請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95024完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張書森 | zh_TW |
| dc.contributor.advisor | Shu-Sen Chang | en |
| dc.contributor.author | 林玉倫 | zh_TW |
| dc.contributor.author | Yu-Lun Lin | en |
| dc.date.accessioned | 2024-08-26T16:18:44Z | - |
| dc.date.available | 2024-08-27 | - |
| dc.date.copyright | 2024-08-26 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-14 | - |
| dc.identifier.citation | Antoinette MLee, P., Josephine GWS Wong, MRCPsych1, Grainne M McAlonan, MBBS, PhD1, Vinci Cheung, MPhil2, Charlton Cheung, BSc2, Pak C Sham, MRCPsych, PhD3, Chung-Ming Chu, FRCP4, Poon-Chuen Wong, MRCP5, Kenneth WT Tsang, FRCP6, Siew E Chua, MRCPsych1. (2007). Stress and psychological distress among SARS survivors 1 year after the outbreak
Ayers, J. W., Leas, E. C., Johnson, D. C., Poliak, A., Althouse, B. M., Dredze, M., & Nobles, A. L. (2020). Internet Searches for Acute Anxiety During the Early Stages of the COVID-19 Pandemic. JAMA Intern Med, 180(12), 1706-1707. doi:10.1001/jamainternmed.2020.3305 Benke, C., Autenrieth, L. K., Asselmann, E., & Pané-Farré, C. A. (2020). Lockdown, quarantine measures, and social distancing: Associations with depression, anxiety and distress at the beginning of the COVID-19 pandemic among adults from Germany. Psychiatry Research, 293, 113462. Brodeur, A., Clark, A. E., Flèche, S., & Powdthavee, N. (2020). COVID-19, Lockdowns and Well-Being Evidence from Google Trends. Brooks, S. K., Webster, R. K., Smith, L. E., Woodland, L., Wessely, S., Greenberg, N., & Rubin, G. J. (2020). The psychological impact of quarantine and how to reduce it: rapid review of the evidence. The Lancet, 395(10227), 912-920. doi:10.1016/s0140-6736(20)30460-8 Burki, T. (2020). COVID-19 in latin america. The Lancet Infectious Diseases, 20(5), 547-548. Burns, J. K. (2015). Poverty, inequality and a political economy of mental health. Epidemiology and psychiatric sciences, 24(2), 107-113. Cellini, N., Canale, N., Mioni, G., & Costa, S. (2020). Changes in sleep pattern, sense of time and digital media use during COVID-19 lockdown in Italy. J Sleep Res, 29(4), e13074. doi:10.1111/jsr.13074 Cenat, J. M., Felix, N., Blais-Rochette, C., Rousseau, C., Bukaka, J., Derivois, D., . . . Birangui, J. P. (2020). Prevalence of mental health problems in populations affected by the Ebola virus disease: A systematic review and meta-analysis. Psychiatry Res, 289, 113033. doi:10.1016/j.psychres.2020.113033 Ettman, C. K., Abdalla, S. M., Cohen, G. H., Sampson, L., Vivier, P. M., & Galea, S. (2020). Prevalence of Depression Symptoms in US Adults Before and During the COVID-19 Pandemic. JAMA Netw Open, 3(9), e2019686. doi:10.1001/jamanetworkopen.2020.19686 Eysenbach, G. (2009). Infodemiology and infoveillance: framework for an emerging set of public health informatics methods to analyze search, communication and publication behavior on the Internet. J Med Internet Res, 11(1), e11. doi:10.2196/jmir.1157 Fancourt, D., Steptoe, A., & Bu, F. (2021). Trajectories of anxiety and depressive symptoms during enforced isolation due to COVID-19 in England: a longitudinal observational study. The Lancet Psychiatry, 8(2), 141-149. doi:10.1016/s2215-0366(20)30482-x Fernandes, N. (2020). Economic effects of coronavirus outbreak (COVID-19) on the world economy. Available at SSRN 3557504. Furlong, Y., & Finnie, T. (2020). Culture counts: the diverse effects of culture and society on mental health amidst COVID-19 outbreak in Australia. Irish journal of psychological medicine, 37(3), 237-242. Furr, J. M., Comer, J. S., Edmunds, J. M., & Kendall, P. C. (2010). Disasters and youth: a meta-analytic examination of posttraumatic stress. Journal of consulting and clinical psychology, 78(6), 765. Galea, S., Maxwell, A. R., & Norris, F. (2008). Sampling and design challenges in studying the mental health consequences of disasters. International journal of methods in psychiatric research, 17(S2), S21-S28. Garfin, D. R., Silver, R. C., & Holman, E. A. (2020). The novel coronavirus (COVID-2019) outbreak: Amplification of public health consequences by media exposure. Health Psychol, 39(5), 355-357. doi:10.1037/hea0000875 Halford, E. A., Lake, A. M., & Gould, M. S. (2020). Google searches for suicide and suicide risk factors in the early stages of the COVID-19 pandemic. PLoS One, 15(7), e0236777. doi:10.1371/journal.pone.0236777 Hawton, K., Lascelles, K., Brand, F., Casey, D., Bale, L., Ness, J., . . . Waters, K. (2021). Self-harm and the COVID-19 pandemic: A study of factors contributing to self-harm during lockdown restrictions. J Psychiatr Res, 137, 437-443. doi:10.1016/j.jpsychires.2021.03.028 Hoerger, M., Alonzi, S., Perry, L. M., Voss, H. M., Easwar, S., & Gerhart, J. I. (2020). Impact of the COVID-19 pandemic on mental health: Real-time surveillance using Google Trends. Psychol Trauma, 12(6), 567-568. doi:10.1037/tra0000872 Holmes, E. A., O'Connor, R. C., Perry, V. H., Tracey, I., Wessely, S., Arseneault, L., . . . Bullmore, E. (2020). Multidisciplinary research priorities for the COVID-19 pandemic: a call for action for mental health science. The Lancet Psychiatry, 7(6), 547-560. doi:10.1016/s2215-0366(20)30168-1 Huckins, J. F., daSilva, A. W., Wang, W., Hedlund, E., Rogers, C., Nepal, S. K., . . . Campbell, A. T. (2020). Mental Health and Behavior of College Students During the Early Phases of the COVID-19 Pandemic: Longitudinal Smartphone and Ecological Momentary Assessment Study. J Med Internet Res, 22(6), e20185. doi:10.2196/20185 Jacobson, N. C., Lekkas, D., Price, G., Heinz, M. V., Song, M., O'Malley, A. J., & Barr, P. J. (2020). Flattening the Mental Health Curve: COVID-19 Stay-at-Home Orders Are Associated With Alterations in Mental Health Search Behavior in the United States. JMIR Ment Health, 7(6), e19347. doi:10.2196/19347 Jalloh, M. F., Li, W., Bunnell, R. E., Ethier, K. A., O'Leary, A., Hageman, K. M., . . . Redd, J. T. (2018). Impact of Ebola experiences and risk perceptions on mental health in Sierra Leone, July 2015. BMJ Glob Health, 3(2), e000471. doi:10.1136/bmjgh-2017-000471 Jeong, H., Yim, H. W., Song, Y. J., Ki, M., Min, J. A., Cho, J., & Chae, J. H. (2016). Mental health status of people isolated due to Middle East Respiratory Syndrome. Epidemiol Health, 38, e2016048. doi:10.4178/epih.e2016048 Knipe, D., Evans, H., Sinyor, M., Niederkrotenthaler, T., Gunnell1, D., & John, A. (2020). Tracking online searches for emotional wellbeing concerns. Knipe, D., Gunnell, D., Evans, H., John, A., & Fancourt, D. (2021). Is Google Trends a useful tool for tracking mental and social distress during a public health emergency? A time-series analysis. J Affect Disord, 294, 737-744. doi:10.1016/j.jad.2021.06.086 Knipe, D., Gunnell, D., Evans, H., John, A., & Fancourt, D. (2021). Is Google Trends a useful tool for tracking mental and social distress during a public health emergency?: A time-series analysis. medRxiv. Kumar, A., Priya, B., & Srivastava, S. K. (2021). Response to the COVID-19: Understanding implications of government lockdown policies. Journal of policy modeling, 43(1), 76-94. Kwong, A. S. F., Pearson, R. M., Adams, M. J., Northstone, K., Tilling, K., Smith, D., . . . Timpson, N. J. (2020). Mental health during the COVID-19 pandemic in two longitudinal UK population cohorts doi:10.1101/2020.06.16.20133116 Lai, J., Ma, S., Wang, Y., Cai, Z., Hu, J., Wei, N., . . . Hu, S. (2020). Factors Associated With Mental Health Outcomes Among Health Care Workers Exposed to Coronavirus Disease 2019. JAMA Netw Open, 3(3), e203976. doi:10.1001/jamanetworkopen.2020.3976 Lin, C. Y., Brostrom, A., Griffiths, M. D., & Pakpour, A. H. (2020). Investigating mediated effects of fear of COVID-19 and COVID-19 misunderstanding in the association between problematic social media use, psychological distress, and insomnia. Internet Interv, 21, 100345. doi:10.1016/j.invent.2020.100345 Lin, S.H., et al., Internet searches for "insomnia" and "suicide" mediated by stay-at-home behaviors in 45 countries during the first 12 months of the COVID-19 pandemic. J Affect Disord, 2023. 325: 119-126. Lu, T., & Reis, B. Y. (2021). Internet search patterns reveal clinical course of COVID-19 disease progression and pandemic spread across 32 countries. NPJ Digit Med, 4(1), 22. doi:10.1038/s41746-021-00396-6 Machado, D. B., Alves, F. J., Teixeira, C. S., Rocha, A. S., Castro-de-Araujo, L. F., Singh, A., & Barreto, M. L. (2020). Effects of COVID-19 on Anxiety, Depression and Other Mental Health Issues: A worldwide scope review. Mak, I. W., Chu, C. M., Pan, P. C., Yiu, M. G., & Chan, V. L. (2009). Long-term psychiatric morbidities among SARS survivors. Gen Hosp Psychiatry, 31(4), 318-326. doi:10.1016/j.genhosppsych.2009.03.001 Mashaphu, S., Talatala, M., Seape, S., Eriksson, L., & Chiliza, B. (2021). Mental Health, Culture and Resilience—Approaching the COVID-19 Pandemic From a South African Perspective. Frontiers in Psychiatry, 12, 955. Mavragani, A., & Ochoa, G. (2019). Google Trends in Infodemiology and Infoveillance: Methodology Framework. JMIR Public Health Surveill, 5(2), e13439. doi:10.2196/13439 Nicola, M., Alsafi, Z., Sohrabi, C., Kerwan, A., Al-Jabir, A., Iosifidis, C., . . . Agha, R. (2020). The socio-economic implications of the coronavirus pandemic (COVID-19): A review. Int J Surg, 78, 185-193. doi:10.1016/j.ijsu.2020.04.018 Odriozola-Gonzalez, P., Planchuelo-Gomez, A., Irurtia, M. J., & de Luis-Garcia, R. (2020). Psychological effects of the COVID-19 outbreak and lockdown among students and workers of a Spanish university. Psychiatry Res, 290, 113108. doi:10.1016/j.psychres.2020.113108 Palgi, Y., Shrira, A., Ring, L., Bodner, E., Avidor, S., Bergman, Y., . . . Hoffman, Y. (2020). The loneliness pandemic: Loneliness and other concomitants of depression, anxiety and their comorbidity during the COVID-19 outbreak. J Affect Disord, 275, 109-111. doi:10.1016/j.jad.2020.06.036 Pappa, S., Ntella, V., Giannakas, T., Giannakoulis, V. G., Papoutsi, E., & Katsaounou, P. (2020). Prevalence of depression, anxiety, and insomnia among healthcare workers during the COVID-19 pandemic: A systematic review and meta-analysis. Brain Behav Immun, 88, 901-907. doi:10.1016/j.bbi.2020.05.026 Patel, J., Nielsen, F., Badiani, A., Assi, S., Unadkat, V., Patel, B., . . . Wardle, H. (2020). Poverty, inequality and COVID-19: the forgotten vulnerable. Public health, 183, 110. Paul, K. I., & Moser, K. (2009). Unemployment impairs mental health: Meta-analyses. Journal of Vocational behavior, 74(3), 264-282. Pierce, M., Hope, H., Ford, T., Hatch, S., Hotopf, M., John, A., . . . Abel, K. M. (2020). Mental health before and during the COVID-19 pandemic: a longitudinal probability sample survey of the UK population. The Lancet Psychiatry, 7(10), 883-892. doi:10.1016/s2215-0366(20)30308-4 Pierce, M., McManus, S., Jessop, C., John, A., Hotopf, M., Ford, T., . . . Abel, K. M. (2020). Says who? The significance of sampling in mental health surveys during COVID-19. The Lancet Psychiatry, 7(7), 567-568. doi:10.1016/s2215-0366(20)30237-6 Pirkis, J., John, A., Shin, S., DelPozo-Banos, M., Arya, V., Analuisa-Aguilar, P., . . . Spittal, M. J. (2021). Suicide trends in the early months of the COVID-19 pandemic: an interrupted time-series analysis of preliminary data from 21 countries. The Lancet Psychiatry, 8(7), 579-588. doi:10.1016/s2215-0366(21)00091-2 Salari, N., et al., Prevalence of stress, anxiety, depression among the general population during the COVID-19 pandemic: a systematic review and meta-analysis. Global Health, 2020. 16(1): 57. Sinyor, M., Spittal, M. J., & Niederkrotenthaler, T. (2020). Changes in Suicide and Resilience-related Google Searches during the Early Stages of the COVID-19 Pandemic. Can J Psychiatry, 65(10), 741-743. doi:10.1177/0706743720933426 Thomas Hale, N. A., Emily Cameron-Blake, Laura Hallas, Beatriz Kira, Saptarshi Majumdar, Anna Petherick, Toby Phillips, Helen Tatlow, Thomas Boby, Samuel Webster. (2020). Variation in government responses to COVID-19. Tirado, A. R., Hoehn-Velasco, L., Miyar, J. R. B. D. l., & Silverio-Murillo, A. (2020). COVID-19 and Mental Health Evidence from Google Trends in Latin America. Voitsidis, P., Gliatas, I., Bairachtari, V., Papadopoulou, K., Papageorgiou, G., Parlapani, E., . . . Diakogiannis, I. (2020). Insomnia during the COVID-19 pandemic in a Greek population. Psychiatry Research, 289. doi:10.1016/j.psychres.2020.113076 Wang, C., Pan, R., Wan, X., Tan, Y., Xu, L., McIntyre, R. S., . . . Ho, C. (2020). A longitudinal study on the mental health of general population during the COVID-19 epidemic in China. Brain Behav Immun, 87, 40-48. doi:10.1016/j.bbi.2020.04.028 World Health Organization. (2020). Mental health and psychosocial considerations during the COVID outbreak. Yuksel, D., McKee, G. B., Perrin, P. B., Alzueta, E., Caffarra, S., Ramos-Usuga, D., . . . Baker, F. C. (2021). Sleeping when the world locks down: Correlates of sleep health during the COVID-19 pandemic across 59 countries. Sleep Health, 7(2), 134-142. Zaman, A., Zhang, B., Hoque, E., Silenzio, V., & Kautz, H. (2020). The Relationship between Deteriorating Mental Health Conditions and Longitudinal Behavioral Changes in Google and YouTube Usages among College Students in the United States during COVID-19: Observational Study. medRxiv, 2020.2008.2022.20178640. doi:10.1101/2020.08.22.20178640 Zitting, K.-M., Lammers-van der Holst, H. M., Yuan, R. K., Wang, W., Quan, S. F., & Duffy, J. F. (2021). Google Trends reveals increases in internet searches for insomnia during the 2019 coronavirus disease (COVID-19) global pandemic. Journal of Clinical Sleep Medicine, 17(2), 177-184. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95024 | - |
| dc.description.abstract | 研究背景:
在COVID-19 大流行期間,疫情對心理健康造成的負面影響受到重視,然而疫情間許多研究採用便利性樣本,受選擇性偏差影響,有代表性的問題,研究對象僅限於特定地區或國家,因此本篇研究透過網路搜尋引擎資料資料進行分析比較,了解本次疫情對不同國家之人群造成的心理健康影響。 研究方法: 本研究收集來自Google Trends資料庫42國「焦慮」、「失眠」、「孤獨」、「憂鬱」及「自殺」五個字詞的搜尋變化,採用季節性差分整合移動平均自迴歸模型(seasonal-ARIMA model),以2016至2020年共217週之資料預測2020年3月至2021年2月共53週之搜尋量,了解疫情期間各字詞之搜尋量與預期值相比之變化;並使用斯皮爾曼等級相關(Spearman Rank Correlation)分析字詞搜尋量增加之週數與各國GDP 成長率、失業率以及吉尼係數之關係;並以隨機效應模型(Random effects model)分析各字詞53週實際值與預測值之差值與COVID-19確診率、死亡率及疫情間人流移動變化之關係。 結果: 本篇研究所納入的五個字詞「焦慮」、「孤獨」、「失眠」、「憂鬱」、「自殺」在42個國家中呈現隨著時間在疫情爆發後的53週呈現不同的變化。「焦慮」一詞之搜尋量增加的平均週數最高(6.86週),其次為「失眠」(5.05週),「自殺」(1.57週),「孤獨」(1.00週),與「憂鬱」(0.67週)。相較下,「憂鬱」搜尋量下降的平均週數為3.1週。相關分析顯示GDP成長與吉尼係數與「焦慮」和「失眠」之搜尋量增加週數有關。迴歸分析顯示,行動限制與「焦慮」、「孤獨」、「失眠」之搜尋量增加有關,而疫情爆發的嚴重度(以COVID-19確診率或死亡率為指標)與「焦慮」、「失眠」和「憂鬱」的搜尋量增加有關。 結論: 焦慮和失眠症狀可能是COVID-19 疫情第一年常見的心理健康問題。儘管移動限制政策有助於控制疫情,但各國政府仍應警惕其對大眾心理健康潛在的負面影響,而充分的疫情控制有助於保護人們的心理健康。在全球突發的公共衛生事件期間,Google Trends資料有助於即時監測大眾的心理健康。 | zh_TW |
| dc.description.abstract | Introduction:
There were concerns that the COVID-19 pandemic would adversely impactpopulation mental health. However, most surveys used non-probability andconvenience samples, which were susceptible to selection bias, and were restricted tos pecific communities or countries. This study aimed to investigate the impact of the COVID-19 outbreak on population mental health across different countries using population-based internet search data using mental health-related keywords. Methods: We extracted Google Trends data from 42 countries using five search terms:“anxiety”, “insomnia”, “loneliness”, “depression” and “suicide”. We used seasonal Autoregressive Integrated Moving Average (ARIMA) model to estimate the expected Google search volume during the COVID-19 pandemic (March 2020 – February 2021) based on pre-pandemic trends (January 2016 – February 2020). We first conducted Spearman correlation analysis to investigate the association between the total number of weeks with a change in Google search volume (i.e., whether the observed search volume was above or below the 95% confidence intervals of the expected volume) and GDP growth rate, unemployment rate, and Gini index across countries. We then applied random-effects models to investigate the associations of the weekly Google search volume difference (i.e., the observed value minus the expected value) with the weekly number of COVID-19 confirmed cases, the weekly number of COVID-19 death, and the weekly residential mobility change across the 42 study countries. Results: Changes in the Google search volume of five mental health related terms showed varying trends across the 42 study countries during the first 53 weeks of the COVID-19 outbreak. Search for “anxiety” had the highest mean number of weeks with increased search volume (6.86), followed by “insomnia” (5.05), “suicide” (1.57), “loneliness” (1.00), and “depression” (0.67). By contrast, search for “depression” also had a mean number of weeks with decreased search volume of 3.10. Correlation analyses showed that GDP growth and Gini index were associated with searches for “anxiety” and “insomnia”. Regression analyses showed that restriction on movement was associated with increased searches for “anxiety”, “loneliness”, and “insomnia” but decreased searches for "depression". The severity of the COVID-19 outbreaks, indicated by rates of confirmed cases or mortality, was associated with increased searches for “anxiety”, “insomnia”, and “depression”. Conclusions: Anxiety and insomnia symptoms might be the common mental health problems during the first year of the COVID-19 pandemic. Although movement restriction policies would help control the outbreak, governments should be alert to the potential negative mental health effects on the population. Adequate virus outbreak control would also protect the population’s mental health. During the worldwide public health emergency, Google Trends data could be useful to monitor population mental health in real time. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-26T16:18:44Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-26T16:18:44Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 中文摘要 1
Abstract 3 Chapter 1 Introduction 7 1.1 Mental health impact of the COVID-19 Pandemic on the general population 7 1.2 Factors associated with negative mental health outcomes during the pandemic 8 1.3 Aim of the study 10 Chapter 2 Method 11 2.1 Google search data 11 2.2 Data for COVID-19 related and socioeconomic variables 12 2.3 Statistical analysis 14 Chapter 3 Results 17 3.1 The changes in weekly Google search volume 17 3.2 The association between increased search volume and socioeconomic variables across countries 18 3.3 The association between changes in weekly search volume, residential mobility change, and the severity of COVID-19 19 Chapter 4 Discussion 19 4.1 Main Findings 19 4.2 Strengths and limitations 20 4.3 The distribution of excess search volume within 53 weeks 22 4.4 Association of Google search volume and potential factors across countries 26 Chapter 5 Conclusion 28 Figure 30 Figure 1. The distribution of the 42 study countries. 30 Figure 2. Examples of Google search trends for mental health related terms during the pre-pandemic (Jan 2016-Feb 2020) and pandemic (Mar 2020-Feb 2021) periods and expected values based on pre-pandemic data, estimated using the autoregressive integrated moving average (ARIMA) model, during the pandemic period in selected countries. 31 Table 32 Table 1. The number of weeks with increased or decreased Google search volume for six mental health related terms across 42 countries over 53 weeks during the COVID-19 pandemic period (Mar 2020-Feb 2021). 32 Table 2. Spearman correlations between the number of weeks with increased Google search volume for the keywords “anxiety”, “loneliness”, “insomnia”, “depression”, and “suicide” (and with decreased Google search volume for “depression”) and socioeconomic variables across countries during the COVID-19 pandemic (Mar 2020-Feb 2021). 34 Table 3. Random-effects regression analysis: the associations between weekly Google search volume for five mental health related terms, Google residential mobility changes, and the rates of COVID-19 confirmed cases and deaths across 42 countries 35 Supplementary materials 36 Supplementary Table 1. Translation of the six mental health related terms in 42 countries. 36 Supplementary Figure 1. The distribution of weeks with increased (or decreased) Google search volume for five mental health related terms in 42 countries over 53 weeks during the COVID-19 pandemic period (Mar 2020-Feb 2021). 37 References 42 | - |
| dc.language.iso | en | - |
| dc.subject | 焦慮 | zh_TW |
| dc.subject | Google Trends | zh_TW |
| dc.subject | 心理健康 | zh_TW |
| dc.subject | COVID-19 | zh_TW |
| dc.subject | 自殺 | zh_TW |
| dc.subject | 憂鬱 | zh_TW |
| dc.subject | 孤獨 | zh_TW |
| dc.subject | 失眠 | zh_TW |
| dc.subject | depression | en |
| dc.subject | Google Trends | en |
| dc.subject | suicide | en |
| dc.subject | COVID-19 | en |
| dc.subject | insomnia | en |
| dc.subject | loneliness | en |
| dc.subject | mental health | en |
| dc.subject | anxiety | en |
| dc.title | COVID-19 大流行對精神健康的影響:使用42國Google搜尋資料進行時間趨勢分析 | zh_TW |
| dc.title | The Impact of COVID-19 on Mental Health in 42 Countries Time Trend Analysis Using Google Trends | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 林煜軒 | zh_TW |
| dc.contributor.coadvisor | Yu-Hsuan Lin | en |
| dc.contributor.oralexamcommittee | 陳端容;張慶國 | zh_TW |
| dc.contributor.oralexamcommittee | Duan-Rung Chen;Chin-Kuo Chang | en |
| dc.subject.keyword | Google Trends,心理健康,焦慮,失眠,孤獨,憂鬱,自殺,COVID-19, | zh_TW |
| dc.subject.keyword | COVID-19,suicide,depression,anxiety,loneliness,insomnia,mental health,Google Trends, | en |
| dc.relation.page | 46 | - |
| dc.identifier.doi | 10.6342/NTU202400921 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-14 | - |
| dc.contributor.author-college | 公共衛生學院 | - |
| dc.contributor.author-dept | 健康行為與社區科學研究所 | - |
| 顯示於系所單位: | 健康行為與社區科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 1.81 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
