請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95016完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 饒梓明 | zh_TW |
| dc.contributor.advisor | Tzu-Ming Jao | en |
| dc.contributor.author | 林孟謙 | zh_TW |
| dc.contributor.author | Meng-Chien Lin | en |
| dc.date.accessioned | 2024-08-26T16:16:08Z | - |
| dc.date.available | 2024-08-27 | - |
| dc.date.copyright | 2024-08-26 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-29 | - |
| dc.identifier.citation | 1. United States Renal Data System. (2022). International comparisons. National Institute of Diabetes and Digestive and Kidney Diseases. Retrieved June 22, 2024, from https://usrds-adr.niddk.nih.gov/2022/end-stage-renal-disease/11-international-comparisons
2. Decreased, G. (2013). Definition and classification of CKD. Kidney Int, 3, 19-62. 3. Jalal, D., Sanford, B., Renner, B., Ten Eyck, P., Laskowski, J., Cooper, J., Sun, M., Zakharia, Y., Spitz, D., Dokun, A., Attanasio, M., Jones, K., & Thurman, J. M. (2021). Detection of pro angiogenic and inflammatory biomarkers in patients with CKD. Scientific reports, 11(1), 8786. 4. Tomás-Simó, P., D’Marco, L., Romero-Parra, M., Tormos-Muñoz, M. C., Sáez, G., Torregrosa, I., Estañ-Capell, N., Miguel, A., Gorriz, J. L., & Puchades, M. J. (2021). Oxidative stress in non-dialysis-dependent chronic kidney disease patients. International Journal of Environmental Research and Public Health, 18(15), 7806. 5. D'amico, G., & Bazzi, C. (2003). Pathophysiology of proteinuria. Kidney international, 63(3), 809-825. 6. Meng, X. M., Nikolic-Paterson, D. J., & Lan, H. Y. (2016). TGF-β: the master regulator of fibrosis. Nature Reviews Nephrology, 12(6), 325-338. 7. Crawford, A., Fassett, R. G., Coombes, J. S., Kunde, D. A., Ahuja, K. D., Robertson, I. K., Ball, M. J., & Geraghty, D. P. (2011). Glutathione peroxidase, superoxide dismutase and catalase genotypes and activities and the progression of chronic kidney disease. Nephrology Dialysis Transplantation, 26(9), 2806-2813. 8. Chen, L., Yang, T., Lu, D. W., Zhao, H., Feng, Y. L., Chen, H., Chen, D. Q., Vaziri, N. D., & Zhao, Y. Y. (2018). Central role of dysregulation of TGF-β/Smad in CKD progression and potential targets of its treatment. Biomedicine & Pharmacotherapy, 101, 670-681. 9. Sanz, A. B., Sanchez-Niño, M. D., Ramos, A. M., & Ortiz, A. (2023). Regulated cell death pathways in kidney disease. Nature Reviews Nephrology, 19(5), 281-299. 10. Wang, Y., & Gao, L. (2022). Inflammation and cardiovascular disease associated with hemodialysis for end-stage renal disease. Frontiers in Pharmacology, 13, 800950. 11. Zhao, X. C., Livingston, M. J., Liang, X. L., & Dong, Z. (2019). Cell apoptosis and autophagy in renal fibrosis. Renal Fibrosis: Mechanisms and Therapies, 557-584. 12. Peng, Z., Wang, H., Zheng, J., Wang, J., Xiang, Y., Liu, C., Ji, M., Liu, H., Pan, L., Qin, X., & Qu, X. (2023). Is the proximal tubule the focus of tubulointerstitial fibrosis?. Heliyon, 9(2). 13. Li, J., Lin, Q., Shao, X., Li, S., Zhu, X., Wu, J., Mou, S., Gu, L., Wang, Q., Zhang, M., Zhang, K., Lu, J., & Ni, Z. (2023). HIF1α-BNIP3-mediated mitophagy protects against renal fibrosis by decreasing ROS and inhibiting activation of the NLRP3 inflammasome. Cell death & disease, 14(3), 200. 14. Tanaka, S., Portilla, D., & Okusa, M. D. (2023). Role of perivascular cells in kidney homeostasis, inflammation, repair and fibrosis. Nature Reviews Nephrology, 19(11), 721-732. 15. Wyczanska, M., & Lange-Sperandio, B. (2020). DAMPs in unilateral ureteral obstruction. Frontiers in immunology, 11, 581300. 16. Lv, D., Zhang, Y., Wang, C., Gu, Y., Zhang, Y., & Li, X. (2022). Platelets derived transthyretin participate in the development of sepsis associated acute kidney injury by inducing oxidative stress and apoptosis of renal tubular epithelial cells. Shock, 57(5), 722-731. 17. Ruiz-Ortega, M., Rayego-Mateos, S., Lamas, S., Ortiz, A., & Rodrigues-Diez, R. R. (2020). Targeting the progression of chronic kidney disease. Nature Reviews Nephrology, 16(5), 269-288. 18. Ruby, M., Gifford, C. C., Pandey, R., Raj, V. S., Sabbisetti, V. S., & Ajay, A. K. (2023). Autophagy as a therapeutic target for chronic kidney disease and the roles of TGF-β1 in autophagy and kidney fibrosis. Cells, 12(3), 412. 19. Cao, R., Li, Y., Hu, X., Qiu, Y., Li, S., Xie, Y., Xu, C., Lu, C., Chen, G., & Yang, J. (2023). Glycyrrhizic acid improves tacrolimus‐induced renal injury by regulating autophagy. The FASEB Journal, 37(2), e22749. 20. Liu, Y. (2011). Cellular and molecular mechanisms of renal fibrosis. Nature Reviews Nephrology, 7(12), 684-696. 21. Mayer, G. (2011). Capillary rarefaction, hypoxia, VEGF and angiogenesis in chronic renal disease. Nephrology Dialysis Transplantation, 26(4), 1132-1137. 22. Baltatzi, M., Savopoulos, C., & Hatzitolios, A. (2011). Role of angiotensin converting enzyme inhibitors and angiotensin receptor blockers in hypertension of chronic kidney disease and renoprotection. Study results. Hippokratia, 15(Suppl 1), 27. 23. Panattil, P., & Sreelatha, M. (2016). Efficacy and safety of complete RAAS blockade with ALISKIREN in patients with refractory proteinuria who were already on combined ACE inhibitor, ARB, and aldosterone antagonist. Journal of Clinical and Diagnostic Research: JCDR, 10(9), FC01. 24. Zoja, C., Corna, D., Gagliardini, E., Conti, S., Arnaboldi, L., Benigni, A., & Remuzzi, G. (2010). Adding a statin to a combination of ACE inhibitor and ARB normalizes proteinuria in experimental diabetes, which translates into full renoprotection. American Journal of Physiology-Renal Physiology, 299(5), F1203-F1211. 25. Karihaloo A. (2012). Anti-fibrosis therapy and diabetic nephropathy. Current diabetes reports, 12(4), 414–422. https://doi.org/10.1007/s11892-012-0290-7 26. Khan, Y. H., Sarriff, A., Adnan, A. S., Khan, A. H., & Mallhi, T. H. (2016). Chronic kidney disease, fluid overload and diuretics: a complicated triangle. PloS one, 11(7), e0159335. 27. Ellison, D. H. (2017). Treatment of disorders of sodium balance in chronic kidney disease. Advances in chronic kidney disease, 24(5), 332-341. 28. Odlind B. (1984). Site and mechanism of the action of diuretics. Acta pharmacologica et toxicologica, 54 Suppl 1, 5–15. https://doi.org/10.1111/j.1600-0773.1984.tb03625.x 29. Tsuchiya, K., & Akihisa, T. (2021). The importance of phosphate control in chronic kidney disease. Nutrients, 13(5), 1670. 30. Vervloet, M. G., & van Ballegooijen, A. J. (2018). Prevention and treatment of hyperphosphatemia in chronic kidney disease. Kidney international, 93(5), 1060-1072. 31. Hu, L., Napoletano, A., Provenzano, M., Garofalo, C., Bini, C., Comai, G., & La Manna, G. (2022). Mineral bone disorders in kidney disease patients: The ever-current topic. International Journal of Molecular Sciences, 23(20), 12223. 32. Palmer, S. C., Navaneethan, S. D., Craig, J. C., Johnson, D. W., Tonelli, M., Garg, A. X., Pellegrini, F., Ravani, P., Jardine, M., Perkovic, V., Graziano, G., McGee, R., Nicolucci, A., Tognoni, G., & Strippoli, G. F. (2010). Meta-analysis: erythropoiesis-stimulating agents in patients with chronic kidney disease. Annals of internal medicine, 153(1), 23-33. 33. Levin, A. (2002). Anemia and left ventricular hypertrophy in chronic kidney disease populations: a review of the current state of knowledge. Kidney International, 61, S35-S38. 34. Portolés, J., Martín, L., Broseta, J. J., & Cases, A. (2021). Anemia in chronic kidney disease: from pathophysiology and current treatments, to future agents. Frontiers in Medicine, 8, 642296. 35. Gluba-Brzózka, A., Franczyk, B., Olszewski, R., & Rysz, J. (2020). The influence of inflammation on anemia in CKD patients. International journal of molecular sciences, 21(3), 725. 36. Huang, T. M., Wu, V. C., Lin, Y. F., Wang, J. J., Shiao, C. C., Chen, L., Chueh, S. J., Chueh, E., Yang, S. Y., Lai, T. S., Lin, S. L., Chu, T. S., Wu, K. D., & National Taiwan University Hospital Study Group on Acute Renal Failure (NSARF). (2018). Effects of statin use in advanced chronic kidney disease patients. Journal of Clinical Medicine, 7(9), 285. 37. Wang, J., Chen, Z., Qiu, Y., Wu, L., Wang, H., Wu, L., Zhao, L., & Xie, D. (2022). Statins Have an Anti‐Inflammation in CKD Patients: A Meta‐Analysis of Randomized Trials. BioMed Research International, 2022(1), 4842699. 38. Williams, S., Malatesta, K., & Norris, K. (2009). Vitamin D and chronic kidney disease. Ethnicity & disease, 19(4 Suppl 5), S5. 39. Jean, G., Souberbielle, J. C., & Chazot, C. (2017). Vitamin D in chronic kidney disease and dialysis patients. Nutrients, 9(4), 328. 40. Gutiérrez, O. M. (2021). Treatment of iron deficiency anemia in CKD and end-stage kidney disease. Kidney International Reports, 6(9), 2261-2269. 41. Ong, K. L., Marklund, M., Huang, L., Rye, K. A., Hui, N., Pan, X. F., Rebholz, C. M., Kim, H., Steffen, L. M., van Westing, A. C., Geleijnse, J. M., Hoogeveen, E. K., Chen, Y. Y., Chien, K. L., Fretts, A. M., Lemaitre, R. N., Imamura, F., Forouhi, N. G., Wareham, N. J., Birukov, A., … & Wu, J. H. (2023). Association of omega 3 polyunsaturated fatty acids with incident chronic kidney disease: pooled analysis of 19 cohorts. bmj, 380. 42. Poggioli, R., Hirani, K., Jogani, V. G., & Ricordi, C. (2023). Modulation of inflammation and immunity by Omega-3 fatty acids: a possible role for prevention and to halt disease progression in autoimmune, viral, and age-related disorders. European Review for Medical & Pharmacological Sciences, 27(15). 43. Papadopoulos, T., Krochmal, M., Cisek, K., Fernandes, M., Husi, H., Stevens, R., Bascands, J. L., Schanstra, J. P., & Klein, J. (2016). Omics databases on kidney disease: where they can be found and how to benefit from them. Clinical kidney journal, 9(3), 343-352. 44. National Center for Biotechnology Information. (n.d.). Gene Expression Omnibus (GEO). National Library of Medicine. Retrieved June 22, 2024, from https://www.ncbi.nlm.nih.gov/geo/ 45. Nephroseq. (n.d.). Nephroseq: A renal gene expression database. Retrieved June 22, 2024, from https://www.nephroseq.org/resource/main.html 46. EMBL-EBI. (2024). Gene Expression Atlas. European Bioinformatics Institute. Retrieved June 22, 2024, https://www.ebi.ac.uk/gxa/sc/home 47. European Bioinformatics Institute. (n.d.). ArrayExpress. European Bioinformatics Institute. Retrieved June 22, 2024, from https://www.ebi.ac.uk/biostudies/arrayexpress 48. GTEx Consortium. (n.d.). GTEx Portal. GTEx Portal. Retrieved June 22, 2024, from https://gtexportal.org/home/ 49. GeneCards. (n.d.). GeneCards: The human gene database. Retrieved July 15, 2024, from https://www.genecards.org/ 50. miRBase. (n.d.). miRBase: The microRNA database. Retrieved July 15, 2024, from https://www.mirbase.org/ 51. miRDB. (n.d.). miRDB: An online database for miRNA target prediction and functional annotations. Retrieved July 15, 2024, from https://mirdb.org/ 52. Human Metabolome Database (HMDB). (n.d.). Retrieved July 15, 2024, from https://hmdb.ca/ 53. Lettau, M., Pieper, J., Gerneth, A., Lengl‐Janßen, B., Voss, M., Linkermann, A., Schmidt, H., Gelhaus, C., Leippe, M., Kabelitz, D., & Janssen, O. (2010). The adapter protein Nck: role of individual SH3 and SH2 binding modules for protein interactions in T lymphocytes. Protein Science, 19(4), 658-669. 54. Alfaidi, M., Scott, M. L., & Orr, A. W. (2021). Sinner or saint?: Nck adaptor proteins in vascular biology. Frontiers in Cell and Developmental Biology, 9, 688388. 55. Kang, J., Kang, S., Kwon, H. N., He, W., & Park, S. (2008). Distinct interactions between ubiquitin and the SH3 domains involved in immune signaling. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1784(9), 1335-1341. 56. Bywaters, B. C., & Rivera, G. M. (2021). Nck adaptors at a glance. Journal of Cell Science, 134(18), jcs258965. 57. Haider, N., Dusseault, J., Rudich, A., & Larose, L. (2017). Nck2, an unexpected regulator of adipogenesis. Adipocyte, 6(2), 154-160. 58. Dusseault, J., Li, B., Haider, N., Goyette, M. A., Côté, J. F., & Larose, L. (2016). Nck2 deficiency in mice results in increased adiposity associated with adipocyte hypertrophy and enhanced adipogenesis. Diabetes, 65(9), 2652-2666. 59. Bywaters, B. C., Pedraza, G., Trache, A., & Rivera, G. M. (2022). Endothelial NCK2 promotes atherosclerosis progression in male but not female Nck1-null atheroprone mice. Frontiers in Cardiovascular Medicine, 9, 955027. 60. Lal, H., Verma, S. K., Foster, D. M., Golden, H. B., Reneau, J. C., Watson, L. E., Singh, H., & Dostal, D. E. (2009). Integrins and proximal signaling mechanisms in cardiovascular disease. Front Biosci, 14(6), 2307-2334. 61. Alfaidi, M., Acosta, C. H., Wang, D., Traylor, J. G., & Orr, A. W. (2020). Selective role of Nck1 in atherogenic inflammation and plaque formation. The Journal of clinical investigation, 130(8), 4331-4347. 62. Schwartzentruber, J., Cooper, S., Liu, J. Z., Barrio-Hernandez, I., Bello, E., Kumasaka, N., Young, A. M. H., Franklin, R. J. M., Johnson, T., Estrada, K., Gaffney, D. J., Beltrao, P., & Bassett, A. (2021). Genome-wide meta-analysis, fine-mapping and integrative prioritization implicate new Alzheimer’s disease risk genes. Nature genetics, 53(3), 392-402. 63. Brase, L., You, S. F., D’Oliveira Albanus, R., Del-Aguila, J. L., Dai, Y., Novotny, B. C., Soriano-Tarraga, C., Dykstra, T., Fernandez, M. V., Budde, J. P., Bergmann, K., Morris, J. C., Bateman, R. J., Perrin, R. J., McDade, E., Xiong, C., Goate, A. M., Farlow, M., Dominantly Inherited Alzheimer Network (DIAN), Sutherland, G. T., … & Harari, O. (2023). Single-nucleus RNA-sequencing of autosomal dominant Alzheimer disease and risk variant carriers. Nature communications, 14(1), 2314. 64. Khani, M., Gibbons, E., Bras, J., & Guerreiro, R. (2022). Challenge accepted: uncovering the role of rare genetic variants in Alzheimer’s disease. Molecular neurodegeneration, 17, 1-15. 65. Wang, H., Dombroski, B. A., Cheng, P. L., Tucci, A., Si, Y. Q., Farrell, J. J., Tzeng, J. Y., Leung, Y. Y., Malamon, J. S., Alzheimer’s Disease Sequencing Project, Wang, L. S., Vardarajan, B. N., Farrer, L. A., Schellenberg, G. D., & Lee, W. P. (2023). Structural Variation Detection and Association Analysis of Whole-Genome-Sequence Data from 16,905 Alzheimer’s Diseases Sequencing Project Subjects. medRxiv. 66. Dubrac, A., Genet, G., Ola, R., Zhang, F., Pibouin-Fragner, L., Han, J., Zhang, J., Thomas, J. L., Chedotal, A., Schwartz, M. A., & Eichmann, A. (2016). Targeting NCK-mediated endothelial cell front-rear polarity inhibits neovascularization. Circulation, 133(4), 409-421. 67. Golding, A. P., Ferrier, B., New, L. A., Lu, P., Martin, C. E., Shata, E., Jones, R. A., Moorehead, R. A., & Jones, N. (2023). Distinct requirements for adaptor proteins NCK1 and NCK2 in mammary gland development. Journal of Mammary Gland Biology and Neoplasia, 28(1), 19. 68. Liu, Y. (2011). Cellular and molecular mechanisms of renal fibrosis. Nature Reviews Nephrology, 7(12), 684-696. 69. Yu, S., Choi, W. I., Choi, Y. J., Kim, H. Y., Hildebrandt, F., & Gee, H. Y. (2020). PLCE1 regulates the migration, proliferation, and differentiation of podocytes. Experimental & Molecular Medicine, 52(4), 594-603. 70. Fiorilli, P., Partridge, D., Staniszewska, I., Wang, J. Y., Grabacka, M., So, K., Marcinkiewicz, C., Reiss, K., Khalili, K., & Croul, S. E. (2008). Integrins mediate adhesion of medulloblastoma cells to tenascin and activate pathways associated with survival and proliferation. Laboratory investigation, 88(11), 1143-1156. 71. United Nations. (n.d.). Communications material. United Nations Sustainable Development. Retrieved June 22, 2024, from https://www.un.org/sustainabledevelopment/news/communications-material/ 72. OriGene. (n.d.). NCK-beta (NCK2) (NM_003581) human tagged ORF clone. OriGene. Retrieved June 22, 2024, from https://www.origene.com/catalog/cdna-clones/expression-plasmids/rc202557/nck-beta-nck2-nm_003581-human-tagged-orf-clone 73. Rudnicki, M., Perco, P., D′ haene, B., Leierer, J., Heinzel, A., Mühlberger, I., Schweibert, N., Sunzenauer, J., Regele, H., Kronbichler, A., Mestdagh, P., Vandesompele, J., Mayer, B., & Mayer, G. (2016). Renal micro RNA‐and RNA‐profiles in progressive chronic kidney disease. European journal of clinical investigation, 46(3), 213-226. 74. National Center for Biotechnology Information. (n.d.). GEO DataSet GSE66494. NCBI Gene Expression Omnibus. Retrieved June 22, 2024, from https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=gse66494 75. National Center for Biotechnology Information. (n.d.). GEO DataSet GSE104954. NCBI Gene Expression Omnibus. Retrieved June 22, 2024, from https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE104954 76. Strober, W. (1997). Trypan blue exclusion test of cell viability. Current protocols in immunology, 21(1), A-3B. 77. Technical University of Denmark. (n.d.). NetPhos 3.1 server: Predicting phosphorylation sites in proteins. Retrieved July 15, 2024, from https://services.healthtech.dtu.dk/services/NetPhos-3.1/ 78. Technical University of Denmark. (n.d.). NetNGlyc 1.0 server: Predicting N-glycosylation sites in proteins. Retrieved July 15, 2024, from https://services.healthtech.dtu.dk/services/NetNGlyc-1.0/ 79. Breyer, M. D., & Susztak, K. (2016). The next generation of therapeutics for chronic kidney disease. Nature reviews Drug discovery, 15(8), 568-588. 80. Astellas Pharma. Europe Ltd. (n.d.). Nephrology. Astellas Pharma Europe Ltd. Retrieved June 22, 2024, from https://www.astellas.com/eu/therapy-areas/nephrology 81. Astellas Pharma. (2024, January 15). Astellas Pharma introduces first-of-its-kind treatment for anaemia associated with chronic kidney disease in Egypt [Press release]. Astellas Pharma. Retrieved June 22, 2024, from https://www.astellas.com/me/astellas-pharma-introduces-first-of-its-kind-treatment-for-anaemia-associated-with-chronic-kidney-disease-in-egypt-news 82. AstraZeneca. (n.d.). Cardiovascular, renal and metabolism - Renal. AstraZeneca. Retrieved June 22, 2024, from https://www.astrazeneca.com/our-therapy-areas/cardiovascular-renal-and-metabolism/renal.html#collab 83. Genexine. (n.d.). GX-E4. Genexine. Retrieved June 22, 2024, from http://www.genexine.com/en/pipeline/gx-e4 84. Johnson & Johnson. (2024, June 20). New study finds chronic kidney disease remains largely undiagnosed in nearly half of patients with type 2 diabetes and chronic kidney disease [Press release]. Johnson & Johnson. Retrieved June 22, 2024, from https://www.jnj.com/media-center/press-releases/new-study-finds-chronic-kidney-disease-remains-largely-undiagnosed-in-nearly-half-of-patients-with-type-2-diabetes-and-chronic-kidney-disease 85. Pharmaceutical Technology. (2024, March 21). JNJ-0237 (Johnson & Johnson) - chronic kidney disease, chronic renal failure - likelihood of approval. Pharmaceutical Technology. Retrieved June 22, 2024, from https://www.pharmaceutical-technology.com/data-insights/jnj-0237-johnson-johnson-chronic-kidney-disease-chronic-renal-failure-likelihood-of-approval/?cf-view 86. Otsuka. (n.d.). Cardiology & nephrology. Otsuka Pharmaceutical. Retrieved June 22, 2024, from https://www.otsuka.co.jp/en/pharmaceutical-business/about/cardiology-nephrology/ 87. Otsuka. (2018, April 25). Otsuka's JYNARQUE™ (tolvaptan) approved by U.S. FDA as the first treatment to slow kidney function decline in adults at risk of rapidly progressing autosomal dominant polycystic kidney disease (ADPKD). Retrieved from https://www.otsuka.co.jp/en/company/newsreleases/2018/20180425_1.html 88. Chen, C. C., Yang, S. S., Hsu, Y. J., Sung, C. C., Chu, P., Wu, C. C., Hsu, S. N., Wang, H. E., Lee, D. J., & Lin, S. H. (2023). Acute kidney disease following COVID-19 vaccination: a single-center retrospective study. Frontiers in Medicine, 10, 1189243. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95016 | - |
| dc.description.abstract | 慢性腎臟病(CKD)是世界上最迫切且尚未解決的健康問題之一。它也成為亞洲許多人的夢魘,尤其是俗稱「腎臟透析王國」的台灣。目前慢性腎臟病的治療方法有血液透析、腹膜透析、藥物治療等。這些治療方法僅能幫助減輕不適或延緩病程,然而,它們卻無法完全遏止慢性腎臟病的進展。因此,確定慢性腎臟病新的治療標靶是必要的,並且可視為前景廣闊。本文的研究目的是確定慢性腎臟病的新治療標靶。首先,我們進行了文獻綜述,以尋找可能成為慢性腎臟病新標靶的候選基因。接下來,我們使用GEO資料庫評估了這些基因在健康和纖維化腎臟上的基因表現量。我們發現NCK Adaptor Protein 2 (NCK2),酪胺酸激酶(NCK)家族非催化區的成員之一,在纖維化腎臟中高表達,指示它有可能成為慢性腎臟病的新標靶。經過實驗驗證,結果推測NCK2的過度表現會輕微抑制人類近端腎小管細胞(HK-2)的細胞活力。這項觀察結果可能會導致未來更進一步的機制研究和藥物開發,並嘗試為慢性腎臟病患者提供全新的治療選擇。透過這項結果,人們可以預期改善慢性腎臟病患者的健康和生活品質。 | zh_TW |
| dc.description.abstract | Chronic kidney disease (CKD) is one of the most urgent and unresolved health issues in the world. It has also been a plague for many people in Asia, especially Taiwan, commonly referred to as the "Kingdom of Kidney Dialysis." CKD is now treated with hemodialysis, peritoneal dialysis, medication management. These therapies can only help to lessen discomfort or delay the course of the illness; they cannot, however, halt CKD progression. Thus, identification of new therapeutic targets for CKD will be required and promising. The aim of the study is to identify new intervention targets for CKD treatment. First, we performed a literature review to identify candidate genes that potentially could be new therapeutic targets of CKD. Next, we evaluated gene expression levels of these genes on healthy and fibrotic kidneys by using the GEO database. We found that NCK adaptor protein 2 (NCK2), a member of the Non-catalytic region of tyrosine kinase (NCK) family, was highly expressed in the fibrotic kidneys, suggesting it could be a new therapeutic target for CKD. After the experimental verification, the result speculated that overexpression of NCK2 slightly inhibited the viability of human proximal tubular cells (HK-2). This observation may lead to future mechanistic study and drug development and an attempt to give novel treatment options for patients with CKD. With this outcome, people can anticipate to improve the health and quality of life of those who suffer from CKD. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-26T16:16:08Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-26T16:16:08Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 謝辭 I
中文摘要 II Abstract III Table of Contents IV List of Abbreviation VII List of Figures IX List of Tables X List of Supplementary materials XI Introduction 1 1. The background overview of CKD 1 The definition of CKD stages 1 Cellular and molecular mechanisms in the progression of CKD 2 2. Tubulointerstitial fibrosis 4 3. The current intervention methods of CKD 5 4. NCBI GEO database 8 5. The background of NCK Adapter Protein 2 (NCK 2) 9 Objective 12 Materials and Methods 14 1. Transformation 14 2. Plasmid DNA extraction- mini preparation 14 3. Plasmid size confirmation by restriction enzyme digestion 15 4. Plasmid DNA extraction- midi preparation 15 5. NCK2 Sequence 16 6. Transfection 16 7. Protein extraction 17 8. Western blot 17 Results 19 Part I. Screening of candidate genes 19 1. Identification of candidate therapeutic targets for CKD by literature review 19 2. The GEO database narrows down candidate genes identified from the literature review 20 3. Using the Nephroseq database to confirm if renal disease is associated with an upregulated NCK2 gene 22 4. Using the single-cell RNA seq database to examine the gene expression of NCK2 in different kidney cell types 22 5. Summary of Part I 23 Part II. Experimental verification 23 Amplification of NCK2 plasmid 23 1. Transformation 23 2. Plasmid DNA extraction- mini preparation 24 3. Plasmid size confirmation by restriction enzyme digestion 25 4. Plasmid DNA extraction- midi preparation 26 5. Sanger sequencing 26 Evaluating the effects of NCK2 in cell viability 26 1. Ectopic expression of NCK2 in HK-2 cells by transfection 27 Determination of NCK2 expression 27 1. Protein extraction 27 2. Western blot analysis 28 Discussion 29 Conclusion 35 Figures 38 Tables 56 Supplementary Materials 58 References 85 | - |
| dc.language.iso | en | - |
| dc.subject | 慢性腎臟病 | zh_TW |
| dc.subject | GEO資料庫 | zh_TW |
| dc.subject | 細胞活力 | zh_TW |
| dc.subject | 腎小管間質纖維化 | zh_TW |
| dc.subject | NCK Adaptor Protein 2 | zh_TW |
| dc.subject | NCK Adaptor Protein 2 | en |
| dc.subject | Cell viability | en |
| dc.subject | Chronic kidney disease | en |
| dc.subject | GEO database | en |
| dc.subject | Tubulointerstitial fibrosis | en |
| dc.title | 開發尋找慢性腎臟病潛在治療標的之策略 | zh_TW |
| dc.title | Developing a Strategy to Identify Potential Therapeutic Targets for Chronic Kidney Disease | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 洪維廷;李宗玄 | zh_TW |
| dc.contributor.oralexamcommittee | Wei-Ting Hung;Tzong-Shyuan Lee | en |
| dc.subject.keyword | 慢性腎臟病,NCK Adaptor Protein 2,腎小管間質纖維化,細胞活力,GEO資料庫, | zh_TW |
| dc.subject.keyword | Chronic kidney disease,NCK Adaptor Protein 2,Tubulointerstitial fibrosis,Cell viability,GEO database, | en |
| dc.relation.page | 96 | - |
| dc.identifier.doi | 10.6342/NTU202402172 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-07-30 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 國際三校農業生技與健康醫療碩士學位學程 | - |
| dc.date.embargo-lift | 2029-07-23 | - |
| 顯示於系所單位: | 國際三校農業生技與健康醫療碩士學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 此日期後於網路公開 2029-07-23 | 72.45 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
