Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95014
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor俞松良zh_TW
dc.contributor.advisorSung-Liang Yuen
dc.contributor.author姚芷玗zh_TW
dc.contributor.authorChih-Yu Yaoen
dc.date.accessioned2024-08-26T16:15:28Z-
dc.date.available2024-08-27-
dc.date.copyright2024-08-26-
dc.date.issued2024-
dc.date.submitted2024-07-24-
dc.identifier.citationReference
1. Bray, F., et al., Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2024.
2. Leiter, A., R.R. Veluswamy, and J.P. Wisnivesky, The global burden of lung cancer: current status and future trends. Nat Rev Clin Oncol, 2023. 20(9): p. 624-639.
3. Lopiccolo, J., et al., Lung cancer in patients who have never smoked — an emerging disease. Nature Reviews Clinical Oncology, 2024. 21(2): p. 121-146.
4. SEER*Explorer: An interactive website for SEER cancer statistics [Internet]. Surveillance Research Program, National Cancer Institute 2024 Apr 17. [cited 2024 Jun 15]. Available from: https://seer.cancer.gov/statistics-network/explorer/. Data source(s): SEER Incidence Data, November 2023 Submission (1975-2021), SEER 22 registries (excluding Illinois and Massachusetts). Expected Survival Life Tables by Socio-Economic Standards.
5. Yang, C.-Y., et al., Stage Shift Improves Lung Cancer Survival: Real-World Evidence. Journal of Thoracic Oncology, 2023. 18(1): p. 47-56.
6. Howlader, N., et al., The Effect of Advances in Lung-Cancer Treatment on Population Mortality. N Engl J Med, 2020. 383(7): p. 640-649.
7. Lim, J.U., Update on Adjuvant Treatment in Resectable Non-Small Cell Lung Cancer and Potential Biomarkers Predicting Postoperative Relapse. Tuberc Respir Dis (Seoul), 2023. 86(1): p. 14-22.
8. Pignon, J.P., et al., Lung adjuvant cisplatin evaluation: a pooled analysis by the LACE Collaborative Group. J Clin Oncol, 2008. 26(21): p. 3552-9.
9. Yang, C.Y., J.C. Yang, and P.C. Yang, Precision Management of Advanced Non-Small Cell Lung Cancer. Annu Rev Med, 2020. 71: p. 117-136.
10. Oprea, T.I., et al., Unexplored therapeutic opportunities in the human genome. Nat Rev Drug Discov, 2018. 17(5): p. 317-332.
11. Kustatscher, G., et al., Understudied proteins: opportunities and challenges for functional proteomics. Nat Methods, 2022. 19(7): p. 774-779.
12. Sinha, S., et al., Darkness in the Human Gene and Protein Function Space: Widely Modest or Absent Illumination by the Life Science Literature and the Trend for Fewer Protein Function Discoveries Since 2000. Proteomics, 2018. 18(21-22): p. e1800093.
13. Omenn, G.S., et al., The 2023 Report on the Proteome from the HUPO Human Proteome Project. J Proteome Res, 2024. 23(2): p. 532-549.
14. Welsh, I.C., et al., Chromatin Architecture of the Pitx2 Locus Requires CTCF- and Pitx2-Dependent Asymmetry that Mirrors Embryonic Gut Laterality. Cell Reports, 2015. 13(2): p. 337-349.
15. Turton, N., et al., The Functions of Long Non-Coding RNA during Embryonic Cardiovascular Development and Its Potential for Diagnosis and Treatment of Congenital Heart Disease. J Cardiovasc Dev Dis, 2019. 6(2).
16. Diabetes Genetics Initiative of Broad Institute of, H., et al., Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science, 2007. 316(5829): p. 1331-6.
17. Hertel, J.K., et al., Genetic analysis of recently identified type 2 diabetes loci in 1,638 unselected patients with type 2 diabetes and 1,858 control participants from a Norwegian population-based cohort (the HUNT study). Diabetologia, 2008. 51(6): p. 971-7.
18. Lewis, J.P., et al., Association analysis in african americans of European-derived type 2 diabetes single nucleotide polymorphisms from whole-genome association studies. Diabetes, 2008. 57(8): p. 2220-5.
19. Cornelis, M.C., et al., Joint effects of common genetic variants on the risk for type 2 diabetes in U.S. men and women of European ancestry. Ann Intern Med, 2009. 150(8): p. 541-50.
20. Gupta, V., et al., Association study of 25 type 2 diabetes related Loci with measures of obesity in Indian sib pairs. PLoS One, 2013. 8(1): p. e53944.
21. Shah, S., et al., Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure. Nature Communications, 2020. 11(1).
22. Sun, Y.F., et al., A transcriptome-wide association study of Alzheimer's disease using prediction models of relevant tissues identifies novel candidate susceptibility genes. Genome Medicine, 2021. 13(1).
23. Harle, A., et al., HPV insertional pattern as a personalized tumor marker for the optimized tumor diagnosis and follow-up of patients with HPV-associated carcinomas: a case report. Bmc Cancer, 2019. 19.
24. Sweef, O., C. Yang, and Z. Wang, The Oncogenic and Tumor Suppressive Long Non-Coding RNA-microRNA-Messenger RNA Regulatory Axes Identified by Analyzing Multiple Platform Omics Data from Cr(VI)-Transformed Cells and Their Implications in Lung Cancer. Biomedicines, 2022. 10(10).
25. Gyorffy, B., Transcriptome-level discovery of survival-associated biomarkers and therapy targets in non-small-cell lung cancer. Br J Pharmacol, 2024. 181(3): p. 362-374.
26. Szklarczyk, D., et al., The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Research, 2023. 51(D1): p. D638-D646.
27. Madeira, F., et al., Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Res, 2022. 50(W1): p. W276-W279.
28. Gutierrez, S., et al., MembraneFold: Visualising transmembrane protein structure and topology. 2022, bioRxiv.
29. Naba, A., et al., The matrisome: in silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices. Mol Cell Proteomics, 2012. 11(4): p. M111 014647.
30. Sun, J., et al., Machine learning in computational modelling of membrane protein sequences and structures: From methodologies to applications. Comput Struct Biotechnol J, 2023. 21: p. 1205-1226.
31. Seung-Hwan Lee1, S.-W.P., Jin-A Lee2 and Deok-Jin Jang, Identification of C4orf32 as a Novel Type I Endoplasmic Reticulum Resident Membrane Protein. Journal of Life Science 2019. 29(1225-9918): p. 949~954.
32. Kobayashi, H., et al., Self-supervised deep learning encodes high-resolution features of protein subcellular localization. Nat Methods, 2022. 19(8): p. 995-1003.
33. Cho, N.H., et al., OpenCell: Endogenous tagging for the cartography of human cellular organization. Science, 2022. 375(6585): p. eabi6983.
34. Hein, M.Y., et al., A human interactome in three quantitative dimensions organized by stoichiometries and abundances. Cell, 2015. 163(3): p. 712-23.
35. Schjoldager, K.T., et al., Global view of human protein glycosylation pathways and functions. Nat Rev Mol Cell Biol, 2020. 21(12): p. 729-749.
36. Harada, Y., et al., Oligosaccharyltransferase: A Gatekeeper of Health and Tumor Progression. Int J Mol Sci, 2019. 20(23).
37. Ramirez, A.S., J. Kowal, and K.P. Locher, Cryo-electron microscopy structures of human oligosaccharyltransferase complexes OST-A and OST-B. Science, 2019. 366(6471): p. 1372-1375.
38. Bai, L., et al., The atomic structure of a eukaryotic oligosaccharyltransferase complex. Nature, 2018. 555(7696): p. 328-333.
39. Bieberich, E., Synthesis, Processing, and Function of N-Glycans in N-Glycoproteins. Adv Neurobiol, 2023. 29: p. 65-93.
40. Goult, B.T., M. Von Essen, and V.P. Hytönen, The mechanical cell – the role of force dependencies in synchronising protein interaction networks. Journal of Cell Science, 2022. 135(22).
41. Sandona, D. and R. Betto, Sarcoglycanopathies: molecular pathogenesis and therapeutic prospects. Expert Rev Mol Med, 2009. 11: p. e28.
42. Yamada, H., et al., Processing of beta-dystroglycan by matrix metalloproteinase disrupts the link between the extracellular matrix and cell membrane via the dystroglycan complex. Hum Mol Genet, 2001. 10(15): p. 1563-9.
43. Townsend, D., Finding the sweet spot: assembly and glycosylation of the dystrophin-associated glycoprotein complex. Anat Rec (Hoboken), 2014. 297(9): p. 1694-705.
44. Shibata, Y., et al., Mechanisms determining the morphology of the peripheral ER. Cell, 2010. 143(5): p. 774-88.
45. Mukherjee, R.N. and D.L. Levy, Reticulon 4a promotes exocytosis in mammalian cells. Mol Biol Cell, 2019. 30(18): p. 2349-2357.
46. Angelotti, T., Exploring the eukaryotic Yip and REEP/Yop superfamily of membrane-shaping adapter proteins (MSAPs): A cacophony or harmony of structure and function? Front Mol Biosci, 2022. 9: p. 912848.
47. Fan, S., H. Liu, and L. Li, The REEP family of proteins: Molecular targets and role in pathophysiology. Pharmacol Res, 2022. 185: p. 106477.
48. Park, C.R., et al., The accessory proteins REEP5 and REEP6 refine CXCR1-mediated cellular responses and lung cancer progression. Scientific Reports, 2016. 6.
49. Zizzari, I.G., et al., MGL Receptor and Immunity: When the Ligand Can Make the Difference. J Immunol Res, 2015. 2015: p. 450695.
50. Eggink, L.L., et al., An innovative immunotherapeutic strategy for ovarian cancer: CLEC10A and glycomimetic peptides. J Immunother Cancer, 2018. 6(1): p. 28.
51. Kaviyarasi, N.S., Structure, Biosynthesis, and Biological Properties of Lectins. , in Lectins: Innate Immune Defense and Therapeutics S.L. Preetham Elumalai, Editor. 2021, Springer: Singapore. p. pp 27–50.
52. Perdigao, N., et al., Unexpected features of the dark proteome. Proc Natl Acad Sci U S A, 2015. 112(52): p. 15898-903.
53. Yoo, S., et al., Integrative network analysis of early-stage lung adenocarcinoma identifies aurora kinase inhibition as interceptor of invasion and progression. Nature Communications, 2022. 13(1).
54. Ricciardi, S., et al., Managing of screening-detected sub-solid nodules-a European perspective. Transl Lung Cancer Res, 2021. 10(5): p. 2368-2377.
55. Silva, M., et al., Long-Term Active Surveillance of Screening Detected Subsolid Nodules is a Safe Strategy to Reduce Overtreatment. J Thorac Oncol, 2018. 13(10): p. 1454-1463.
56. Noguchi, M., et al., Small adenocarcinoma of the lung. Histologic characteristics and prognosis. Cancer, 1995. 75(12): p. 2844-52.
57. Hanahan, D. and R.A. Weinberg, Hallmarks of cancer: the next generation. Cell, 2011. 144(5): p. 646-74.
58. Lv, F.Z., et al., Knockdown of MMP12 inhibits the growth and invasion of lung adenocarcinoma cells. International Journal of Immunopathology and Pharmacology, 2015. 28(1): p. 77-84.
59. Chen, Y., et al., PRSS2 overexpression relates to poor prognosis and promotes proliferation, migration and invasion in gastric cancer. Tissue Cell, 2022. 79: p. 101949.
60. Bao, X., et al., Tumor suppressor function of laminin-binding alpha-dystroglycan requires a distinct beta3-N-acetylglucosaminyltransferase. Proc Natl Acad Sci U S A, 2009. 106(29): p. 12109-14.
61. Campbell, M.D., The Role of Delta Sarcoglycan in Dystrophin-Glycoprotein Complex
Function in Cardiac Muscle, in Molecular and Integrative Physiology. 2013, The University of Michigan. p. 145.
62. Joshi, A.S., et al., Multiple C2 domain-containing transmembrane proteins promote lipid droplet biogenesis and growth at specialized endoplasmic reticulum subdomains. Mol Biol Cell, 2021. 32(12): p. 1147-1157.
63. Xu, D., et al., Cadherin 13 Inhibits Pancreatic Cancer Progression and Epithelial-mesenchymal Transition by Wnt/beta-Catenin Signaling. J Cancer, 2020. 11(8): p. 2101-2112.
64. Andreeva, A.V. and M.A. Kutuzov, Cadherin 13 in cancer. Genes Chromosomes Cancer, 2010. 49(9): p. 775-90.
65. Chen, X., et al., Research progress in the role and mechanism of Cadherin-11 in different diseases. J Cancer, 2021. 12(4): p. 1190-1199.
66. Li, L., et al., The human cadherin 11 is a pro-apoptotic tumor suppressor modulating cell stemness through Wnt/beta-catenin signaling and silenced in common carcinomas. Oncogene, 2012. 31(34): p. 3901-12.
67. Brooks, S.P., et al., The Nance-Horan syndrome protein encodes a functional WAVE homology domain (WHD) and is important for co-ordinating actin remodelling and maintaining cell morphology. Hum Mol Genet, 2010. 19(12): p. 2421-32.
68. Law, A.L., et al., Nance-Horan Syndrome-like 1 protein negatively regulates Scar/WAVE-Arp2/3 activity and inhibits lamellipodia stability and cell migration. Nat Commun, 2021. 12(1): p. 5687.
69. Huang, C., et al., Circular RNA hsa-circ-000881 suppresses the progression of lung adenocarcinoma in vitro via a miR-665/PRICKLE2 axis. Ann Transl Med, 2021. 9(6): p. 498.
70. Tang, Y., et al., Rnd3 regulates lung cancer cell proliferation through notch signaling. PLoS One, 2014. 9(11): p. e111897.
71. Liu, B., et al., RND3 promotes Snail 1 protein degradation and inhibits glioblastoma cell migration and invasion. Oncotarget, 2016. 7(50): p. 82411-82423.
72. Jang, B.G., et al., Prognostic significance of stromal GREM1 expression in colorectal cancer. Hum Pathol, 2017. 62: p. 56-65.
73. Huang, S., et al., SOX2 promotes vasculogenic mimicry by accelerating glycolysis via the lncRNA AC005392.2-GLUT1 axis in colorectal cancer. Cell Death Dis, 2023. 14(12): p. 791.
74. Han, Y. and X. Wang, The emerging roles of KPNA2 in cancer. Life Sci, 2020. 241: p. 117140.
75. Berta, J., et al., Apelin expression in human non-small cell lung cancer: role in angiogenesis and prognosis. J Thorac Oncol, 2010. 5(8): p. 1120-9.
76. Shi, Y., et al., AFF3 upregulation mediates tamoxifen resistance in breast cancers. J Exp Clin Cancer Res, 2018. 37(1): p. 254.
77. Vogler, M., BCL2A1: the underdog in the BCL2 family. Cell Death Differ, 2012. 19(1): p. 67-74.
78. Xiong, Y., et al., TFAP2A potentiates lung adenocarcinoma metastasis by a novel miR-16 family/TFAP2A/PSG9/TGF-beta signaling pathway. Cell Death Dis, 2021. 12(4): p. 352.
79. Hofmann, H.S., et al., Matrix metalloproteinase-12 expression correlates with local recurrence and metastatic disease in non-small cell lung cancer patients. Clin Cancer Res, 2005. 11(3): p. 1086-92.
80. Yang, M.F., et al., Comprehensive analysis on the expression profile and prognostic values of Synaptotagmins (SYTs) family members and their methylation levels in gastric cancer. Bioengineered, 2021. 12(1): p. 3550-3565.
81. Qu, C.X., et al., LncRNA CASC19 promotes the proliferation, migration and invasion of non-small cell lung carcinoma via regulating miRNA-130b-3p. Eur Rev Med Pharmacol Sci, 2019. 23(3 Suppl): p. 247-255.
82. Wang, S., et al., LncRNA CASC19: a novel oncogene involved in human cancer. Clin Transl Oncol, 2023. 25(10): p. 2841-2851.
83. Deng, J., et al., The role of TXNIP in cancer: a fine balance between redox, metabolic, and immunological tumor control. Br J Cancer, 2023. 129(12): p. 1877-1892.
84. Galego, S., et al., Myocyte Enhancer Factor 2C as a New Player in Human Breast Cancer Brain Metastases. Cells, 2021. 10(2).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95014-
dc.description.abstract肺癌是全球癌症死亡的主要原因。為了尋找有效的治療對策,研究著重於探討少數已知功能蛋白的分子機制,但肺癌的五年存活率仍舊沒有顯著的改善;反觀,未知功能的蛋白則可能暗藏著重要的分子機制,是過去一直被忽略的。在此,我們發現FAM241A,一個功能未知的蛋白質,在臺灣癌症登月計畫,研究肺腺癌的基因蛋白質體數據中,相較於正常肺組織,其表現量在腫瘤中呈現顯著下調。而臨床數據分析發現,FAM241A的表現與較好的預後和較低的病理侵襲性特徵有關。透過肺癌細胞實驗可以證實,FAM241A會抑制癌細胞的侵襲能力。後續的RNA定序分析中顯示,FAM241A過度表現之肺癌細胞中的差異表現基因顯著富集在細胞黏附和蛋白酶水解的路徑中,並可以上調細胞外基質(ECM)醣蛋白和分泌因子的基因轉錄。最後,利用免疫螢光染色和蛋白質相互作用分析,發現FAM241A主要表現於內質網中,並會參與在一個會增加細胞黏附性的ECM受體次單元─SGCD的轉譯後修飾,來增加SGCD的蛋白表現量。這項研究探討了FAM241A在肺腺癌中抑癌的功能,透過這些暗藏在未知功能蛋白中的機制,讓我們對肺腺癌的進展有更深的了解。zh_TW
dc.description.abstractLung cancer is the leading cause of cancer-related death worldwide. In the quest for biomarkers and effective treatment development, the uncharacterized proteins present a significant knowledge gap. We identified FAM241A, a protein with unknown function, as significantly downregulated in lung adenocarcinoma tumors in the Taiwan Cancer Moonshot cohort proteogenomic data. The clinical significance of FAM241A is validated using survival analysis using the TwCM cohort and the public databases. The clinicopathological analysis reveals that FAM241A is correlated with lower pathological invasive states. It is then validated in vitro that FAM241A expression inhibits lung cancer cell invasiveness. RNA-seq analysis indicates that FAM241A upregulates genes enriched in the cell adhesion and proteolysis pathways and genes of ECM glycoproteins and secreted factors. Finally, immunofluorescence staining and protein-protein interaction analysis reveal that FAM241A is localized in the ER and is implicated in the post-translational modification of an ECM receptor, SGCD, which enhances the adherence of epithelial cells to the basal lamina. This study explores the potential function of FAM241A as a tumor suppressor that enhances our understanding of the hidden mechanisms of uncharacterized proteins in lung adenocarcinoma.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-26T16:15:28Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-26T16:15:28Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
摘要 iii
Abstract iv
List of Figures vii
List of Tables ix
Chapter I Introduction 1
Non-small-cell lung cancer and Recurrence 1
The Dark Proteome and Human Proteome Project 2
Previous studies on FAM241 3
Chapter Ⅱ Specific Aim 6
Chapter Ⅲ Materials and Methods 7
Cell culture 7
RNA extraction, real-time quantitative PCR (qPCR), and RNA-sequencing 7
Protein extraction and Western blotting 8
Lentiviral transduction 8
Plasmid construction 9
Cell transfection 10
3-[4,5-Dimethylthiazole-2-yl]-2,5-diphenyltetrazolium Bromide (MTT) and Colony formation assays 10
Transwell migration and invasion assay 11
Immunofluorescent staining and confocal microscopy 11
Cycloheximide (CHX) chase experiment 12
Public databases 12
Statistical analysis 13
Chapter Ⅳ Results 14
FAM241A is downregulated in LUAD and correlates with a better prognosis 14
FAM241A is associated with a low invasive state in LUAD and may regulate cell adhesion through ECM interactions 15
FAM241A inhibits cell invasion in the NSCLC cell line without affecting cell migration, proliferation, and colony formation 16
FAM241A inhibits cancer cell invasion by regulating cell adhesion, proteolysis, and inflammation-related pathways. 17
FAM241A is an α-helix transmembrane protein partially localized in the endoplasmic reticulum. 19
FAM241A interacts with and enhances SGCD protein stability in CL1-5, presumably by promoting its post-translational modifications 22
Chapter Ⅴ Discussion 28
The uncharacterized proteins have clinical values 28
FAM241A reverses the invasive transformation in early-stage LUAD 28
FAM241A and ECM remodeling 30
FAM241A and post-translational modification 30
FAM241A specifically inhibits cancer cell invasion in LUAD 31
SGCD is a downstream effector of FAM241A 32
Conclusion and Future Perspectives 33
Figures 34
Tables 52
Supplementary Materials 54
Reference 72
-
dc.language.isoen-
dc.subject抑癌zh_TW
dc.subject細胞外基質交互作用zh_TW
dc.subject肺腺癌zh_TW
dc.subjectFAM241Azh_TW
dc.subject未知功能蛋白zh_TW
dc.subjectFAM241Aen
dc.subjectc4orf32en
dc.subjectLUADen
dc.subjectECM interactionen
dc.subjectTumor suppressoren
dc.subjectuPE1en
dc.titleFAM241A藉細胞外基質重塑來抑制肺腺癌細胞侵襲zh_TW
dc.titleFAM241A inhibits LUAD cancer cell invasiveness via ECM remodelingen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee潘思樺;陳玉如;蘇剛毅zh_TW
dc.contributor.oralexamcommitteeSzu-Hua Pan;Yu-Ju Chen;Su Kang-Yien
dc.subject.keywordFAM241A,肺腺癌,細胞外基質交互作用,抑癌,未知功能蛋白,zh_TW
dc.subject.keywordFAM241A,c4orf32,LUAD,ECM interaction,Tumor suppressor,uPE1,en
dc.relation.page76-
dc.identifier.doi10.6342/NTU202402217-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-07-26-
dc.contributor.author-college醫學院-
dc.contributor.author-dept醫學檢驗暨生物技術學系-
dc.date.embargo-lift2029-07-24-
顯示於系所單位:醫學檢驗暨生物技術學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
8.57 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved