in Nutrition, 10. https://doi.org/10.3389/fnut.2023.1092544 Beckonert, O., Keun, H. C., Ebbels, T. M. D., Bundy, J., Holmes, E., Lindon, J. C., & Nicholson, J. K. (2007). Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nature Protocols, 2(11), 2692-2703. https://doi.org/10.1038/nprot.2007.376 Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Can J Biochem Physiol, 37(8), 911-917. https://doi.org/10.1139/o59-099 Blomberg, A. J., Shih, Y.-H., Messerlian, C., Jørgensen, L. H., Weihe, P., & Grandjean, P. (2021). Early-life associations between per- and polyfluoroalkyl substances and serum lipids in a longitudinal birth cohort. Environmental Research, 200. https://doi.org/10.1016/j.envres.2021.111400 Boguszewicz, Ł., Bieleń, A., Ciszek, M., Wendykier, J., Szczepanik, K., Skorupa, A., Mrochem-Kwarciak, J., Składowski, K., & Sokół, M. (2021). NMR-Based Metabolomics in Investigation of the Radiation Induced Changes in Blood Serum of Head and Neck Cancer Patients and Its Correlation with the Tissue Volumes Exposed to the Particulate Doses. International Journal of Molecular Sciences, 22(12). Bose, S., Ramesh, V., & Locasale, J. W. (2019). Acetate Metabolism in Physiology, Cancer, and Beyond. Trends in Cell Biology, 29(9), 695-703. https://doi.org/10.1016/j.tcb.2019.05.005 Brewster, D. W., & Birnbaum, L. S. (1989). The biochemical toxicity of perfluorodecanoic acid in the mouse is different from that of 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicology and Applied Pharmacology, 99(3), 544-554. https://doi.org/https://doi.org/10.1016/0041-008X(89)90161-0 Carrola, J., Rocha, C. M., Barros, A. S., Gil, A. M., Goodfellow, B. J., Carreira, I. M., Bernardo, J., Gomes, A., Sousa, V., Carvalho, L., & Duarte, I. F. (2011). Metabolic signatures of lung cancer in biofluids: NMR-based metabonomics of urine. J Proteome Res, 10(1), 221-230. https://doi.org/10.1021/pr100899x Colomer-Vidal, P., Bertolero, A., Alcaraz, C., Garreta-Lara, E., Santos, F. J., & Lacorte, S. (2022). Distribution and ten-year temporal trends (2009–2018) of perfluoroalkyl substances in gull eggs from Spanish breeding colonies. Environmental Pollution, 293. https://doi.org/10.1016/j.envpol.2021.118555 Conder, J. M., Hoke, R. A., Wolf, W. d., Russell, M. H., & Buck, R. C. (2008). Are PFCAs Bioaccumulative? A Critical Review and Comparison with Regulatory Criteria and Persistent Lipophilic Compounds. Environmental Science & Technology, 42(4), 995-1003. https://doi.org/10.1021/es070895g Craig, A., Cloarec, O., Holmes, E., Nicholson, J. K., & Lindon, J. C. (2006). Scaling and Normalization Effects in NMR Spectroscopic Metabonomic Data Sets. Analytical Chemistry, 78(7), 2262-2267. https://doi.org/10.1021/ac0519312 Das, K. P., Grey, B. E., Rosen, M. B., Wood, C. R., Tatum-Gibbs, K. R., Zehr, R. D., Strynar, M. J., Lindstrom, A. B., & Lau, C. (2015). Developmental toxicity of perfluorononanoic acid in mice. Reproductive Toxicology, 51, 133-144. https://doi.org/https://doi.org/10.1016/j.reprotox.2014.12.012 De Backer, D., Creteur, J., Zhang, H., Norrenberg, M., & Vincent, J. L. (1997). Lactate production by the lungs in acute lung injury. Am J Respir Crit Care Med, 156(4 Pt 1), 1099-1104. https://doi.org/10.1164/ajrccm.156.4.9701048 Debik, J., Sangermani, M., Wang, F., Madssen, T. S., & Giskeødegård, G. F. (2022). Multivariate analysis of NMR-based metabolomic data. NMR in Biomedicine, 35(2), e4638. https://doi.org/https://doi.org/10.1002/nbm.4638 DeVito, S., Woodrick, J., Song, L., & Roy, R. (2017). Mutagenic potential of hypoxanthine in live human cells. Mutat Res, 803-805, 9-16. https://doi.org/10.1016/j.mrfmmm.2017.06.005 Dragon, J., Hoaglund, M., Badireddy, A. R., Nielsen, G., Schlezinger, J., & Shukla, A. (2023). Perfluoroalkyl Substances (PFAS) Affect Inflammation in Lung Cells and Tissues. International Journal of Molecular Sciences, 24(10), 8539. https://www.mdpi.com/1422-0067/24/10/8539 Du, K., Hyun, J., Premont, R. T., Choi, S. S., Michelotti, G. A., Swiderska-Syn, M., Dalton, G. D., Thelen, E., Rizi, B. S., Jung, Y., & Diehl, A. M. (2018). Hedgehog-YAP Signaling Pathway Regulates Glutaminolysis to Control Activation of Hepatic Stellate Cells. Gastroenterology, 154(5), 1465-1479.e1413. https://doi.org/https://doi.org/10.1053/j.gastro.2017.12.022 Emwas, A. H., Roy, R., McKay, R. T., Tenori, L., Saccenti, E., Gowda, G. A. N., Raftery, D., Alahmari, F., Jaremko, L., Jaremko, M., & Wishart, D. S. (2019). NMR Spectroscopy for Metabolomics Research. Metabolites, 9(7). https://doi.org/10.3390/metabo9070123 Fang, F., He, X., Deng, H., Chen, Q., Lu, J., Spraul, M., & Yu, Y. (2007). Discrimination of metabolic profiles of pancreatic cancer from chronic pancreatitis by high-resolution magic angle spinning 1H nuclear magnetic resonance and principal components analysis. Cancer Science, 98(11), 1678-1682. https://doi.org/https://doi.org/10.1111/j.1349-7006.2007.00589.x Feng, j., Isern, N., S-D, B., & J-Z, H. (2013). Studies of secondary melanoma on C57BL/6J mouse liver using 1H NMR metabolomics. Metabolites. https://doi.org/10.3390/metabo3041011 Fonseca, R. I. D., Menezes, L. R. A., Santana-Filho, A. P., Schiefer, E. M., Pecoits-Filho, R., Stinghen, A. E. M., & Sassaki, G. L. (2023). Untargeted plasma 1H NMR-based metabolomic profiling in different stages of chronic kidney disease. Journal of Pharmaceutical and Biomedical Analysis, 229, 115339. https://doi.org/https://doi.org/10.1016/j.jpba.2023.115339 Fraga-Corral, M., Carpena, M., Garcia-Oliveira, P., Pereira, A. G., Prieto, M. A., & Simal-Gandara, J. (2022). Analytical Metabolomics and Applications in Health, Environmental and Food Science. Crit Rev Anal Chem, 52(4), 712-734. https://doi.org/10.1080/10408347.2020.1823811 Frawley, R. P., Smith, M., Cesta, M. F., Hayes-Bouknight, S., Blystone, C., Kissling, G. E., Harris, S., & Germolec, D. (2018). Immunotoxic and hepatotoxic effects of perfluoro-n-decanoic acid (PFDA) on female Harlan Sprague-Dawley rats and B(6)C(3)F(1)/N mice when administered by oral gavage for 28 days. J Immunotoxicol, 15(1), 41-52. https://doi.org/10.1080/1547691x.2018.1445145 Gao, S., Jing, M., Xu, M., Han, D., Niu, Q., & Liu, R. (2020). Cytotoxicity of perfluorodecanoic acid on mouse primary nephrocytes through oxidative stress: Combined analysis at cellular and molecular levels. Journal of Hazardous Materials, 393. https://doi.org/10.1016/j.jhazmat.2020.122444 Garcia-Barrios, J., Drysdale, M., Ratelle, M., Gaudreau, É., LeBlanc, A., Gamberg, M., & Laird, B. D. (2021). Biomarkers of poly- and perfluoroalkyl substances (PFAS) in Sub-Arctic and Arctic communities in Canada. International Journal of Hygiene and Environmental Health, 235. https://doi.org/10.1016/j.ijheh.2021.113754 Garibotto, G., Tessari, P., Verzola, D., & Dertenois, L. (2002). The metabolic conversion of phenylalanine into tyrosine in the human kidney: Does it have nutritional implications in renal patients? Journal of Renal Nutrition, 12(1), 8-16. https://doi.org/https://doi.org/10.1053/jren.2002.29600 Genualdi, S., Beekman, J., Carlos, K., Fisher, C. M., Young, W., DeJager, L., & Begley, T. (2021). Analysis of per- and poly-fluoroalkyl substances (PFAS) in processed foods from FDA’s Total Diet Study. Analytical and Bioanalytical Chemistry, 414(3), 1189-1199. https://doi.org/10.1007/s00216-021-03610-2 Glynn, A., Kotova, N., Dahlgren, E., Lindh, C., Jakobsson, K., Gyllenhammar, I., Lignell, S., & Nälsén, C. (2020). Determinants of serum concentrations of perfluoroalkyl acids (PFAAs) in school children and the contribution of low-level PFAA-contaminated drinking water. Environmental Science: Processes & Impacts, 22(4), 930-944. https://doi.org/10.1039/c9em00497a Goodrich, J. A., Walker, D. I., He, J., Lin, X., Baumert, B. O., Hu, X., Alderete, T. L., Chen, Z., Valvi, D., Fuentes, Z. C., Rock, S., Wang, H., Berhane, K., Gilliland, F. D., Goran, M. I., Jones, D. P., Conti, D. V., & Chatzi, L. (2023). Metabolic Signatures of Youth Exposure to Mixtures of Per- and Polyfluoroalkyl Substances: A Multi-Cohort Study. Environ Health Perspect, 131(2), 27005. https://doi.org/10.1289/ehp11372 Gromski, P. S., Muhamadali, H., Ellis, D. I., Xu, Y., Correa, E., Turner, M. L., & Goodacre, R. (2015). A tutorial review: Metabolomics and partial least squares-discriminant analysis – a marriage of convenience or a shotgun wedding. Analytica Chimica Acta, 879, 10-23. https://doi.org/10.1016/j.aca.2015.02.012 Guo, P., Furnary, T., Vasiliou, V., Yan, Q., Nyhan, K., Jones, D. P., Johnson, C. H., & Liew, Z. (2022). Non-targeted metabolomics and associations with per- and polyfluoroalkyl substances (PFAS) exposure in humans: A scoping review. Environment International, 162, 107159. https://doi.org/https://doi.org/10.1016/j.envint.2022.107159 Guo, Z., & Yan, F. (2024). Targeting glutamate metabolism in chronic lung diseases. Clinical and Translational Discovery, 4(2), e294. https://doi.org/https://doi.org/10.1002/ctd2.294 Hadrup, N., Pedersen, M., Skov, K., Hansen, N. L., Berthelsen, L. O., Kongsbak, K., Boberg, J., Dybdahl, M., Hass, U., Frandsen, H., & Vinggaard, A. M. (2016). Perfluorononanoic acid in combination with 14 chemicals exerts low-dose mixture effects in rats. Archives of Toxicology, 90(3), 661-675. https://doi.org/10.1007/s00204-015-1452-6 Hardie, D. G. (2004). The AMP-activated protein kinase pathway – new players upstream and downstream. Journal of Cell Science, 117(23), 5479-5487. https://doi.org/10.1242/jcs.01540 Harris, M. W., & Birnbaum, L. S. (1989). Developmental toxicity of perfluorodecanoic acid in C57BL6N mice. Fundamental and Applied Toxicology, 12(3), 442-448. https://doi.org/https://doi.org/10.1016/0272-0590(89)90018-3 Huang, M., Jiao, J., Zhuang, P., Chen, X., Wang, J., & Zhang, Y. (2018). Serum polyfluoroalkyl chemicals are associated with risk of cardiovascular diseases in national US population. Environment International, 119, 37-46. https://doi.org/10.1016/j.envint.2018.05.051 Jain, R. B. (2021). Impact of the increasing concentrations of selected perfluoroalkyl acids on the observed concentrations of red blood cell folate among US adults aged ≥20 years. Environmental Science and Pollution Research, 28(37), 52357-52369. https://doi.org/10.1007/s11356-021-14454-9 Jin, R., McConnell, R., Catherine, C., Xu, S., Walker, D. I., Stratakis, N., Jones, D. P., Miller, G. W., Peng, C., Conti, D. V., Vos, M. B., & Chatzi, L. (2020). Perfluoroalkyl substances and severity of nonalcoholic fatty liver in Children: An untargeted metabolomics approach. Environment International, 134, 105220. https://doi.org/https://doi.org/10.1016/j.envint.2019.105220 Karger, A. B., Steffen, B. T., Nomura, S. O., Guan, W., Garg, P. K., Szklo, M., Budoff, M. J., & Tsai, M. Y. (2020). Association Between Homocysteine and Vascular Calcification Incidence, Prevalence, and Progression in the MESA Cohort. Journal of the American Heart Association, 9(3), e013934. https://doi.org/10.1161/JAHA.119.013934 Kasuya, M. C., & Hatanaka, K. (2019). Cytotoxicity and cellular uptake of perfluorodecanoic acid. Journal of Fluorine Chemistry, 221, 56-60. https://doi.org/10.1016/j.jfluchem.2019.03.002 Kawabata, K., Matsuzaki, H., Nukui, S., Okazaki, M., Sakai, A., Kawashima, Y., & Kudo, N. (2017). Perfluorododecanoic Acid Induces Cognitive Deficit in Adult Rats. Toxicological Sciences, 157(2), 421-428. https://doi.org/10.1093/toxsci/kfx058 Kerner, J., Yohannes, E., Lee, K., Virmani, A., Koverech, A., Cavazza, C., Chance, M. R., & Hoppel, C. (2015). Acetyl-l-carnitine increases mitochondrial protein acetylation in the aged rat heart. Mechanisms of Ageing and Development, 145, 39-50. https://doi.org/https://doi.org/10.1016/j.mad.2015.01.003 Kim, J., Lee, G., Lee, Y.-M., Zoh, K.-D., & Choi, K. (2021). Thyroid disrupting effects of perfluoroundecanoic acid and perfluorotridecanoic acid in zebrafish (Danio rerio) and rat pituitary (GH3) cell line. Chemosphere, 262. https://doi.org/10.1016/j.chemosphere.2020.128012 Kleszczyński, K., Stepnowski, P., & Składanowski, A. C. (2009). Mechanism of cytotoxic action of perfluorinated acids: II. Disruption of mitochondrial bioenergetics. Toxicology and Applied Pharmacology, 235(2), 182-190. https://doi.org/https://doi.org/10.1016/j.taap.2008.11.021 Kopple, J. D. (2007). Phenylalanine and Tyrosine Metabolism in Chronic Kidney Failure123. The Journal of Nutrition, 137(6), 1586S-1590S. https://doi.org/https://doi.org/10.1093/jn/137.6.1586S Kudo, N., Bandai, N., Suzuki, E., Katakura, M., & Kawashima, Y. (2000). Induction by perfluorinated fatty acids with different carbon chain length of peroxisomal β-oxidation in the liver of rats. Chemico-Biological Interactions, 124(2), 119-132. https://doi.org/https://doi.org/10.1016/S0009-2797(99)00150-7 Kumakura, S., Sato, E., Sekimoto, A., Hashizume, Y., Yamakage, S., Miyazaki, M., Ito, S., Harigae, H., & Takahashi, N. (2021). Nicotinamide Attenuates the Progression of Renal Failure in a Mouse Model of Adenine-Induced Chronic Kidney Disease. Toxins, 13(1). Kvalem, H. E., Nygaard, U. C., Lødrup Carlsen, K. C., Carlsen, K. H., Haug, L. S., & Granum, B. (2020). Perfluoroalkyl substances, airways infections, allergy and asthma related health outcomes – implications of gender, exposure period and study design. Environment International, 134. https://doi.org/10.1016/j.envint.2019.105259 Lamarre, S. G., Morrow, G., Macmillan, L., Brosnan, M. E., & Brosnan, J. T. (2013). Formate: an essential metabolite, a biomarker, or more? Clinical Chemistry and Laboratory Medicine, 51(3), 571-578. https://doi.org/doi:10.1515/cclm-2012-0552 Land, M., de Wit, C. A., Bignert, A., Cousins, I. T., Herzke, D., Johansson, J. H., & Martin, J. W. (2018). What is the effect of phasing out long-chain per- and polyfluoroalkyl substances on the concentrations of perfluoroalkyl acids and their precursors in the environment? A systematic review. Environmental Evidence, 7(1). https://doi.org/10.1186/s13750-017-0114-y Lau, C., Anitole, K., Hodes, C., Lai, D., Pfahles-Hutchens, A., & Seed, J. (2007). Perfluoroalkyl Acids: A Review of Monitoring and Toxicological Findings. Toxicological Sciences, 99(2), 366-394. https://doi.org/10.1093/toxsci/kfm128 Lee, J.-K., & Kim, S.-H. (2018). Correlation between mast cell-mediated allergic inflammation and length of perfluorinated compounds. Journal of Toxicology and Environmental Health, Part A, 81(9), 302-313. https://doi.org/10.1080/15287394.2018.1440188 Lee, S.-H., Tseng, W.-C., Du, Z.-Y., Lin, W.-Y., Chen, M.-H., Lin, C.-C., Lien, G.-W., Liang, H.-J., Wen, H.-J., Guo, Y.-L., Chen, P.-C., & Lin, C.-Y. (2021). Lipid responses to environmental perfluoroalkyl substance exposure in a Taiwanese Child cohort. Environmental Pollution, 283. https://doi.org/10.1016/j.envpol.2021.117007 Lee, Y.-M., Lee, J.-Y., Kim, M.-K., Yang, H., Lee, J.-E., Son, Y., Kho, Y., Choi, K., & Zoh, K.-D. (2020). Concentration and distribution of per- and polyfluoroalkyl substances (PFAS) in the Asan Lake area of South Korea. Journal of Hazardous Materials, 381. https://doi.org/10.1016/j.jhazmat.2019.120909 Li, J., Xin, Y., Li, J., Chen, H., & Li, H. (2023). Phosphatidylethanolamine N-methyltransferase: from Functions to Diseases. Aging Dis, 14(3), 879-891. https://doi.org/10.14336/ad.2022.1025 Li, R., Dai, J., & Kang, H. (2018). The construction of a panel of serum amino acids for the identification of early chronic kidney disease patients. J Clin Lab Anal, 32(3). https://doi.org/10.1002/jcla.22282 Li, Y., Lu, X., Yu, N., Li, A., Zhuang, T., Du, L., Tang, S., Shi, W., Yu, H., Song, M., & Wei, S. (2021). Exposure to legacy and novel perfluoroalkyl substance disturbs the metabolic homeostasis in pregnant women and fetuses: A metabolome-wide association study. Environment International, 156. https://doi.org/10.1016/j.envint.2021.106627 Liang, H., Wang, Z., Miao, M., Tian, Y., Zhou, Y., Wen, S., Chen, Y., Sun, X., & Yuan, W. (2020). Prenatal exposure to perfluoroalkyl substances and thyroid hormone concentrations in cord plasma in a Chinese birth cohort. Environmental Health, 19(1), 127. https://doi.org/10.1186/s12940-020-00679-7 Lin, C.-Y., Huang, L.-H., Deng, D.-F., Lee, S.-H., Liang, H.-J., & Hung, S. S. O. (2019). Metabolic adaptation to feed restriction on the green sturgeon (Acipenser medirostris) fingerlings. Science of The Total Environment, 684, 78-88. https://doi.org/https://doi.org/10.1016/j.scitotenv.2019.05.044 Lin, C. Y., Wu, H., Tjeerdema, R. S., & Viant, M. R. (2007). Evaluation of metabolite extraction strategies from tissue samples using NMR metabolomics. Metabolomics, 3(1), 55-67. https://doi.org/10.1007/s11306-006-0043-1 Lin, S.-C., & Hardie, D. G. (2018). AMPK: Sensing Glucose as well as Cellular Energy Status. Cell Metabolism, 27(2), 299-313. https://doi.org/10.1016/j.cmet.2017.10.009 Lin, T.-W., Chen, M.-K., Lin, C.-C., Chen, M.-H., Tsai, M.-S., Chan, D.-C., Hung, K.-Y., & Chen, P.-C. (2020). Association between exposure to perfluoroalkyl substances and metabolic syndrome and related outcomes among older residents living near a Science Park in Taiwan. International Journal of Hygiene and Environmental Health, 230. https://doi.org/10.1016/j.ijheh.2020.113607 Liu, L., Lu, Y., Bi, X., Xu, M., Yu, X., Xue, R., He, X., & Zang, W. (2017). Choline ameliorates cardiovascular damage by improving vagal activity and inhibiting the inflammatory response in spontaneously hypertensive rats. Sci Rep, 7, 42553. https://doi.org/10.1038/srep42553 Liu, Y., Liu, Y.-q., Morita, T., & Sugiyama, K. (2012). Effects of Betaine Supplementation and Choline Deficiency on Folate Deficiency-Induced Hyperhomocysteinemia in Rats. Journal of Nutritional Science and Vitaminology, 58(2), 69-77. https://doi.org/10.3177/jnsv.58.69 Liu, Y., Sun, H.-l., Li, D.-l., Wang, L.-y., Gao, Y., Wang, Y.-p., Du, Z.-m., Lu, Y.-j., & Yang, B.-f. (2008). Choline produces antiarrhythmic actions in animal models by cardiac M3 receptors: improvement of intracellular Ca2+ handling as a common mechanism. Canadian Journal of Physiology and Pharmacology, 86(12), 860-865. https://doi.org/10.1139/y08-094 %m 19088807 Liu, Y. Q., Huang, L. H., Liu, P. P., Xing, Q. B., Han, F., Wang, Q., Chen, S. R., Sugiyama, K., Xiang, X. S., & Huang, Z. W. (2021). Effect of N,N-Dimethylglycine on Homocysteine Metabolism in Rats Fed Folate-Sufficient and Folate-Deficient Diets. Biomedical and Environmental Sciences, 34(5), 356-363. https://doi.org/https://doi.org/10.3967/bes2021.047 Lu, C., Shi, Y.-L., Zhou, Z., Liu, N.-N., Meng, Z.-F., & Cai, Y.-Q. (2014). Perfluorinated compounds in blood of textile workers and barbers. Chinese Chemical Letters, 25(8), 1145-1148. https://doi.org/10.1016/j.cclet.2014.03.023 Lv, Z., Li, G., Li, Y., Ying, C., Chen, J., Chen, T., Wei, J., Lin, Y., Jiang, Y., Wang, Y., Shu, B., Xu, B., & Xu, S. (2013). Glucose and lipid homeostasis in adult rat is impaired by early-life exposure to perfluorooctane sulfonate. Environmental Toxicology, 28(9), 532-542. https://doi.org/https://doi.org/10.1002/tox.20747 Meneguzzi, A., Fava, C., Castelli, M., & Minuz, P. (2021). Exposure to Perfluoroalkyl Chemicals and Cardiovascular Disease: Experimental and Epidemiological Evidence. Front Endocrinol (Lausanne), 12, 706352. https://doi.org/10.3389/fendo.2021.706352 Miggiels, P., Wouters, B., van Westen, G. J. P., Dubbelman, A.-C., & Hankemeier, T. (2019). Novel technologies for metabolomics: More for less. TrAC Trends in Analytical Chemistry, 120, 115323. https://doi.org/https://doi.org/10.1016/j.trac.2018.11.021 Minozzi, M., Nordio, M., & Pajalich, R. (2013). The Combined therapy myo-inositol plus D-Chiro-inositol, in a physiological ratio, reduces the cardiovascular risk by improving the lipid profile in PCOS patients. Eur Rev Med Pharmacol Sci, 17(4), 537-540. Mokra, K. (2021). Endocrine Disruptor Potential of Short- and Long-Chain Perfluoroalkyl Substances (PFASs)-A Synthesis of Current Knowledge with Proposal of Molecular Mechanism. Int J Mol Sci, 22(4). https://doi.org/10.3390/ijms22042148 Muschket, M., Keltsch, N., Paschke, H., Reemtsma, T., & Berger, U. (2020). Determination of transformation products of per- and polyfluoroalkyl substances at trace levels in agricultural plants. Journal of Chromatography A, 1625. https://doi.org/10.1016/j.chroma.2020.461271 Nagana Gowda, G. A., & Raftery, D. (2021). NMR-Based Metabolomics. In S. Hu (Ed.), Cancer Metabolomics: Methods and Applications (pp. 19-37). Springer International Publishing. https://doi.org/10.1007/978-3-030-51652-9_2 Nagana Gowda, G. A., & Raftery, D. (2023). NMR Metabolomics Methods for Investigating Disease. Analytical Chemistry, 95(1), 83-99. https://doi.org/10.1021/acs.analchem.2c04606 Nair, K. S. (2005). Amino acid and protein metabolism in chronic renal failure. Journal of Renal Nutrition, 15(1), 28-33. https://doi.org/https://doi.org/10.1053/j.jrn.2004.09.026 Nejabat, M., Leisser, A., Karanikas, G., Wadsak, W., Mitterhauser, M., Mayerhöfer, M., Kienbacher, C., Trauner, M., Hacker, M., & Haug, A. R. (2018). [11C]acetate PET as a tool for diagnosis of liver steatosis. Abdominal Radiology, 43(11), 2963-2969. https://doi.org/10.1007/s00261-018-1558-4 Nicholson, J. K., Foxall, P. J., Spraul, M., Farrant, R. D., & Lindon, J. C. (1995). 750 MHz 1H and 1H-13C NMR spectroscopy of human blood plasma. Anal Chem, 67(5), 793-811. https://doi.org/10.1021/ac00101a004 Norén, E., Lindh, C., Glynn, A., Rylander, L., Pineda, D., & Nielsen, C. (2021). Temporal trends, 2000–2017, of perfluoroalkyl acid (PFAA) concentrations in serum of Swedish adolescents. Environment International, 155. https://doi.org/10.1016/j.envint.2021.106716 Ojo, A. F., Peng, C., & Ng, J. C. (2020). Combined effects and toxicological interactions of perfluoroalkyl and polyfluoroalkyl substances mixtures in human liver cells (HepG2). Environmental Pollution, 263. https://doi.org/10.1016/j.envpol.2020.114182 Ojo, A. F., Peng, C., & Ng, J. C. (2021). Assessing the human health risks of per- and polyfluoroalkyl substances: A need for greater focus on their interactions as mixtures. Journal of Hazardous Materials, 407. https://doi.org/10.1016/j.jhazmat.2020.124863 Ojo, A. F., Xia, Q., Peng, C., & Ng, J. C. (2021). Evaluation of the individual and combined toxicity of perfluoroalkyl substances to human liver cells using biomarkers of oxidative stress. Chemosphere, 281, 130808. https://doi.org/https://doi.org/10.1016/j.chemosphere.2021.130808 Olsen, G. W., Burris, J. M., Ehresman, D. J., Froehlich, J. W., Seacat, A. M., Butenhoff, J. L., & Zobel, L. R. (2007). Half-Life of Serum Elimination of Perfluorooctanesulfonate,Perfluorohexanesulfonate, and Perfluorooctanoate in Retired Fluorochemical Production Workers. Environmental Health Perspectives, 115(9), 1298-1305. https://doi.org/10.1289/ehp.10009 Pechlivanis, A., Kostidis, S., Saraslanidis, P., Petridou, A., Tsalis, G., Veselkov, K., Mikros, E., Mougios, V., & Theodoridis, G. A. (2013). 1H NMR Study on the Short- and Long-Term Impact of Two Training Programs of Sprint Running on the Metabolic Fingerprint of Human Serum. Journal of Proteome Research, 12(1), 470-480. https://doi.org/10.1021/pr300846x Qin, W., Ren, X., Zhao, L., & Guo, L. (2022). Exposure to perfluorooctane sulfonate reduced cell viability and insulin release capacity of β cells. Journal of Environmental Sciences, 115, 162-172. https://doi.org/https://doi.org/10.1016/j.jes.2021.07.004 Ramli, M. R., Yoneda, M., Ali Mohd, M., Mohamad Haron, D. E., & Ahmad, E. D. (2020). Level and determinants of serum perfluoroalkyl acids (PFAAs) in a population in Klang Valley, Malaysia. International Journal of Hygiene and Environmental Health, 223(1), 179-186. https://doi.org/10.1016/j.ijheh.2019.09.005 Rayne, S., & Forest, K. (2009). Perfluoroalkyl sulfonic and carboxylic acids: A critical review of physicochemical properties, levels and patterns in waters and wastewaters, and treatment methods. Journal of Environmental Science and Health, Part A, 44(12), 1145-1199. https://doi.org/10.1080/10934520903139811 Ren, Y., Jin, L., Yang, F., Liang, H., Zhang, Z., Du, J., Song, X., Miao, M., & Yuan, W. (2020). Concentrations of perfluoroalkyl and polyfluoroalkyl substances and blood glucose in pregnant women. Environmental Health, 19(1). https://doi.org/10.1186/s12940-020-00640-8 Reo, N. V. (2002). NMR-Based Metabolomics. Drug and Chemical Toxicology, 25(4), 375-382. https://doi.org/10.1081/dct-120014789 Reo, N. V., Goecke, C. M., Narayanan, L., & Jarnot, B. M. (1994). Effects of Perfluoro-n-octanoic Acid, Perfluoro-n-decanoic Acid, and Clofibrate on Hepatic Phosphorus Metabolism in Rats and Guinea Pigs in Vivo. Toxicology and Applied Pharmacology, 124(2), 165-173. https://doi.org/https://doi.org/10.1006/taap.1994.1020 Robertson, D. G., Watkins, P. B., & Reily, M. D. (2010). Metabolomics in Toxicology: Preclinical and Clinical Applications. Toxicological Sciences, 120(suppl_1), S146-S170. https://doi.org/10.1093/toxsci/kfq358 Rosa, M., Patel, D., McCann, M., Stringer, K., & Rosania, G. (2023). Database screening as a strategy to identify endogenous candidate metabolites to probe and assess mitochondrial drug toxicity. Scientific Reports, 13. https://doi.org/10.1038/s41598-023-49443-0 Rosca, M. G., Lemieux, H., & Hoppel, C. L. (2009). Mitochondria in the elderly: Is acetylcarnitine a rejuvenator? Advanced Drug Delivery Reviews, 61(14), 1332-1342. https://doi.org/https://doi.org/10.1016/j.addr.2009.06.009 Roy, R. M., Allawzi, A., Burns, N., Sul, C., Rubio, V., Graham, J., Stenmark, K., Nozik, E. S., Tuder, R. M., & Vohwinkel, C. U. (2023). Lactate produced by alveolar type II cells suppresses inflammatory alveolar macrophages in acute lung injury. The FASEB Journal, 37(12), e23316. https://doi.org/https://doi.org/10.1096/fj.202301722R Salihovic, S., Lind, L., Larsson, A., & Lind, P. M. (2020). Plasma perfluoroalkyls are associated with decreased levels of proteomic inflammatory markers in a cross-sectional study of an elderly population. Environment International, 145. https://doi.org/10.1016/j.envint.2020.106099 Schillemans, T., Shi, L., Donat-Vargas, C., Hanhineva, K., Tornevi, A., Johansson, I., Koponen, J., Kiviranta, H., Rolandsson, O., Bergdahl, I. A., Landberg, R., Åkesson, A., & Brunius, C. (2021). Plasma metabolites associated with exposure to perfluoroalkyl substances and risk of type 2 diabetes – A nested case-control study. Environment International, 146. https://doi.org/10.1016/j.envint.2020.106180 Sen, P., Qadri, S., Luukkonen, P. K., Ragnarsdottir, O., McGlinchey, A., Jäntti, S., Juuti, A., Arola, J., Schlezinger, J. J., Webster, T. F., Orešič, M., Yki-Järvinen, H., & Hyötyläinen, T. (2022). Exposure to environmental contaminants is associated with altered hepatic lipid metabolism in non-alcoholic fatty liver disease. Journal of Hepatology, 76(2), 283-293. https://doi.org/https://doi.org/10.1016/j.jhep.2021.09.039 Shen, J., Duan, H., Zhang, B., Wang, J., Ji, J. S., Wang, J., Pan, L., Wang, X., Zhao, K., Ying, B., Tang, S., Zhang, J., Liang, C., Sun, H., Lv, Y., Li, Y., Li, T., Li, L., Liu, H., . . . Shi, X. (2020). Prevention and control of COVID-19 in public transportation: Experience from China. Environmental Pollution, 266. https://doi.org/10.1016/j.envpol.2020.115291 Shi, H., Wang, H., Lu, Y., Yang, B., & Wang, Z. (1999). Choline Modulates Cardiac Membrane Repolarization by Activating an M3 Muscarinic Receptor and its Coupled K+ Channel. The Journal of Membrane Biology, 169(1), 55-64. https://doi.org/10.1007/PL00005901 Sid, V., Siow, Y. L., & O, K. (2017). Role of folate in nonalcoholic fatty liver disease. Canadian Journal of Physiology and Pharmacology, 95(10), 1141-1148. https://doi.org/10.1139/cjpp-2016-0681 %M 28460180 Singer, S. S., Andersen, M. E., & George, M. E. (1990). Perfluoro-N-decanoic acid effects on enzymes of fatty acid metabolism. Toxicology Letters, 54(1), 39-46. https://doi.org/https://doi.org/10.1016/0378-4274(90)90053-O Sinioja, T., Bodin, J., Duberg, D., Dirven, H., Berntsen, H. F., Zimmer, K., Nygaard, U. C., Orešič, M., & Hyötyläinen, T. (2022). Exposure to persistent organic pollutants alters the serum metabolome in non-obese diabetic mice. Metabolomics, 18(11), 87. https://doi.org/10.1007/s11306-022-01945-0 Song, Z., Wang, H., Yin, X., Deng, P., & Jiang, W. (2019). Application of NMR metabolomics to search for human disease biomarkers in blood. Clinical Chemistry and Laboratory Medicine (CCLM), 57(4), 417-441. https://doi.org/10.1515/cclm-2018-0380 Stepien, K. M., Heaton, R., Rankin, S., Murphy, A., Bentley, J., Sexton, D., & Hargreaves, I. P. (2017). Evidence of Oxidative Stress and Secondary Mitochondrial Dysfunction in Metabolic and Non-Metabolic Disorders. J Clin Med, 6(7). https://doi.org/10.3390/jcm6070071 Stratakis, N., V. Conti, D., Jin, R., Margetaki, K., Valvi, D., Siskos, A. P., Maitre, L., Garcia, E., Varo, N., Zhao, Y., Roumeliotaki, T., Vafeiadi, M., Urquiza, J., Fernández‐Barrés, S., Heude, B., Basagana, X., Casas, M., Fossati, S., Gražulevičienė, R., . . . Chatzi, L. (2020). Prenatal Exposure to Perfluoroalkyl Substances Associated With Increased Susceptibility to Liver Injury in Children. Hepatology, 72(5), 1758-1770. https://doi.org/10.1002/hep.31483 Sudarikova, A. V., Fomin, M. V., Yankelevich, I. A., & Ilatovskaya, D. V. (2021). The implications of histamine metabolism and signaling in renal function. Physiol Rep, 9(8), e14845. https://doi.org/10.14814/phy2.14845 Sun, G., Wang, J., Zhang, J., Ma, C., Shao, C., Hao, J., Zheng, J., Feng, X., & Zuo, C. (2014). High-resolution magic angle spinning 1H magnetic resonance spectroscopy detects choline as a biomarker in a swine obstructive chronic pancreatitis model at an early stage [10.1039/C3MB70406H]. Molecular BioSystems, 10(3), 467-474. https://doi.org/10.1039/C3MB70406H Sun, Q., Zong, G., Valvi, D., Nielsen, F., Coull, B., & Grandjean, P. (2018). Plasma Concentrations of Perfluoroalkyl Substances and Risk of Type 2 Diabetes: A Prospective Investigation among U.S. Women. Environmental Health Perspectives, 126(3). https://doi.org/10.1289/ehp2619 Tang, E., Liu, S., Zhang, Z., Zhang, R., Huang, D., Gao, T., Zhang, T., & Xu, G. (2021). Therapeutic Potential of Glutamine Pathway in Lung Cancer. Front Oncol, 11, 835141. https://doi.org/10.3389/fonc.2021.835141 Thépaut, E., Dirven, H. A. A. M., Haug, L. S., Lindeman, B., Poothong, S., Andreassen, M., Hjertholm, H., & Husøy, T. (2021). Per- and polyfluoroalkyl substances in serum and associations with food consumption and use of personal care products in the Norwegian biomonitoring study from the EU project EuroMix. Environmental Research, 195. https://doi.org/10.1016/j.envres.2021.110795 Toledo-Ibelles, P., Gutiérrez-Vidal, R., Calixto-Tlacomulco, S., Delgado-Coello, B., & Mas-Oliva, J. (2021). Hepatic Accumulation of Hypoxanthine: A Link Between Hyperuricemia and Nonalcoholic Fatty Liver Disease. Archives of Medical Research, 52(7), 692-702. https://doi.org/https://doi.org/10.1016/j.arcmed.2021.04.005 Trowbridge, J., Gerona, R. R., Lin, T., Rudel, R. A., Bessonneau, V., Buren, H., & Morello-Frosch, R. (2020). Exposure to Perfluoroalkyl Substances in a Cohort of Women Firefighters and Office Workers in San Francisco. Environmental Science & Technology, 54(6), 3363-3374. https://doi.org/10.1021/acs.est.9b05490 van den Berg, R. A., Hoefsloot, H. C. J., Westerhuis, J. A., Smilde, A. K., & van der Werf, M. J. (2006). Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics, 7(1), 142. https://doi.org/10.1186/1471-2164-7-142 Viant, M. R. (2003). Improved methods for the acquisition and interpretation of NMR metabolomic data. Biochemical and Biophysical Research Communications, 310(3), 943-948. https://doi.org/https://doi.org/10.1016/j.bbrc.2003.09.092 Wang, B., Fu, J., Gao, K., Liu, Q., Zhuang, L., Zhang, G., Long, M., Na, J., Ren, M., Wang, A., Liang, R., Shen, G., Li, Z., & Lu, Q. (2021). Early pregnancy loss: Do Per- and polyfluoroalkyl substances matter? Environ Int, 157, 106837. https://doi.org/10.1016/j.envint.2021.106837 Wang, J., Shi, T., Yu, D., Teng, D., Ge, X., Zhang, Z., Yang, X., Wang, H., & Wu, G. (2020). Ensemble machine-learning-based framework for estimating total nitrogen concentration in water using drone-borne hyperspectral imagery of emergent plants: A case study in an arid oasis, NW China. Environmental Pollution, 266. https://doi.org/10.1016/j.envpol.2020.115412 Wang, S., Liu, Y., Liu, J., Tian, W., Zhang, X., Cai, H., Fang, S., & Yu, B. (2020). Mitochondria-derived methylmalonic acid, a surrogate biomarker of mitochondrial dysfunction and oxidative stress, predicts all-cause and cardiovascular mortality in the general population. Redox Biology, 37, 101741. https://doi.org/https://doi.org/10.1016/j.redox.2020.101741 Wang, T., Xu, H., Guo, Y., Guo, Y., Guan, H., & Wang, D. (2023). Perfluorodecanoic acid promotes high-fat diet-triggered adiposity and hepatic lipid accumulation by modulating the NLRP3/caspase-1 pathway in male C57BL/6J mice. Food and Chemical Toxicology, 178, 113943. https://doi.org/https://doi.org/10.1016/j.fct.2023.113943 Wang, Z., Buser, A. M., Cousins, I. T., Demattio, S., Drost, W., Johansson, O., Ohno, K., Patlewicz, G., Richard, A. M., Walker, G. W., White, G. S., & Leinala, E. (2021). A New OECD Definition for Per- and Polyfluoroalkyl Substances. Environmental Science & Technology, 55(23), 15575-15578. https://doi.org/10.1021/acs.est.1c06896 Wattigney, W. A., Savadatti, S. S., Liu, M., Pavuk, M., Lewis-Michl, E., Kannan, K., Wang, W., Spliethoff, H., Marquez-Bravo, L., & Hwang, S.-A. (2022). Biomonitoring of per- and polyfluoroalkyl substances in minority angler communities in central New York State. Environmental Research, 204. https://doi.org/10.1016/j.envres.2021.112309 Westerhuis, J. A., Hoefsloot, H. C. J., Smit, S., Vis, D. J., Smilde, A. K., van Velzen, E. J. J., van Duijnhoven, J. P. M., & van Dorsten, F. A. (2008). Assessment of PLSDA cross validation. Metabolomics, 4(1), 81-89. https://doi.org/10.1007/s11306-007-0099-6 Whittam, R., & Wiley, J. S. (1968). Some aspects of adenosine triphosphate synthesis from adenine and adenosine in human red blood cells. The Journal of Physiology, 199(2), 485-494. https://doi.org/https://doi.org/10.1113/jphysiol.1968.sp008664 Wikström, S., Lin, P.-I., Lindh, C. H., Shu, H., & Bornehag, C.-G. (2019). Maternal serum levels of perfluoroalkyl substances in early pregnancy and offspring birth weight. Pediatric Research, 87(6), 1093-1099. https://doi.org/10.1038/s41390-019-0720-1 Wise, L. A., Wesselink, A. K., Schildroth, S., Calafat, A. M., Bethea, T. N., Geller, R. J., Coleman, C. M., Fruh, V., Claus Henn, B., Botelho, J. C., Harmon, Q. E., Thirkill, M., Wegienka, G. R., & Baird, D. D. (2022). Correlates of plasma concentrations of per- and poly-fluoroalkyl substances among reproductive-aged Black women. Environmental Research, 203. https://doi.org/10.1016/j.envres.2021.111860 Xu, D., Li, L., Tang, L., Guo, M., & Yang, J. (2022). Perfluorooctane sulfonate induces heart toxicity involving cardiac apoptosis and inflammation in rats. Exp Ther Med, 23(1), 14. https://doi.org/10.3892/etm.2021.10936 Xu, Y., Nielsen, C., Li, Y., Hammarstrand, S., Andersson, E. M., Li, H., Olsson, D. S., Engström, K., Pineda, D., Lindh, C. H., Fletcher, T., & Jakobsson, K. (2021). Serum perfluoroalkyl substances in residents following long-term drinking water contamination from firefighting foam in Ronneby, Sweden. Environment International, 147. https://doi.org/10.1016/j.envint.2020.106333 Yang, J., Wang, H., Du, H., Fang, H., Han, M., Wang, Y., Xu, L., Liu, S., Yi, J., Chen, Y., Jiang, Q., & He, G. (2022). Exposure to perfluoroalkyl substances was associated with estrogen homeostasis in pregnant women. Science of The Total Environment, 805. https://doi.org/10.1016/j.scitotenv.2021.150360 Yang, Z., Fu, L., Cao, M., Li, F., Li, J., Chen, Z., Guo, A., Zhong, H., Li, W., Liang, Y., & Luo, Q. (2023). PFAS-induced lipidomic dysregulations and their associations with developmental toxicity in zebrafish embryos. Science of The Total Environment, 861, 160691. https://doi.org/https://doi.org/10.1016/j.scitotenv.2022.160691 Yanshole, V. V., Melnikov, A. D., Yanshole, L. V., Zelentsova, E. A., Snytnikova, O. A., Osik, N. A., Fomenko, M. V., Savina, E. D., Kalinina, A. V., Sharshov, K. A., Dubovitskiy, N. A., Kobtsev, M. S., Zaikovskii, A. A., Mariasina, S. S., & Tsentalovich, Y. P. (2023). Animal Metabolite Database: Metabolite Concentrations in Animal Tissues and Convenient Comparison of Quantitative Metabolomic Data. Metabolites, 13(10). https://doi.org/10.3390/metabo13101088 Yen, T.-H., Lee, S.-H., Tang, C.-H., Liang, H.-J., & Lin, C.-Y. (2024). Lipid responses to perfluorooctane sulfonate exposure for multiple rat organs. Ecotoxicology and Environmental Safety, 277, 116368. https://doi.org/https://doi.org/10.1016/j.ecoenv.2024.116368 Zhang, H., Ding, L., Fang, X., Shi, Z., Zhang, Y., Chen, H., Yan, X., & Dai, J. (2011). Biological Responses to Perfluorododecanoic Acid Exposure in Rat Kidneys as Determined by Integrated Proteomic and Metabonomic Studies. Plos One, 6(6), e20862. https://doi.org/10.1371/journal.pone.0020862 Zhang, Y., Beesoon, S., Zhu, L., & Martin, J. W. (2013). Biomonitoring of Perfluoroalkyl Acids in Human Urine and Estimates of Biological Half-Life. Environmental Science & Technology, 47(18), 10619-10627. https://doi.org/10.1021/es401905e Zhang, Y., Mustieles, V., Wang, Y.-X., Sun, Y., Agudelo, J., Bibi, Z., Torres, N., Oulhote, Y., Slitt, A., & Messerlian, C. (2023). Folate concentrations and serum perfluoroalkyl and polyfluoroalkyl substance concentrations in adolescents and adults in the USA (National Health and Nutrition Examination Study 2003–16): an observational study. The Lancet Planetary Health, 7(6), e449-e458. https://doi.org/https://doi.org/10.1016/S2542-5196(23)00088-8 Zhou, W., Zhao, S., Tong, C., Chen, L., Yu, X., Yuan, T., Aimuzi, R., Luo, F., Tian, Y., & Zhang, J. (2019). Dietary intake, drinking water ingestion and plasma perfluoroalkyl substances concentration in reproductive aged Chinese women. Environment International, 127, 487-494. https://doi.org/10.1016/j.envint.2019.03.075 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95031 | - |
| dc.description.abstract | 介紹:
全氟癸酸(PFDA)屬於全氟和多氟碳化物(PFASs),因其持久性和生物累積性,PFDA廣泛應用於工業和消費產品中。流行病學和毒理學研究表明,PFDA暴露與人類健康和生物的許多負面影響有關,如肝毒性、生殖毒性和發育毒性。然而,其毒性的分子效應仍不清楚。 材料和方法: 本研究旨在鑑定雄性 Sprague-Dawley 大鼠在暴露於 PFDA 後內源性代謝物的變化。以口胃管注射方式使18 隻大鼠持續暴露每公斤0、0.5 和 1 毫克的 PFDA劑量21 天。收集了肝臟、腎臟、心臟、肺臟、胰臟、睾丸和血清等樣本。樣本經過萃取和預處理,隨後進行高解析度核磁共振儀(NMR)分析。光譜收集後進行多變量和單變量分析,隨後進行數據解釋。 結果與討論: 我們的實驗中,控制組和暴露組的大鼠體重沒有顯著差異。與控制組相比,肝臟重量有顯著增加。偏最小平方判別分析(PLSDA)發現肝臟、腎臟、心臟、肺臟和胰臟在控制組和暴露組之間顯示出分離模式,睾丸和血清則未發現分離趨勢。大鼠肝臟、腎臟、心臟、肺臟、胰臟和血清中特定代謝物的變化表明 PFDA 暴露後代謝過程受到干擾。代謝途徑的改變闡明了 PFDA 引起多個器官的潛在毒性作用和可能機轉。 結論: 基於 NMR 的代謝體學方法揭示了 PFDA 處理後大鼠多個器官和血清中代謝物的變化。儘管本研究 PFDA 暴露引起的代謝反應較輕微,但仍能從代謝物改變觀察到大鼠肝臟、腎臟、心臟、肺臟和胰臟為標的器官與其可能的毒性機轉。受影響代謝物的生物機制可作為未來研究 PFASs 毒性作用的方向。 | zh_TW |
| dc.description.abstract | Introduction: Perfluorodecanoic acid (PFDA) is one of the per- and polyfluoroalkyl substances. PFDA is widely used in industrial and consumer products due to its persistence and bioaccumulation. Epidemiology and toxicology studies showed PFDA exposure related to many negative effects on human health and organisms, such as liver toxicity, reproductive toxicity, and developmental toxicity. However, the possible toxic mechanisms are still unclear.
Materials and methods: The study aims to identify changes in critical endogenous metabolites in male Sprague-Dawley rats after PFDA exposure. Eighteen rats were treated with PFDA at doses of 0, 0.5, and 1 mg/kg body weight/day via oral gavage for 21 days. Liver, kidney, heart, lung, pancreas, testis, and serum samples were collected. Samples were extracted and pretreated, followed by high-resolution nuclear magnetic resonance spectroscopy (NMR) analysis. Multivariate and univariate analysis were conducted after spectral collection, followed by data interpretation. Results and discussions: In our study, rat weights have no significant differences between the control group and the treated group. The liver weights have substantial increase in the high dose group compared with the control group. Partial least squares discriminant analysis (PLSDA) found that liver, kidney, heart, lung, and pancreas showed patterns of separation between control and treated groups except the testis and serum. Metabolic profiles in the liver, kidney, heart, lung, pancreas, and serum of rats suggested disrupted metabolic processes and related adverse effects after PFDA exposure. The altered metabolic pathways elucidate PFDA-induced potential toxic effects and possible mechanisms in multiple organs. Conclusion: The NMR-based metabolomics reveals the changes of metabolites in multiple organs and serum treated by PFDA in rats. Despite the subtle metabolic responses induced by PFDA exposure, we identified the target organs: liver, kidney, heart, lung, and pancreas, and their possible toxic effects. These potential toxic metabolisms may suggest direction for future research on PFAS toxicity. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-26T16:21:03Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-26T16:21:03Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii Abstract iii Contents v Chapter 1 Introduction 1 1.1 Per- and polyfluoroalkyl substances (PFASs) 1 1.1.1 The structure and properties of PFASs 1 1.1.2 Widespread presence of PFASs 2 1.1.3 Toxicity of PFASs 3 1.2 Perfluorodecanoic acid (PFDA) 4 1.2.1 Increasing levels of PFDA 4 1.2.2 Toxicity of PFDA 5 1.3 Nuclear magnetic resonance (NMR)-based metabolomics 6 1.3.1 Introduction of metabolomics 6 1.3.2 Methods for metabolite measurements 7 1.3.3 Application of metabolomics to study health effects of PFASs 7 1.4 Study aims 8 Chapter 2 Materials and methods 10 2.1 Experimental framework 10 2.2 Animals’ treatment and sample collection 11 2.3 Measurement of metabolic profiles in organs and serum by 1H NMR spectroscopy 11 2.3.1 Sample preparation 11 2.3.2 Metabolic profile measurement 12 2.3.3 Spectral processing 14 2.4 Statistical analysis 15 2.5 Metabolite identification 17 Chapter 3 Results 19 3.1 Characteristics of the experimental animals 19 3.2 Metabolite profiling in SD rats by NMR spectroscopy analysis 19 3.3 Association between PFDA exposure and metabolic responses in organs and serum 20 3.4 Metabolic changes in the organs and serum after PFDA exposure 21 Chapter 4 Discussion 23 4.1 Affected metabolites may relate to liver damage 23 4.2 Influenced metabolites may relate to impaired renal function 25 4.3 Affected metabolites may relate to the elevated risk of cardiovascular disease 27 4.4 Change of metabolites in the lung of rats after PFDA exposure 30 4.5 Altered pancreas metabolic profiles after PFDA exposure 32 4.6 Strength and limitation 33 Chapter 5 Conclusion 35 List of figures Figure 1 Two different functional groups of PFASs: PFSAs and PFCAs. Representative compounds are PFOS, PFOA and PFDA. 51 Figure 2 Rat body weight distribution of control group, low-dose group, high-dose group 52 Figure 3 Rat organ weight distribution of control group, low-dose group, high-dose group 53 Figure 4 A representative spectrum of metabolic profiling of rat liver from 600MHz 1H NMR 54 Figure 5 A representative spectrum of metabolic profiling of rat liver from 600MHz 2D JRES 1H NMR 55 Figure 6 A representative spectrum of metabolic profiling of rat liver from 600MHz p-JRES 1H NMR 56 Figure 7 A representative spectrum of metabolic profiling of rat kidney from 600MHz 1H NMR 57 Figure 8 A representative spectrum of metabolic profiling of rat kidney from 600MHz 2D JRES 1H NMR 58 Figure 9 A representative spectrum of metabolic profiling of rat kidney from 600MHz p-JRES 1H NMR 59 Figure 10 A representative spectrum of metabolic profiling of rat heart from 600MHz 1H NMR 60 Figure 11 A representative spectrum of metabolic profiling of rat heart from 600MHz 2D JRES 1H NMR 61 Figure 12 A representative spectrum of metabolic profiling of rat heart from 600MHz p-JRES 1H NMR 62 Figure 13 A representative spectrum of metabolic profiling of rat lung from 600MHz 1H NMR 63 Figure 14 A representative spectrum of metabolic profiling of rat lung from 600MHz 2D JRES 1H NMR 64 Figure 15 A representative spectrum of metabolic profiling of rat lung from 600MHz p-JRES 1H NMR 65 Figure 16 A representative spectrum of metabolic profiling of rat pancreas from 600MHz 1H NMR 66 Figure 17 A representative spectrum of metabolic profiling of rat pancreas from 600MHz 2D JRES 1H NMR 67 Figure 18 A representative spectrum of metabolic profiling of rat pancreas from 600MHz p-JRES 1H NMR 68 Figure 19 A representative spectrum of metabolic profiling of rat testis from 600MHz 1H NMR 69 Figure 20 A representative spectrum of metabolic profiling of rat testis from 600MHz 2D JRES 1H NMR 70 Figure 21 A representative spectrum of metabolic profiling of rat testis from 600MHz p-JRES 1H NMR 71 Figure 22 A representative spectrum of metabolic profiling of rat serum from 600MHz 1H NMR 72 Figure 23 The PCA score scatter plots from analysis of NMR spectra of (a) liver, (b) kidney, (c) heart, (d) lung, (e) pancreas, (f) testis and (g) serum of the SD rats after PFDA exposure. 73 Figure 24 The PLS-DA score plots from analysis of NMR spectra of (a) liver, (b) kidney, (c) heart, (d) lung, (e) pancreas, (f) testis and (g) serum of the SD rats after PFDA exposure. 74 Figure 25 The permutation test results of the PLS-DA from the analysis of (a) liver, (b) kidney, (c) heart, (d) lung, (e) pancreas, (f) testis, and (g) serum. 75 List of tables Table 1 Metabolic changes of liver samples from the SD rats exposed to PFDA revealed by 600 MHz 1H-NMR spectroscopy. 76 Table 2 Metabolic changes of kidney samples from the SD rats exposed to PFDA revealed by 600 MHz 1H-NMR spectroscopy. 77 Table 3 Metabolic changes of heart samples from the SD rats exposed to PFDA revealed by 600 MHz 1H-NMR spectroscopy. 78 Table 4 Metabolic changes of lung samples from the SD rats exposed to PFDA revealed by 600 MHz 1H-NMR spectroscopy. 79 Table 5 Metabolic changes of pancreas samples from the SD rats exposed to PFDA revealed by 600 MHz 1H-NMR spectroscopy. 80 Table 6 Metabolic changes of testis samples from the SD rats exposed to PFDA revealed by 600 MHz 1H-NMR spectroscopy. 81 Table 7 Metabolic changes of serum samples from the SD rats exposed to PFDA revealed by 600 MHz 1H-NMR spectroscopy. 82 | - |
| dc.language.iso | en | - |
| dc.subject | 全氟癸酸 | zh_TW |
| dc.subject | 全氟與多氟烷基物質 | zh_TW |
| dc.subject | 多器官毒性 | zh_TW |
| dc.subject | 核磁共振光譜儀 | zh_TW |
| dc.subject | 代謝體學 | zh_TW |
| dc.subject | metabolomics | en |
| dc.subject | nuclear magnetic resonance spectroscopy | en |
| dc.subject | multiple organ toxicity | en |
| dc.subject | perfluorodecanoic acid | en |
| dc.subject | Per- and polyfluoroalkyl substances | en |
| dc.title | 利用核磁共振光譜儀探討大鼠代謝特徵與全氟癸酸暴露之關聯 | zh_TW |
| dc.title | Association of Metabolic Profiles with Perfluorodecanoic Acid Exposure in Rats Revealed by 1H-NMR Spectroscopy | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 羅宇軒;魏嘉徵;李昇翰 | zh_TW |
| dc.contributor.oralexamcommittee | YU-SYUAN LUO;CHIA-CHENG WEI;SHENG-HAN LEE | en |
| dc.subject.keyword | 全氟與多氟烷基物質,全氟癸酸,代謝體學,核磁共振光譜儀,多器官毒性, | zh_TW |
| dc.subject.keyword | Per- and polyfluoroalkyl substances,perfluorodecanoic acid,metabolomics,nuclear magnetic resonance spectroscopy,multiple organ toxicity, | en |
| dc.relation.page | 82 | - |
| dc.identifier.doi | 10.6342/NTU202403548 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-08 | - |
| dc.contributor.author-college | 公共衛生學院 | - |
| dc.contributor.author-dept | 環境與職業健康科學研究所 | - |
| 顯示於系所單位: | 環境與職業健康科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 3.9 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
