Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 環境與職業健康科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95022
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃盛修zh_TW
dc.contributor.advisorSheng-Hsiu Huangen
dc.contributor.author許順皓zh_TW
dc.contributor.authorShun-Hao Hsuen
dc.date.accessioned2024-08-26T16:18:09Z-
dc.date.available2024-08-27-
dc.date.copyright2024-08-26-
dc.date.issued2024-
dc.date.submitted2024-08-06-
dc.identifier.citationAithinne, K. A., Cooper, C. W., Lynch, R. A., & Johnson, D. L. (2019). Toilet plume aerosol generation rate and environmental contamination following bowl water inoculation with Clostridium difficile spores. American journal of infection control, 47(5), 515-520.
Barker, J., & Bloomfield, S. (2000). Survival of Salmonella in bathrooms and toilets in domestic homes following salmonellosis. Journal of applied Microbiology, 89(1), 137-144.
Barker, J., & Jones, M. (2005). The potential spread of infection caused by aerosol contamination of surfaces after flushing a domestic toilet. Journal of applied Microbiology, 99(2), 339-347.
Best, E., Sandoe, J., & Wilcox, M. (2012). Potential for aerosolization of Clostridium difficile after flushing toilets: the role of toilet lids in reducing environmental contamination risk. Journal of Hospital Infection, 80(1), 1-5.
Cai, C., Kim, P., Connor, T. H., Liu, Y., & Floyd, E. L. (2022). Reducing the particles generated by flushing institutional toilets. Journal of Occupational and Environmental Hygiene, 1-9.
Chen, Y., Chen, L., Deng, Q., Zhang, G., Wu, K., Ni, L., Yang, Y., Liu, B., Wang, W., & Wei, C. (2020). The presence of SARS‐CoV‐2 RNA in the feces of COVID‐19 patients. Journal of medical virology, 92(7), 833-840.
Crimaldi, J. P., True, A. C., Linden, K. G., Hernandez, M. T., Larson, L. T., & Pauls, A. K. (2022). Commercial toilets emit energetic and rapidly spreading aerosol plumes. Scientific Reports, 12(1), 20493.
Darlow, H., & Bale, W. (1959). Infective hazards of water-closets. Lancet, 1196-1200.
Davies, C. N. (1987). The aerobiological pathway of microorganisms. By C. S. Cox. John Wiley & Sons. 1987. Pp. 293. £32.00 [https://doi.org/10.1002/qj.49711347820]. Quarterly Journal of the Royal Meteorological Society, 113(478), 1403-1404. https://doi.org/https://doi.org/10.1002/qj.49711347820
Ding, Z., Qian, H., Xu, B., Huang, Y., Miao, T., Yen, H.-L., Xiao, S., Cui, L., Wu, X., & Shao, W. (2021). Toilets dominate environmental detection of severe acute respiratory syndrome coronavirus 2 in a hospital. Science of The Total Environment, 753, 141710.
Duguid, J. P. (1945). The numbers and the sites of origin of the droplets expelled during expiratory activities. Edinb Med J, 52(11), 385-401.
Eisenberg, S. (2023). Comparing Two Methods of Reducing Hospital Toilet Aerosols. Number 2/April 2023, 27(2), 191-197.
Foladori, P., Cutrupi, F., Segata, N., Manara, S., Pinto, F., Malpei, F., Bruni, L., & La Rosa, G. (2020). SARS-CoV-2 from faeces to wastewater treatment: What do we know? A review. Science of the Total Environment, 743, 140444.
Gerba, C. P., Wallis, C., & Melnick, J. L. (1975). Microbiological hazards of household toilets: droplet production and the fate of residual organisms. Applied microbiology, 30(2), 229-237.
Johnson, D., Lynch, R., Marshall, C., Mead, K., & Hirst, D. (2013). Aerosol generation by modern flush toilets. Aerosol Science and Technology, 47(9), 1047-1057.
Johnson, D. L., Lynch, R. A., Villanella, S. M., Jones, J. F., Fang, H., Mead, K. R., & Hirst, D. V. (2017). Persistence of bowl water contamination during sequential flushes of contaminated toilets. Journal of environmental health, 80(3), 34.
Knowlton, S. D., Boles, C. L., Perencevich, E. N., Diekema, D. J., & Nonnenmann, M. W. (2018). Bioaerosol concentrations generated from toilet flushing in a hospital-based patient care setting. Antimicrobial Resistance & Infection Control, 7(1), 1-8.
Lai, A., Tan, T., Li, W., & Ip, D. (2018). Emission strength of airborne pathogens during toilet flushing. Indoor Air, 28(1), 73-79.
Lai, A. C., & Nunayon, S. S. (2021). A new UVC‐LED system for disinfection of pathogens generated by toilet flushing. Indoor Air, 31(2), 324-334.
Li, P., Liu, W., & Zhang, T. T. (2023). CFD modeling of dynamic airflow and particle transmission in an aircraft lavatory. Building Simulation,
Li, P., Zhang, T. T., & Zhang, Y. (2022). Measuring the flushing-generated flow and aerosols in lavatory of commercial aircraft. Building and environment, 214, 108948.
Li, Y.-y., Wang, J.-X., & Chen, X. (2020). Can a toilet promote virus transmission? From a fluid dynamics perspective. Physics of Fluids, 32(6), 065107.
Liu, Y., Ning, Z., Chen, Y., Guo, M., Liu, Y., Gali, N. K., Sun, L., Duan, Y., Cai, J., & Westerdahl, D. (2020). Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals. Nature, 582(7813), 557-560.
Newsom, S. (1972). Microbiology of hospital toilets. The Lancet, 300(7779), 700-703.
Rusin, P., Orosz‐Coughlin, P., & Gerba, C. (1998). Reduction of faecal coliform, coliform and heterotrophic plate count bacteria in the household kitchen and bathroom by disinfection with hypochlorite cleaners. Journal of applied Microbiology, 85(5), 819-828.
Sabra, S. M. M. (2013). Bacterial public health hazard in the public female restrooms at Taif, KSA. Middle-East Journal of Scientific Research, 14(1), 63-68.
Sandoe, J. (2012). Best EL, Sandoe JAT, Wilcox MH. Potential for aerosolization of Clostridium difficile after flushing toilets: the role of toilet lids in reducing environmental contamination risk. Journal of Hospital Infection, 80, 1e5.
Schreck, J. H., Lashaki, M. J., Hashemi, J., Dhanak, M., & Verma, S. (2021). Aerosol generation in public restrooms. Physics of Fluids, 33(3).
Scott, E., & Bloomfield, S. F. (1985). A bacteriological investigation of the effectiveness of cleaning and disinfection procedures for toilet hygiene. Journal of Applied Bacteriology, 59(3), 291-297.
Seo, Y., & Park, I. S. (2013). Study for flow and mass transfer in toilet bowl by using toilet seat adopting odor/bacteria suction feature. Building and environment, 67, 46-55.
Tung, Y.-C., Hu, S.-C., & Tsai, T.-Y. (2009). Influence of bathroom ventilation rates and toilet location on odor removal. Building and environment, 44(9), 1810-1817.
Wang, W., Xu, Y., Gao, R., Lu, R., Han, K., Wu, G., & Tan, W. (2020). Detection of SARS-CoV-2 in different types of clinical specimens. Jama, 323(18), 1843-1844.
Wilson, G. M., Jackson, V. B., Boyken, L. D., Schweizer, M. L., Diekema, D. J., Petersen, C. A., Breheny, P. J., Nonnenmann, M. W., Perencevich, E. N., & Program, C. P. E. (2020). Bioaerosols generated from toilet flushing in rooms of patients with Clostridioides difficile infection. Infection Control & Hospital Epidemiology, 41(5), 517-521.
Yahya, M. T., Cassells, J. M., Straub, T. M., & Gerba, C. P. (1992). Reduction of microbial aerosols by automatic toilet bowl cleaners. Journal of Environmental Health, 32-34.
Yu, I. T., Li, Y., Wong, T. W., Tam, W., Chan, A. T., Lee, J. H., Leung, D. Y., & Ho, T. (2004). Evidence of airborne transmission of the severe acute respiratory syndrome virus. New England Journal of Medicine, 350(17), 1731-1739.
Yuan, L., Zhi, N., Yu, C., Ming, G., Yingle, L., Kumar, G. N., Li, S., Yusen, D., Jing, C., & Dane, W. (2020). Aerodynamic characteristics and RNA concentration of SARS-CoV-2 aerosol in Wuhan hospitals during COVID-19 outbreak. BioRxiv.
林婉婷. (2011). 人體呼出微粒監測系統之應用
柯威任. (2015). 單一氣泡破裂氣膠逸散之特性探討. 國立臺灣大學職業醫學與工業衛生研究所學位論文, 2015, 1-47.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95022-
dc.description.abstract一款設計不良的馬桶可能成為疫情傳播的助手。
在SARS、COVID-19疫情爆發前,呼吸道傳染病常被認為主要藉由咳嗽、打噴嚏、呼吸及說話方式進行傳播,隨著許多研究證明了馬桶能在沖水過程中將病原體氣膠化後,有關馬桶與呼吸道傳染病間的關係才逐漸受到重視,然而,目前多數的研究主要以馬桶產生微粒之特性、影響微粒產生的因子以及所產生微粒與傳染病間的關係進行探討,反而較少針對產生源與相關控制手段進行探討,因此,本研究以職業衛生的基本工作,評估與控制馬桶逸散微粒的問題,在現有馬桶的基礎之下,透過調整影響微粒產生的參數與加裝微粒防制設備,來減少微粒的逸散,並降低使用馬桶後暴露於疾病的風險。

由於目前尚未有一套統一量測馬桶產生微粒的方法,在實驗上,本研究於一般室內環境中建立一套不受背景微粒干擾且能快速量測市售馬桶微粒排放與逸散的方法。在量測上,本研究使用自來水重複進行沖洗,並以沖水所產生的液滴微粒特性進一步探討。而在量測微粒的基本特性上,使用光學式粒徑分析儀與凝結式微粒計數器分別量測0.3~10 μm微粒之粒徑濃度分布,以及小於1 μm微粒之總微粒數。而本研究主要針對市售六款馬桶進行測量,並探討不同沖洗參數(沖水量、水流方式、沖洗時間、沖洗機制)條件下對於微粒逸散的影響,接著會針對目前市售馬桶清潔產品對於微粒排放的影響進行評估。在量測完微粒的基本排放特性後,針對市售馬桶蓋與脫臭馬桶蓋進行量測與探討(馬桶蓋的效果、抽氣流量的影響),最後藉由將一系列測試(抽氣流量、氣罩外型、抽氣面積)所收集到的參數整理後,將市售馬桶蓋進行改良並探討其效果。

結果顯示,沖水後馬桶產生微粒的主要過程是沖水時,由於水柱撞擊液面後導致大量空氣與水在快速混合後產生大量的氣泡破裂,進而有大量的液滴微粒產生;目前市售馬桶在單次沖洗所排放的微粒量上皆落在105 #/Flush,並且會受到不同的沖洗條件(水量、沖洗能量、入水角度)而有所影響;在微粒的基本特性上,乾燥微粒的中位數粒徑為0.2 μm、初始液滴的中位粒徑為2.84 μm;在馬桶清潔劑的使用上則會增加液滴微粒的排放量;而市售馬桶蓋在防止微粒逸散上約有85%的效果,其主要原因在於馬桶蓋與馬桶座間存在間隙問題,導致微粒能逸散環境;而市售抽氣脫臭馬桶蓋因為所使用的活性碳濾材無法補集沖水時所產生的微粒,反而會導致馬桶盆內的微粒快速逸散至環境。最後,經過一系列的測試後,目前共研發兩款有效控制微粒逸散的馬桶蓋原型,並且皆能在沖水後1.5分鐘內有效移除99%殘留於馬桶盆內的微粒。

因此,就研究結果可發現,在微粒逸散上,運用工程控制的角度,針對沖水所產生的微粒進行主動式收集,能有效解決微粒逸散至環境的問題;而在未來的馬桶設計上,若能有效防止沖水過程中大量氣泡的產生,將能根本減少液滴微粒的形成。
zh_TW
dc.description.abstractA poorly designed toilet may facilitate the spread of epidemics.
After the outbreak of SARS and COVID-19, numerous studies have demonstrated that toilets can aerosolize pathogens during flushing. Nevertheless, most existing research is more focused on the characteristics of particles, the influence factors of particle generation, and the relationship between the particles and infectious diseases. In contrast, fewer studies used source control or engineering control to decrease particle generation. Therefore, this study aims to experimentally investigate the particle characteristics, generation mechanisms, and influencing factors of droplet particles generated by various flushing toilets. Then, design and evaluate methods that can eliminate the generation or emission of droplet particles from toilets.

Due to the lack of a standardized method for measuring particles generated by toilet flushing. This study established a method without interference from background particles and could rapidly measure particles generated from toilet flushing and evaluate the effectiveness of toilet lids in preventing particle leakage. This study used tap water for repeated flushing and further discussed the characteristics of droplet particles generated from toilet flushing. To measure the basic characteristics of particles, a Condensation Particle Counter and an Optical Particle Sizer were used to monitor the particle size distribution in the size range of 0.3~10 μm and the total count of particles with diameters less than 1 μm, respectively. This study used six commercial toilets to measure and discuss the effects of different flushing parameters (flush volume, angle of water entry into the bowl, flush duration, flushing mechanism) on particle generation. Then, the impact of commercial toilet cleaning products on particle generation, and the effectiveness of preventive particle leakage on the commercial toilet lid were also assessed and discussed. Finally, some parameters would be collected from a series of tests (exhaust airflow, hood shape, exhaust area), and these parameters would be used to modify the commercial toilet lids and then evaluate their effectiveness.

The results indicated that the primary particle generation process during toilet flushing was the rapid mixing of air and water inside the toilet bowl, and it would produce a large number of bubble bursts and droplet particles. The count of particles generated from commercial toilets was about 10⁵ #/flush and would be affected by different flushing conditions (water volume, flushing energy, and water entry angle). The count median diameter of particles and initial droplets was 0.2 μm and 2.84 μm. The toilet bowl cleaner would increase the generation of droplet particles. The commercial toilet lids could provide 85% effectiveness in preventing particle leakage from toilet bowl. However, there were gaps between the toilet lid and seat, resulted in particles leakage into the environment. For deodorizing toilet lids, particles could rapidly leaked into the environment because the activated carbon could not capture particles generated during flushing. Finally, two prototype toilet lids were developed, and both could effectively remove 99% of particles remaining in the toilet bowl within 1.5 minutes after flushing.

Therefore, using engineering controls to actively collect the particles generated during flushing can effectively address the issue of particle emission into the environment. For future toilet designs, it can fundamentally reduce the generation of droplet particles by effectively preventing the generation of large bubbles during the flushing process.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-26T16:18:09Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-26T16:18:09Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審訂書 i
謝辭 ii
摘要 iii
ABSTRACT v
圖 次 ix
表 次 xi
第一章 前言 1
1.1研究背景 1
1.2 研究目的 1
第二章 文獻探討 2
2.1 市售馬桶之分類與介紹 2
2.2水洗馬桶與微粒產生之關係 3
2.2.1氣膠與傳染性疾病傳播間的關係 3
2.2.2水洗馬桶與微粒產生之關係 3
2.3馬桶沖水後所產生微粒之特性 4
2.4馬桶蓋對於防止微粒逸散之效果 5
2.5洗淨性產品與消毒產品對於微粒產生之影響 5
2.6現有的控制策略與相關設備 6
第三章 研究方法與材料 8
3.1 市售馬桶微粒排放之測試系統 8
3.1.1 市售馬桶微粒排放測試系統之建立 8
3.1.2 沖水過程中馬桶盆內空氣流量與壓力變化之量測 10
3.1.3 初始液滴大小之計算 11
3.2 市售清潔產品對於微粒逸散影響之量測 11
3.3 市售馬桶蓋的使用對於微粒逸散影響之量測 12
3.3.1 量測市售馬桶蓋防止微粒逸散效果之測試艙建置 12
3.3.2 量化馬桶蓋之洩漏面積對於微粒逸散影響 13
3.4 微粒停留於於馬桶盆內之時間與殘留比率 13
3.5 市售抽氣脫臭功能馬桶蓋對於防止微粒逸散之測試 14
3.5.1 抽氣脫臭馬桶蓋之抽氣流量量測 14
3.5.2 抽氣脫臭馬桶蓋防止微粒逸散之效果量測 15
3.5.3市售抽氣脫臭馬桶蓋之改良 15
3.6 一般馬桶蓋之改良與測試 16
第四章 結果與討論 18
4.1 沖水時微粒產生的時間解析 18
4.2 沖水過程所產生微粒的基本特性 18
4.3 市售馬桶的微粒產生情形 19
4.4 市售洗淨性產品對於微粒排放的影響 20
4.5 市售馬桶蓋防止微粒逸散的效果 20
4.6 市售抽氣脫臭馬桶蓋防止微粒逸散的效果 21
4.7 抽氣座圈在微粒捕集效率之測量與改良 22
4.8市售馬桶蓋之改良 23
第五章 結論與建議 25
參考文獻 26
-
dc.language.isozh_TW-
dc.subject氣泡破裂zh_TW
dc.subject工程控制zh_TW
dc.subject微粒逸散zh_TW
dc.subject馬桶沖水zh_TW
dc.subjectToilet flushingen
dc.subjectParticle emissionen
dc.subjectBubble burstingen
dc.subjectEngineering controlen
dc.title馬桶沖水過程中微粒產生的評估與控制zh_TW
dc.titleEvaluation and Control of Aerosol Emission from Toilet Flushingen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳志傑;林志威;王琳麒;楊禮豪zh_TW
dc.contributor.oralexamcommitteeChih-Chieh Chen;Chih-Wei Lin;Lin-Chi Wang;Li-Hao Youngen
dc.subject.keyword馬桶沖水,氣泡破裂,微粒逸散,工程控制,zh_TW
dc.subject.keywordToilet flushing,Bubble bursting,Particle emission,Engineering control,en
dc.relation.page56-
dc.identifier.doi10.6342/NTU202403594-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-07-
dc.contributor.author-college公共衛生學院-
dc.contributor.author-dept環境與職業健康科學研究所-
顯示於系所單位:環境與職業健康科學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
2.38 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved