請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95027完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡力凱 | zh_TW |
| dc.contributor.advisor | Li-Kai Tsai | en |
| dc.contributor.author | 林鼎鈞 | zh_TW |
| dc.contributor.author | TING-CHUN LIN | en |
| dc.date.accessioned | 2024-08-26T16:19:50Z | - |
| dc.date.available | 2024-08-27 | - |
| dc.date.copyright | 2024-08-26 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-26 | - |
| dc.identifier.citation | 1. Altman J, Das GD. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol. 1965;124(3):319-35.
2. Eriksson PS, Perfilieva E, Björk-Eriksson T, Alborn AM, Nordborg C, Peterson DA, et al. Neurogenesis in the adult human hippocampus. Nature medicine. 1998;4(11):1313-7. 3. Morshead CM, Reynolds BA, Craig CG, McBurney MW, Staines WA, Morassutti D, et al. Neural stem cells in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells. Neuron. 1994;13(5):1071-82. 4. Brazel CY, Romanko MJ, Rothstein RP, Levison SW. Roles of the mammalian subventricular zone in brain development. Progress in Neurobiology. 2003;69(1):49-69. 5. Doetsch F, Petreanu L, Caille I, Garcia-Verdugo JM, Alvarez-Buylla A. EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron. 2002;36(6):1021-34. 6. Bull ND, Bartlett PF. The adult mouse hippocampal progenitor is neurogenic but not a stem cell. J Neurosci. 2005;25(47):10815-21. 7. Merkle FT, Alvarez-Buylla A. Neural stem cells in mammalian development. Curr Opin Cell Biol. 2006;18(6):704-9. 8. Gould E. How widespread is adult neurogenesis in mammals? Nature Reviews Neuroscience. 2007;8(6):481-8. 9. Johansson CB, Svensson M, Wallstedt L, Janson AM, Frisén J. Neural stem cells in the adult human brain. Exp Cell Res. 1999;253(2):733-6. 10. Lois C, Alvarez-Buylla A. Long-distance neuronal migration in the adult mammalian brain. Science. 1994;264(5162):1145-8. 11. Carlén M, Cassidy RM, Brismar H, Smith GA, Enquist LW, Frisén J. Functional integration of adult-born neurons. Curr Biol. 2002;12(7):606-8. 12. Lledo PM, Merkle FT, Alvarez-Buylla A. Origin and function of olfactory bulb interneuron diversity. Trends in neurosciences. 2008;31(8):392-400. 13. Palmer TD, Takahashi J, Gage FH. The Adult Rat Hippocampus Contains Primordial Neural Stem Cells. Molecular and Cellular Neuroscience. 1997;8:389-404. 14. Jessberger S, Toni N, Clemenson Jr GD, Ray J, Gage FH. Directed differentiation of hippocampal stem/progenitor cells in the adult brain. Nature Neuroscience. 2008;11(8):888-93. 15. Gonzalez-Perez O, Quiñones-Hinojosa A. Astrocytes as neural stem cells in the adult brain. J Stem Cells. 2012;7(3):181-8. 16. Menn B, Garcia-Verdugo JM, Yaschine C, Gonzalez-Perez O, Rowitch D, Alvarez-Buylla A. Origin of oligodendrocytes in the subventricular zone of the adult brain. J Neurosci. 2006;26(30):7907-18. 17. Garcia AD, Doan NB, Imura T, Bush TG, Sofroniew MV. GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nat Neurosci. 2004;7(11):1233-41. 18. Lim DA, Alvarez-Buylla A. The Adult Ventricular-Subventricular Zone (V-SVZ) and Olfactory Bulb (OB) Neurogenesis. Cold Spring Harb Perspect Biol. 2016;8(5). 19. Zhao C, Deng W, Gage FH. Mechanisms and functional implications of adult neurogenesis. Cell. 2008;132(4):645-60. 20. Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nature medicine. 2002;8(9):963-70. 21. Leong SY, Turnley AM. Regulation of adult neural precursor cell migration. Neurochemistry International. 2011;59(3):382-93. 22. Chopp M, Zhang ZG, Jiang Q. Neurogenesis, angiogenesis, and MRI indices of functional recovery from stroke. Stroke; a journal of cerebral circulation. 2007;38(2 Suppl):827-31. 23. Liu J, Solway K, Messing RO, Sharp FR. Increased neurogenesis in the dentate gyrus after transient global ischemia in gerbils. J Neurosci. 1998;18(19):7768-78. 24. Nakatomi H, Kuriu T, Okabe S, Yamamoto S, Hatano O, Kawahara N, et al. Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell. 2002;110(4):429-41. 25. Teramoto T, Qiu J, Plumier JC, Moskowitz MA. EGF amplifies the replacement of parvalbumin-expressing striatal interneurons after ischemia. J Clin Invest. 2003;111(8):1125-32. 26. Raber J, Fan Y, Matsumori Y, Liu Z, Weinstein PR, Fike JR, et al. Irradiation attenuates neurogenesis and exacerbates ischemia-induced deficits. Annals of neurology. 2004;55(3):381-9. 27. Kojima T, Hirota Y, Ema M, Takahashi S, Miyoshi I, Okano H, et al. Subventricular zone-derived neural progenitor cells migrate along a blood vessel scaffold toward the post-stroke striatum. Stem Cells. 2010;28(3):545-54. 28. Lee SR, Kim HY, Rogowska J, Zhao BQ, Bhide P, Parent JM, et al. Involvement of matrix metalloproteinase in neuroblast cell migration from the subventricular zone after stroke. J Neurosci. 2006;26(13):3491-5. 29. del Zoppo GJ. The neurovascular unit, matrix proteases, and innate inflammation. Ann N Y Acad Sci. 2010;1207:46-9. 30. Macas J, Nern C, Plate KH, Momma S. Increased generation of neuronal progenitors after ischemic injury in the aged adult human forebrain. J Neurosci. 2006;26(50):13114-9. 31. Parent JM, Vexler ZS, Gong C, Derugin N, Ferriero DM. Rat forebrain neurogenesis and striatal neuron replacement after focal stroke. Annals of neurology. 2002;52(6):802-13. 32. Yamashita T, Ninomiya M, Hernandez Acosta P, Garcia-Verdugo JM, Sunabori T, Sakaguchi M, et al. Subventricular zone-derived neuroblasts migrate and differentiate into mature neurons in the post-stroke adult striatum. J Neurosci. 2006;26(24):6627-36. 33. Masuda T, Isobe Y, Aihara N, Furuyama F, Misumi S, Kim TS, et al. Increase in neurogenesis and neuroblast migration after a small intracerebral hemorrhage in rats. Neurosci Lett. 2007;425(2):114-9. 34. Otero L, Zurita M, Bonilla C, Rico MA, Aguayo C, Rodriguez A, et al. Endogenous neurogenesis after intracerebral hemorrhage. Histol Histopathol. 2012;27(3):303-15. 35. Hostettler IC, Seiffge DJ, Werring DJ. Intracerebral hemorrhage: an update on diagnosis and treatment. Expert review of neurotherapeutics. 2019;19(7):679-94. 36. Moskowitz MA, Lo EH, Iadecola C. The science of stroke: mechanisms in search of treatments. Neuron. 2010;67(2):181-98. 37. Johanson CE, Stopa EG, McMillan PN. The blood-cerebrospinal fluid barrier: structure and functional significance. Methods Mol Biol. 2011;686:101-31. 38. Johanson C, Stopa E, Baird A, Sharma H. Traumatic brain injury and recovery mechanisms: peptide modulation of periventricular neurogenic regions by the choroid plexus-CSF nexus. J Neural Transm (Vienna). 2011;118(1):115-33. 39. Bátiz LF, Castro MA, Burgos PV, Velásquez ZD, Muñoz RI, Lafourcade CA, et al. Exosomes as Novel Regulators of Adult Neurogenic Niches. Front Cell Neurosci. 2015;9:501. 40. Faissner A, Reinhard J. The extracellular matrix compartment of neural stem and glial progenitor cells. Glia. 2015;63(8):1330-49. 41. Lehtinen MK, Zappaterra MW, Chen X, Yang YJ, Hill AD, Lun M, et al. The cerebrospinal fluid provides a proliferative niche for neural progenitor cells. Neuron. 2011;69(5):893-905. 42. de Sonnaville S, van Strien ME, Middeldorp J, Sluijs JA, van den Berge SA, Moeton M, et al. The adult human subventricular zone: partial ependymal coverage and proliferative capacity of cerebrospinal fluid. Brain Commun. 2020;2(2):fcaa150. 43. Mirzadeh Z, Merkle FT, Soriano-Navarro M, Garcia-Verdugo JM, Alvarez-Buylla A. Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain. Cell Stem Cell. 2008;3(3):265-78. 44. Marques F, Sousa JC, Coppola G, Gao F, Puga R, Brentani H, et al. Transcriptome signature of the adult mouse choroid plexus. Fluids and Barriers of the CNS. 2011;8(1):10. 45. Zappaterra MW, Lehtinen MK. The cerebrospinal fluid: regulator of neurogenesis, behavior, and beyond. Cell Mol Life Sci. 2012;69(17):2863-78. 46. Bibel M, Barde YA. Neurotrophins: key regulators of cell fate and cell shape in the vertebrate nervous system. Genes Dev. 2000;14(23):2919-37. 47. Huang EJ, Reichardt LF. Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem. 2003;72:609-42. 48. Park H, Poo MM. Neurotrophin regulation of neural circuit development and function. Nat Rev Neurosci. 2013;14(1):7-23. 49. Wang CS, Kavalali ET, Monteggia LM. BDNF signaling in context: From synaptic regulation to psychiatric disorders. Cell. 2022;185(1):62-76. 50. Kuhn HG, Winkler J, Kempermann G, Thal LJ, Gage FH. Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain. J Neurosci. 1997;17(15):5820-9. 51. Ghashghaei HT, Weimer JM, Schmid RS, Yokota Y, McCarthy KD, Popko B, et al. Reinduction of ErbB2 in astrocytes promotes radial glial progenitor identity in adult cerebral cortex. Genes Dev. 2007;21(24):3258-71. 52. Jin K, Sun Y, Xie L, Peel A, Mao XO, Batteur S, et al. Directed migration of neuronal precursors into the ischemic cerebral cortex and striatum. Mol Cell Neurosci. 2003;24(1):171-89. 53. Kirschenbaum B, Goldman S. Kirschenbaum, B. & Goldman, S.A. Brain-derived neurotrophic factor promotes the survival of neurons arising from the adult rat forebrain subependymal zone. Proc. Natl. Acad. Sci. USA 92, 210-214. Proceedings of the National Academy of Sciences of the United States of America. 1995;92:210-4. 54. Barde YA. Trophic factors and neuronal survival. Neuron. 1989;2(6):1525-34. 55. Ahn SY, Sung DK, Kim YE, Sung S, Chang YS, Park WS. Brain-derived neurotropic factor mediates neuroprotection of mesenchymal stem cell-derived extracellular vesicles against severe intraventricular hemorrhage in newborn rats. Stem Cells Transl Med. 2021;10(3):374-84. 56. Chen SJ, Tsai JC, Lin TY, Chang CK, Tseng TH, Chien CL. Brain-derived neurotrophic factor-transfected and nontransfected 3T3 fibroblasts enhance migratory neuroblasts and functional restoration in mice with intracerebral hemorrhage. J Neuropathol Exp Neurol. 2012;71(12):1123-36. 57. Chen YA, Wang KC, Liu DZ, Young TH, Tsai LK. The Proliferation Capacity of Cultured Neural Stem Cells Promoted by CSF Collected from SAH Patients Correlates to Clinical Outcome. Sci Rep. 2018;8(1):1109. 58. Pencea V, Bingaman KD, Wiegand SJ, Luskin MB. Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus. J Neurosci. 2001;21(17):6706-17. 59. Galvão RP, Garcia-Verdugo JM, Alvarez-Buylla A. Brain-derived neurotrophic factor signaling does not stimulate subventricular zone neurogenesis in adult mice and rats. J Neurosci. 2008;28(50):13368-83. 60. He Q, Li Z, Li T, Zhang Z, Zhao J. ATP Stimulation Promotes Functional Recovery after Intracerebral Haemorrhage by Increasing the mBDNF/proBDNF Ratio. Neuroscience. 2021;459:104-17. 61. Lei C, Wu B, Cao T, Liu M, Hao Z. Brain recovery mediated by toll-like receptor 4 in rats after intracerebral hemorrhage. Brain Res. 2016;1632:1-8. 62. Lee WD, Wang KC, Tsai YF, Chou PC, Tsai LK, Chien CL. Subarachnoid Hemorrhage Promotes Proliferation, Differentiation, and Migration of Neural Stem Cells via BDNF Upregulation. PLoS One. 2016;11(11):e0165460. 63. Falcao AM, Palha JA, Ferreira AC, Marques F, Sousa N, Sousa JC. Topographical analysis of the subependymal zone neurogenic niche. PLoS One. 2012;7(6):e38647. 64. Chen A, Xiong LJ, Tong Y, Mao M. The neuroprotective roles of BDNF in hypoxic ischemic brain injury. Biomed Rep. 2013;1(2):167-76. 65. Alonso-Alconada D, Gressens P, Golay X, Robertson NJ. Neurogenesis Is Reduced at 48 h in the Subventricular Zone Independent of Cell Death in a Piglet Model of Perinatal Hypoxia-Ischemia. Front Pediatr. 2022;10:793189. 66. Iwai M, Ikeda T, Hayashi T, Sato K, Nagata T, Nagano I, et al. Temporal profile of neural stem cell proliferation in the subventricular zone after ischemia/hypoxia in the neonatal rat brain. Neurol Res. 2006;28(4):461-8. 67. Doetsch F, Caillé I, Lim DA, García-Verdugo JM, Alvarez-Buylla A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell. 1999;97(6):703-16. 68. Jin K, Minami M, Lan JQ, Mao XO, Batteur S, Simon RP, et al. Neurogenesis in dentate subgranular zone and rostral subventricular zone after focal cerebral ischemia in the rat. Proc Natl Acad Sci U S A. 2001;98(8):4710-5. 69. Martí-Fàbregas J, Romaguera-Ros M, Gómez-Pinedo U, Martínez-Ramírez S, Jiménez-Xarrié E, Marín R, et al. Proliferation in the human ipsilateral subventricular zone after ischemic stroke. Neurology. 2010;74(5):357-65. 70. Jin K, Wang X, Xie L, Mao XO, Zhu W, Wang Y, et al. Evidence for stroke-induced neurogenesis in the human brain. Proc Natl Acad Sci U S A. 2006;103(35):13198-202. 71. Sanai N, Tramontin AD, Quiñones-Hinojosa A, Barbaro NM, Gupta N, Kunwar S, et al. Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature. 2004;427(6976):740-4. 72. Sanai N, Tramontin AD, Quiñones-Hinojosa A, Barbaro NM, Gupta N, Kunwar S, et al. Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature. 2004;427(6976):740-4. 73. Thouvenot E, Lafon-Cazal M, Demettre E, Jouin P, Bockaert J, Marin P. The proteomic analysis of mouse choroid plexus secretome reveals a high protein secretion capacity of choroidal epithelial cells. Proteomics. 2006;6(22):5941-52. 74. Scheepens A, Sirimanne ES, Breier BH, Clark RG, Gluckman PD, Williams CE. Growth hormone as a neuronal rescue factor during recovery from CNS injury. Neuroscience. 2001;104(3):677-87. 75. Béjot Y, Mossiat C, Giroud M, Prigent-Tessier A, Marie C. Circulating and brain BDNF levels in stroke rats. Relevance to clinical studies. PLoS One. 2011;6(12):e29405. 76. Hofer M, Pagliusi SR, Hohn A, Leibrock J, Barde YA. Regional distribution of brain-derived neurotrophic factor mRNA in the adult mouse brain. Embo j. 1990;9(8):2459-64. 77. Pöyhönen S, Er S, Domanskyi A, Airavaara M. Effects of Neurotrophic Factors in Glial Cells in the Central Nervous System: Expression and Properties in Neurodegeneration and Injury. Front Physiol. 2019;10:486. 78. Béjot Y, Prigent-Tessier A, Cachia C, Giroud M, Mossiat C, Bertrand N, et al. Time-dependent contribution of non neuronal cells to BDNF production after ischemic stroke in rats. Neurochem Int. 2011;58(1):102-11. 79. Guo YC, Song XK, Xu YF, Ma JB, Zhang JJ, Han PJ. The expression and mechanism of BDNF and NGB in perihematomal tissue in rats with intracerebral hemorrhage. Eur Rev Med Pharmacol Sci. 2017;21(15):3452-8. 80. Lanz TA, Bove SE, Pilsmaker CD, Mariga A, Drummond EM, Cadelina GW, et al. Robust changes in expression of brain-derived neurotrophic factor (BDNF) mRNA and protein across the brain do not translate to detectable changes in BDNF levels in CSF or plasma. Biomarkers. 2012;17(6):524-31. 81. Di Lazzaro V, Profice P, Pilato F, Dileone M, Florio L, Tonali PA, et al. BDNF plasma levels in acute stroke. Neuroscience Letters. 2007;422(2):128-30. 82. Karantali E, Kazis D, Papavasileiou V, Prevezianou A, Chatzikonstantinou S, Petridis F, et al. Serum BDNF Levels in Acute Stroke: A Systematic Review and Meta-Analysis. Medicina (Kaunas). 2021;57(3). 83. Mojtabavi H, Shaka Z, Momtazmanesh S, Ajdari A, Rezaei N. Circulating brain-derived neurotrophic factor as a potential biomarker in stroke: a systematic review and meta-analysis. J Transl Med. 2022;20(1):126. 84. Øverberg LT, Lugg EF, Gaarder M, Langhammer B, Thommessen B, Rønning OM, et al. Plasma levels of BDNF and EGF are reduced in acute stroke patients. Heliyon. 2022;8(6):e09661. 85. Sobrino T, Rodríguez-Yáñez M, Campos F, Iglesias-Rey R, Millán M, de la Ossa NP, et al. Association of High Serum Levels of Growth Factors with Good Outcome in Ischemic Stroke: a Multicenter Study. Transl Stroke Res. 2020;11(4):653-63. 86. Qiao HJ, Li ZZ, Wang LM, Sun W, Yu JC, Wang B. Association of lower serum Brain-derived neurotrophic factor levels with larger infarct volumes in acute ischemic stroke. J Neuroimmunol. 2017;307:69-73. 87. Chodobski A, Szmydynger-Chodobska J. Choroid plexus: target for polypeptides and site of their synthesis. Microsc Res Tech. 2001;52(1):65-82. 88. Yan Q, Matheson C, Sun J, Radeke MJ, Feinstein SC, Miller JA. Distribution of intracerebral ventricularly administered neurotrophins in rat brain and its correlation with trk receptor expression. Exp Neurol. 1994;127(1):23-36. 89. Young KM, Merson TD, Sotthibundhu A, Coulson EJ, Bartlett PF. p75 neurotrophin receptor expression defines a population of BDNF-responsive neurogenic precursor cells. J Neurosci. 2007;27(19):5146-55. 90. Zigova T, Pencea V, Wiegand SJ, Luskin MB. Intraventricular administration of BDNF increases the number of newly generated neurons in the adult olfactory bulb. Mol Cell Neurosci. 1998;11(4):234-45. 91. Islam O, Loo TX, Heese K. Brain-derived neurotrophic factor (BDNF) has proliferative effects on neural stem cells through the truncated TRK-B receptor, MAP kinase, AKT, and STAT-3 signaling pathways. Curr Neurovasc Res. 2009;6(1):42-53. 92. Kirschenbaum B, Goldman SA. Brain-derived neurotrophic factor promotes the survival of neurons arising from the adult rat forebrain subependymal zone. Proc Natl Acad Sci U S A. 1995;92(1):210-4. 93. Ahmed S, Reynolds BA, Weiss S. BDNF enhances the differentiation but not the survival of CNS stem cell-derived neuronal precursors. J Neurosci. 1995;15(8):5765-78. 94. Borlongan CV, Skinner SJ, Geaney M, Vasconcellos AV, Elliott RB, Emerich DF. Intracerebral transplantation of porcine choroid plexus provides structural and functional neuroprotection in a rodent model of stroke. Stroke; a journal of cerebral circulation. 2004;35(9):2206-10. 95. Pan W, Banks WA, Fasold MB, Bluth J, Kastin AJ. Transport of brain-derived neurotrophic factor across the blood-brain barrier. Neuropharmacology. 1998;37(12):1553-61. 96. Im SH, Yu JH, Park ES, Lee JE, Kim HO, Park KI, et al. Induction of striatal neurogenesis enhances functional recovery in an adult animal model of neonatal hypoxic-ischemic brain injury. Neuroscience. 2010;169(1):259-68. 97. Henry RA, Hughes SM, Connor B. AAV-mediated delivery of BDNF augments neurogenesis in the normal and quinolinic acid-lesioned adult rat brain. Eur J Neurosci. 2007;25(12):3513-25. 98. Reumers V, Deroose CM, Krylyshkina O, Nuyts J, Geraerts M, Mortelmans L, et al. Noninvasive and quantitative monitoring of adult neuronal stem cell migration in mouse brain using bioluminescence imaging. Stem Cells. 2008;26(9):2382-90. 99. Wang J. Preclinical and clinical research on inflammation after intracerebral hemorrhage. Prog Neurobiol. 2010;92(4):463-77. 100. Jha MK, Lee W-H, Suk K. Functional polarization of neuroglia: Implications in neuroinflammation and neurological disorders. Biochemical Pharmacology. 2016;103:1-16. 101. Jha MK, Jo M, Kim JH, Suk K. Microglia-Astrocyte Crosstalk: An Intimate Molecular Conversation. Neuroscientist. 2019;25(3):227-40. 102. Badowska-Szalewska E, Lietzau G, Moryś J, Kowiański P. Role of brain-derived neurotrophic factor in shaping the behavioural response to environmental stressors. Folia Morphol (Warsz). 2021;80(3):487-504. 103. Mattson MP, Meffert MK. Roles for NF-kappaB in nerve cell survival, plasticity, and disease. Cell Death Differ. 2006;13(5):852-60. 104. Seyfried D, Ding J, Han Y, Li Y, Chen J, Chopp M. Effects of intravenous administration of human bone marrow stromal cells after intracerebral hemorrhage in rats. J Neurosurg. 2006;104(2):313-8. 105. Zhang H, Huang Z, Xu Y, Zhang S. Differentiation and neurological benefit of the mesenchymal stem cells transplanted into the rat brain following intracerebral hemorrhage. Neurol Res. 2006;28(1):104-12. 106. Liao W, Zhong J, Yu J, Xie J, Liu Y, Du L, et al. Therapeutic benefit of human umbilical cord derived mesenchymal stromal cells in intracerebral hemorrhage rat: implications of anti-inflammation and angiogenesis. Cell Physiol Biochem. 2009;24(3-4):307-16. 107. Liu AM, Lu G, Tsang KS, Li G, Wu Y, Huang ZS, et al. Umbilical cord-derived mesenchymal stem cells with forced expression of hepatocyte growth factor enhance remyelination and functional recovery in a rat intracerebral hemorrhage model. Neurosurgery. 2010;67(2):357-65; discussion 65-6. 108. Otero L, Bonilla C, Aguayo C, Zurita M, Vaquero J. Intralesional administration of allogeneic bone marrow stromal cells reduces functional deficits after intracerebral hemorrhage. Histol Histopathol. 2010;25(4):453-61. 109. Yang C, Zhou L, Gao X, Chen B, Tu J, Sun H, et al. Neuroprotective effects of bone marrow stem cells overexpressing glial cell line-derived neurotrophic factor on rats with intracerebral hemorrhage and neurons exposed to hypoxia/reoxygenation. Neurosurgery. 2011;68(3):691-704. 110. Wang SP, Wang ZH, Peng DY, Li SM, Wang H, Wang XH. Therapeutic effect of mesenchymal stem cells in rats with intracerebral hemorrhage: reduced apoptosis and enhanced neuroprotection. Mol Med Rep. 2012;6(4):848-54. 111. Bao XJ, Liu FY, Lu S, Han Q, Feng M, Wei JJ, et al. Transplantation of Flk-1+ human bone marrow-derived mesenchymal stem cells promotes behavioral recovery and anti-inflammatory and angiogenesis effects in an intracerebral hemorrhage rat model. Int J Mol Med. 2013;31(5):1087-96. 112. Vaquero J, Otero L, Bonilla C, Aguayo C, Rico MA, Rodriguez A, et al. Cell therapy with bone marrow stromal cells after intracerebral hemorrhage: impact of platelet-rich plasma scaffolds. Cytotherapy. 2013;15(1):33-43. 113. Kim K, Park HW, Moon HE, Kim JW, Bae S, Chang JW, et al. The Effect of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells in a Collagenase-Induced Intracerebral Hemorrhage Rat Model. Exp Neurobiol. 2015;24(2):146-55. 114. Lee HS, Kim KS, Lim HS, Choi M, Kim HK, Ahn HY, et al. Priming Wharton's jelly-derived mesenchymal stromal/stem cells with ROCK inhibitor improves recovery in an intracerebral hemorrhage model. J Cell Biochem. 2015;116(2):310-9. 115. Suda S, Yang B, Schaar K, Xi X, Pido J, Parsha K, et al. Autologous Bone Marrow Mononuclear Cells Exert Broad Effects on Short- and Long-Term Biological and Functional Outcomes in Rodents with Intracerebral Hemorrhage. Stem Cells Dev. 2015;24(23):2756-66. 116. Sun J, Wei ZZ, Gu X, Zhang JY, Zhang Y, Li J, et al. Intranasal delivery of hypoxia-preconditioned bone marrow-derived mesenchymal stem cells enhanced regenerative effects after intracerebral hemorrhagic stroke in mice. Exp Neurol. 2015;272:78-87. 117. Xie J, Wang B, Wang L, Dong F, Bai G, Liu Y. Intracerebral and Intravenous Transplantation Represents a Favorable Approach for Application of Human Umbilical Cord Mesenchymal Stromal Cells in Intracerebral Hemorrhage Rats. Med Sci Monit. 2016;22:3552-61. 118. Zhou H, Zhang H, Yan Z, Xu R. Transplantation of human amniotic mesenchymal stem cells promotes neurological recovery in an intracerebral hemorrhage rat model. Biochem Biophys Res Commun. 2016;475(2):202-8. 119. Cui C, Cui Y, Gao J, Li R, Jiang X, Tian Y, et al. Intraparenchymal treatment with bone marrow mesenchymal stem cell-conditioned medium exerts neuroprotection following intracerebral hemorrhage. Mol Med Rep. 2017;15(4):2374-82. 120. Cui J, Cui C, Cui Y, Li R, Sheng H, Jiang X, et al. Bone Marrow Mesenchymal Stem Cell Transplantation Increases GAP-43 Expression via ERK1/2 and PI3K/Akt Pathways in Intracerebral Hemorrhage. Cell Physiol Biochem. 2017;42(1):137-44. 121. Deng L, Gao X, Fan G, Yang C. Effects of GDNF-Transfected Marrow Stromal Cells on Rats with Intracerebral Hemorrhage. J Stroke Cerebrovasc Dis. 2019;28(9):2555-62. 122. Huang P, Freeman WD, Edenfield BH, Brott TG, Meschia JF, Zubair AC. Safety and Efficacy of Intraventricular Delivery of Bone Marrow-Derived Mesenchymal Stem Cells in Hemorrhagic Stroke Model. Sci Rep. 2019;9(1):5674. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95027 | - |
| dc.description.abstract | 幹細胞為具有增生及分化能力的細胞,其中雖然由胚胎所取得的胚胎幹細胞可分化為所有成體的細胞種類,但其來源較少且有倫理的爭議,因此近年來,成體幹細胞相關的研究日顯重要。人類成體擁有神經幹細胞的概念已廣被接受。神經幹細胞主要存在於側腦室下 (subventricular zone; SVZ) 及海馬迴 (hippocampal dentate gyrus),這些神經幹細胞於成體會持續增生且分化為成熟的神經細胞。
目前已知許多神經相關疾病,如腦中風,腦損傷或神經退化性疾病,皆會對成體神經幹細胞造成刺激或抑制性的影響,然而這些神經疾病和神經再生的關係和意義仍尚未有清楚的定論。腦脊髓液主要由大腦腦室旁的室管膜細胞 (ependymal cells) 所製造,其可由腰椎穿刺法獲得。由於腦組織和腦室間無血液大腦屏障所區隔,因此大腦內的蛋白質有機會經滲透而表現於腦脊髓中。根據過去文獻當大腦出現病變時,腦內所產生的神經營養因子(brain-derived neurotrophic factor,BDNF)可能滲透至SVZ 區而影響了神經幹細胞的增生、移行及分化能力。因此,病患的腦脊髓液可用以研究神經疾病和神經再生的關係。顱內出血會造成嚴重的神經功能受損及致死率,目前臨床上顱內出血的治療以外科手術取出顱內血塊為主,但是效果有限,也缺乏相關神經幹細胞研究,因此本研究探討神經幹細胞於顱內出血的影響。 我們使用膠原蛋白分解酶 (collagenase) 注射入Sprague-Dawley大鼠的腦部形成自發性急性顱內出血的大鼠模式,利用組織化學螢光免疫染色方法觀察7天內該急性出血模式的大鼠SVZ的神經幹細胞的變化。我們取得該出血大鼠及對照組大鼠的腦脊髓液,並加入由大鼠胚胎的腦皮質培養而來的神經幹細胞培養液,利用組織化學螢光免疫染色方法觀察該腦脊髓液對幹細胞增生、移行及分化能力的影響。此外我們亦由罹患自發性顱內出血後併發腦水腫且接受腦室引流手術的病人取得腦脊髓液,以及由正常腦壓水腦症 (normal pressure hydrocephalus) 的患者取得腦脊髓液以作為對照組,當把自發性顱內出血病患及對照組的腦脊髓液加入含有大鼠神經幹細胞的培養液中後,觀察該腦脊髓液對幹細胞的影響,其結果和病患臨床的表現作進一步分析及比較。此外我們利用ELISA法測量腦脊髓液中的BDNF濃度,進一步我們將BDNF抗體加入培養的神經幹細胞,觀察BDNF是否影響神經幹細胞。最後我們藉由腦脊髓液注射入腦出血大鼠,觀察是否影響SVZ的神經幹細胞及治療效果。 在急性出血模式的大鼠雙側SVZ,我們均觀察到在第7天時神經幹細胞有顯著增生,分化的SVZ 神經胚細胞 (neuroblast) 的染色呈現亦有顯著的增加及神經胚細胞移行的增加。另外將大鼠腦出血後第七天的腦脊髓液加入大鼠神經幹細胞培養液中,可發現有顯著的細胞增生及神經胚細胞表現增加。相同的,將病人腦出血後第三天的腦脊髓液加入大鼠神經幹細胞培養液中,亦觀察到有顯著細胞增生,及神經胚細胞呈現的增加。此外我們分別在腦出血大鼠第7天及腦出血病患第3天的腦脊髓液中,測量到有顯著的BDNF濃度增加。進一步若加入BDNF抗體至大鼠神經幹細胞的培養液裡,可觀察到神經幹細胞的增生及神經胚細胞的分化程度均顯著降低。分析腦出血病患的臨床表現相關性,我們發現到出血血腫的容積與BDNF的濃度、神經細胞的增生,以及神經胚細胞的分化,均呈現顯著正相關,而與星狀細胞的分化呈現顯著負相關。在將BDNF注射入腦出血大鼠的腦室實驗中,觀察到大鼠的出血旁區域在第14天時神經幹細胞有顯著增生,發炎及細胞凋亡指標亦有減少的現象。而在BDNF抗體注射入腦出血大鼠的腦室組別則顯著地減少此呈現強度。此外在BDNF組別亦有較好的功能性測試結果。因此我們推論在急性腦出血的影響下,老鼠及病患體內會引起產生內生性BDNF,此內生性BDNF會促進神經幹細胞的增生,分化及移行,並有恢復出血後神經功能的可能。以上結果證明BDNF促進急性腦出血後神經幹細胞活化假說,並支持未來以BDNF治療急性腦出血的可能性。 | zh_TW |
| dc.description.abstract | Stem cells, with their remarkable proliferative and differentiative capabilities, have garnered considerable attention in scientific research. While embryonic stem cells, derived from embryos, can differentiate into any cell type in the adult body, their use raises ethical concerns and faces limitations. In recent years, adult stem cells, particularly neural stem cells, have become a focal point of research due to their potential therapeutic applications. Neural stem cells are crucial players in the regenerative capacity of the brain. They primarily reside in two regions: the subventricular zone (SVZ) and the hippocampal dentate gyrus. In adults, these cells continuously proliferate and differentiate into mature nerve cells, contributing to neural regeneration. Understanding the interaction between neural stem cells and neurological diseases is vital for developing therapy.
Numerous neurological disorders, such as stroke, brain injury, and neurodegenerative diseases, can influence the behavior of adult neural stem cells. However, the precise relationship between these conditions and neural regeneration remains unclear. Cerebrospinal fluid, which surrounds the brain and spinal cord, is a potential key player in this relationship. It is known to contain proteins and factors that may affect neural stem cell function. This study explores the impact of cerebrospinal fluid on neural stem cells in the context of acute intracerebral hemorrhage. An experimental model was created by inducing spontaneous acute intracerebral hemorrhage in rats using collagenase. The rats were then observed over seven days to track changes in neural stem cells within the SVZ. The cerebrospinal fluid obtained from both hemorrhagic rats and a control group was introduced to a culture medium containing rat neural stem cells. This allowed researchers to observe the effects on stem cell proliferation, migration, and differentiation. Additionally, cerebrospinal fluid was collected from patients who underwent ventricular drainage surgery after spontaneous intracerebral hemorrhage, along with a control group, to further explore clinical implications. Results from the study demonstrated a significant increase in neural stem cell proliferation and differentiation in the SVZ of rats with acute intracerebral hemorrhage. Similarly, when culturing neural stem cells with cerebrospinal fluid from hemorrhagic rats and patients, there was a notable increase in proliferation and expression of neuroblasts – precursor cells that differentiate into nerve cells. Further analysis revealed a significant increase in the concentration of brain-derived neurotrophic factor (BDNF) in the cerebrospinal fluid of both rats and patients. BDNF is a crucial neurotrophin associated with neuronal survival and growth. Adding BDNF antibodies to the culture medium resulted in a significant reduction in neural stem cell proliferation and differentiation, suggesting a key role for BDNF in the observed effects. Clinical correlations in hemorrhagic patients indicated a positive relationship between hematoma volume, BDNF concentration, neural stem cell proliferation, and neuroblast differentiation. Conversely, there was a negative correlation with astrocyte differentiation, emphasizing the specificity of the observed effects. In our experiment where BDNF was injected into the ventricles of rats with hemorrhage, it was observed that the area surrounding the hemorrhage in the rats showed enhancement of proliferation of neural stem cells by the 14th day. Additionally, indicators of inflammation and apoptosis were reduced. Furthermore, the BDNF group exhibited better functional test results. Therefore, we infer exogenous BDNF also promotes the proliferation, differentiation, and migration of neural stem cells and potentially aids in the recovery of neural function following hemorrhage. In conclusion, this study sheds light on the relationship between cerebrospinal fluid, neural stem cells, and acute intracerebral hemorrhage. The findings suggest that BDNF plays a pivotal role in promoting neural stem cell proliferation, differentiation, and migration in response to hemorrhagic events. Understanding these mechanisms opens the door to potential therapeutic interventions utilizing BDNF for the treatment of acute cerebral hemorrhage. As research progresses, this knowledge may contribute to novel strategies for harnessing the regenerative potential of neural stem cells in the context of neurological disorders. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-26T16:19:50Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-26T16:19:50Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 謝辭 i
中文摘要 ii 英文摘要iii 第一章Introduction 1 1.1 The complexity of Neural Stem Cell Quiescence and Activation 1 1.2 Intracerebral Hemorrhage Augments Neurogenesis 4 1.3 Neurogenesis and Cerebrospinal Fluid Harmony 8 1.4 CSF Brain-derived neurotrophic factor and SVZ Neurogenesis following ICH 11 1.5 Hypothesis and aims 19 第二章 Materials and methods 20 2.1 Experimental Design 20 2.2 Animal model 21 2.3 Implantation of minipumps and administration of human recombinant BDNF or BDNF neutralizing antibody 22 2.4 Patients 23 2.5 Primary rat neural stem cell culture 24 2.6 Immunohistochemistry 25 2.7 Immunocytochemistry 26 2.8 Enzyme-linked immunosorbent assay analysis of BDNF 26 2.9 Intracerebroventricular injection of BDNF in vivo study 27 2.10 Statistical analysis 28 第三章 Results 29 3.1 ICH promotes neurogenesis in bilateral SVZ of rats 29 3.2 Post-ICH CSF promotes proliferation and differentiation of cultured NSCs 30 3.3 BDNF in post-ICH CSF contributes to neurogenesis of culture NSCs 31 3.4 ICH volume is associated with BDNF concentration and neurogenesis capacity 32 3.5 Intraventricular BDNF enhances functional outcomes after ICH in rats 32 第四章 Discussion 33 4.1 ICH promotes neurogenesis in bilateral SVZ of rats and primary neural stem cultures 34 4.2 SVZ structures contact with CSF and growth factors in CSF 39 4.3 BDNF in CSF enhance neurogenesis 42 4.4 Intracerebroventricular injection BDNF might promote favorable functional outcome 45 4.5 Limitations 52 第五章 Prospects 53 第六章 Summary 63 References 73 Table 1. 83 Figure 1. 84 Figure 2. 86 Figure 3. 88 Figure 4. 90 Figure 5. 92 Figure 6. 94 Figure 7. 95 Figure 8. 96 Figure 9. 98 Figure 10. 100 Figure 11. 102 Figure 12. 103 附錄: 博士班修業期間所發表之相關論文 104 | - |
| dc.language.iso | en | - |
| dc.subject | 腦脊液 | zh_TW |
| dc.subject | 腦源性神經生長因子(BDNF) | zh_TW |
| dc.subject | 室旁區 | zh_TW |
| dc.subject | 神經發生 | zh_TW |
| dc.subject | 顱內出血 | zh_TW |
| dc.subject | Brain-derived neurotrophic factor | en |
| dc.subject | cerebrospinal fluid | en |
| dc.subject | subventricular zone | en |
| dc.subject | neurogenesis | en |
| dc.subject | intracerebral hemorrhage | en |
| dc.title | 腦源性神經生長因子(BDNF)在腦內出血後促進神經生成之探討 | zh_TW |
| dc.title | Brain-derived neurotrophic factor contributes to neurogenesis after intracerebral hemorrhage: a rodent model and human study | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.coadvisor | 楊台鴻 | zh_TW |
| dc.contributor.coadvisor | Tai-Horng Young | en |
| dc.contributor.oralexamcommittee | 楊偉勛;李俊泰;陳凱筠;陳龍 | zh_TW |
| dc.contributor.oralexamcommittee | Wei-Shiung Yang;Jiunn-Tay Lee;Kai-Yun Chen;Lung Chan | en |
| dc.subject.keyword | 腦源性神經生長因子(BDNF),腦脊液,顱內出血,神經發生,室旁區, | zh_TW |
| dc.subject.keyword | Brain-derived neurotrophic factor,cerebrospinal fluid,intracerebral hemorrhage,neurogenesis,subventricular zone, | en |
| dc.relation.page | 104 | - |
| dc.identifier.doi | 10.6342/NTU202402205 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-07-29 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 臨床醫學研究所 | - |
| 顯示於系所單位: | 臨床醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 3.24 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
