請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95013
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蔡欣祐 | zh_TW |
dc.contributor.advisor | Hsin-Yue Tsai | en |
dc.contributor.author | 馬佳宏 | zh_TW |
dc.contributor.author | Jia-Hung Ma | en |
dc.date.accessioned | 2024-08-26T16:15:09Z | - |
dc.date.available | 2024-08-27 | - |
dc.date.copyright | 2024-08-26 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-05 | - |
dc.identifier.citation | 1. van Furth R, Cohn ZA, Hirsch JG, Humphrey JH, Spector WG, Langevoort HL. The mononuclear phagocyte system: a new classification of macrophages, monocytes, and their precursor cells. Bull World Health Organ.46(6):845-852 (1972).
2. Palis J, Robertson S, Kennedy M, Wall C, Keller G. Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse. Development.126(22):5073-5084 (1999). 3. Schulz C, Gomez Perdiguero E, Chorro L, et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science.336(6077):86-90 (2012). 4. Hashimoto D, Chow A, Noizat C, et al. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity.38(4):792-804 (2013). 5. Chorro L, Sarde A, Li M, et al. Langerhans cell (LC) proliferation mediates neonatal development, homeostasis, and inflammation-associated expansion of the epidermal LC network. J Exp Med.206(13):3089-3100 (2009). 6. Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FM. Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci.10(12):1538-1543 (2007). 7. Sieweke MH, Allen JE. Beyond stem cells: self-renewal of differentiated macrophages. Science.342(6161):1242974 (2013). 8. van Furth R, Cohn ZA. The origin and kinetics of mononuclear phagocytes. J Exp Med.128(3):415-435 (1968). 9. Varol C, Mildner A, Jung S. Macrophages: development and tissue specialization. Annu Rev Immunol.33:643-675 (2015). 10. Lazarov T, Juarez-Carreno S, Cox N, Geissmann F. Physiology and diseases of tissue-resident macrophages. Nature.618(7966):698-707 (2023). 11. Abdelaziz MH, Abdelwahab SF, Wan J, et al. Alternatively activated macrophages; a double-edged sword in allergic asthma. J Transl Med.18(1):58 (2020). 12. Liaunardy-Jopeace A, Gay NJ. Molecular and cellular regulation of toll-like receptor-4 activity induced by lipopolysaccharide ligands. Front Immunol.5:473 (2014). 13. Ivashkiv LB. IFNgamma: signalling, epigenetics and roles in immunity, metabolism, disease and cancer immunotherapy. Nat Rev Immunol.18(9):545-558 (2018). 14. Watanabe S, Kumazawa Y, Inoue J. Liposomal lipopolysaccharide initiates TRIF-dependent signaling pathway independent of CD14. PLoS One.8(4):e60078 (2013). 15. Colin S, Chinetti-Gbaguidi G, Staels B. Macrophage phenotypes in atherosclerosis. Immunol Rev.262(1):153-166 (2014). 16. Roszer T. Understanding the Mysterious M2 Macrophage through Activation Markers and Effector Mechanisms. Mediators Inflamm.2015:816460 (2015). 17. Wang LX, Zhang SX, Wu HJ, Rong XL, Guo J. M2b macrophage polarization and its roles in diseases. J Leukoc Biol.106(2):345-358 (2019). 18. Ambarus CA, Krausz S, van Eijk M, et al. Systematic validation of specific phenotypic markers for in vitro polarized human macrophages. J Immunol Methods.375(1-2):196-206 (2012). 19. Zizzo G, Hilliard BA, Monestier M, Cohen PL. Efficient clearance of early apoptotic cells by human macrophages requires M2c polarization and MerTK induction. J Immunol.189(7):3508-3520 (2012). 20. Lu J, Cao Q, Zheng D, et al. Discrete functions of M2a and M2c macrophage subsets determine their relative efficacy in treating chronic kidney disease. Kidney Int.84(4):745-755 (2013). 21. Qian BZ, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell.141(1):39-51 (2010). 22. Mantovani A, Sica A. Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol.22(2):231-237 (2010). 23. Pittet MJ, Michielin O, Migliorini D. Clinical relevance of tumour-associated macrophages. Nat Rev Clin Oncol.19(6):402-421 (2022). 24. Goenka S, Kaplan MH. Transcriptional regulation by STAT6. Immunol Res.50(1):87-96 (2011). 25. Li M, Wang M, Wen Y, Zhang H, Zhao GN, Gao Q. Signaling pathways in macrophages: molecular mechanisms and therapeutic targets. MedComm (2020).4(5):e349 (2023). 26. Liddiard K, Welch JS, Lozach J, Heinz S, Glass CK, Greaves DR. Interleukin-4 induction of the CC chemokine TARC (CCL17) in murine macrophages is mediated by multiple STAT6 sites in the TARC gene promoter. BMC Mol Biol.7:45 (2006). 27. Kimura S, Noguchi H, Nanbu U, Nakayama T. Macrophage CCL22 expression promotes lymphangiogenesis in patients with tongue squamous cell carcinoma via IL-4/STAT6 in the tumor microenvironment. Oncol Lett.21(5):383 (2021). 28. Oeckinghaus A, Ghosh S. The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol.1(4):a000034 (2009). 29. Porta C, Rimoldi M, Raes G, et al. Tolerance and M2 (alternative) macrophage polarization are related processes orchestrated by p50 nuclear factor kappaB. Proc Natl Acad Sci U S A.106(35):14978-14983 (2009). 30. Lohoff M, Mittrucker HW, Prechtl S, et al. Dysregulated T helper cell differentiation in the absence of interferon regulatory factor 4. Proc Natl Acad Sci U S A.99(18):11808-11812 (2002). 31. Satoh T, Takeuchi O, Vandenbon A, et al. The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nat Immunol.11(10):936-944 (2010). 32. Huang SC, Smith AM, Everts B, et al. Metabolic Reprogramming Mediated by the mTORC2-IRF4 Signaling Axis Is Essential for Macrophage Alternative Activation. Immunity.45(4):817-830 (2016). 33. Lee B, Qiao L, Lu M, et al. C/EBPalpha regulates macrophage activation and systemic metabolism. Am J Physiol Endocrinol Metab.306(10):E1144-1154 (2014). 34. Ruffell D, Mourkioti F, Gambardella A, et al. A CREB-C/EBPbeta cascade induces M2 macrophage-specific gene expression and promotes muscle injury repair. Proc Natl Acad Sci U S A.106(41):17475-17480 (2009). 35. Odegaard JI, Ricardo-Gonzalez RR, Red Eagle A, et al. Alternative M2 activation of Kupffer cells by PPARdelta ameliorates obesity-induced insulin resistance. Cell Metab.7(6):496-507 (2008). 36. Christofides A, Konstantinidou E, Jani C, Boussiotis VA. The role of peroxisome proliferator-activated receptors (PPAR) in immune responses. Metabolism.114:154338 (2021). 37. Daniel B, Nagy G, Horvath A, et al. The IL-4/STAT6/PPARgamma signaling axis is driving the expansion of the RXR heterodimer cistrome, providing complex ligand responsiveness in macrophages. Nucleic Acids Res.46(9):4425-4439 (2018). 38. Lee YJ, Kim BM, Ahn YH, Choi JH, Choi YH, Kang JL. STAT6 Signaling Mediates PPARgamma Activation and Resolution of Acute Sterile Inflammation in Mice. Cells.10(3) (2021). 39. Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, et al. Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature.447(7148):1116-1120 (2007). 40. Chawla A. Control of macrophage activation and function by PPARs. Circ Res.106(10):1559-1569 (2010). 41. Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell.131(5):861-872 (2007). 42. Kapoor N, Niu J, Saad Y, et al. Transcription factors STAT6 and KLF4 implement macrophage polarization via the dual catalytic powers of MCPIP. J Immunol.194(12):6011-6023 (2015). 43. Locati M, Curtale G, Mantovani A. Diversity, Mechanisms, and Significance of Macrophage Plasticity. Annu Rev Pathol.15:123-147 (2020). 44. Bi K, He MX, Bakouny Z, et al. Tumor and immune reprogramming during immunotherapy in advanced renal cell carcinoma. Cancer Cell.39(5):649-661 e645 (2021). 45. Bassez A, Vos H, Van Dyck L, et al. A single-cell map of intratumoral changes during anti-PD1 treatment of patients with breast cancer. Nat Med.27(5):820-832 (2021). 46. Xu J, Peng W, Sun Y, et al. Structural study of MCPIP1 N-terminal conserved domain reveals a PIN-like RNase. Nucleic Acids Res.40(14):6957-6965 (2012). 47. Zhou L, Azfer A, Niu J, et al. Monocyte chemoattractant protein-1 induces a novel transcription factor that causes cardiac myocyte apoptosis and ventricular dysfunction. Circ Res.98(9):1177-1185 (2006). 48. Akira S. Regnase-1, a ribonuclease involved in the regulation of immune responses. Cold Spring Harb Symp Quant Biol.78:51-60 (2013). 49. Matsushita K, Takeuchi O, Standley DM, et al. Zc3h12a is an RNase essential for controlling immune responses by regulating mRNA decay. Nature.458(7242):1185-1190 (2009). 50. Uehata T, Iwasaki H, Vandenbon A, et al. Malt1-induced cleavage of regnase-1 in CD4(+) helper T cells regulates immune activation. Cell.153(5):1036-1049 (2013). 51. Li Y, Huang X, Huang S, et al. Central role of myeloid MCPIP1 in protecting against LPS-induced inflammation and lung injury. Signal Transduct Target Ther.2:17066 (2017). 52. Li M, Cao W, Liu H, et al. MCPIP1 down-regulates IL-2 expression through an ARE-independent pathway. PLoS One.7(11):e49841 (2012). 53. Jiang H, Lv X, Lei X, Yang Y, Yang X, Jiao J. Immune Regulator MCPIP1 Modulates TET Expression during Early Neocortical Development. Stem Cell Reports.7(3):439-453 (2016). 54. Dobosz E, Wilamowski M, Lech M, et al. MCPIP-1, Alias Regnase-1, Controls Epithelial Inflammation by Posttranscriptional Regulation of IL-8 Production. J Innate Immun.8(6):564-578 (2016). 55. Lin CC, Shen YR, Chang CC, et al. Terminal uridyltransferase 7 regulates TLR4-triggered inflammation by controlling Regnase-1 mRNA uridylation and degradation. Nat Commun.12(1):3878 (2021). 56. Iwasaki H, Takeuchi O, Teraguchi S, et al. The IkappaB kinase complex regulates the stability of cytokine-encoding mRNA induced by TLR-IL-1R by controlling degradation of regnase-1. Nat Immunol.12(12):1167-1175 (2011). 57. Mino T, Murakawa Y, Fukao A, et al. Regnase-1 and Roquin Regulate a Common Element in Inflammatory mRNAs by Spatiotemporally Distinct Mechanisms. Cell.161(5):1058-1073 (2015). 58. Mino T, Iwai N, Endo M, et al. Translation-dependent unwinding of stem-loops by UPF1 licenses Regnase-1 to degrade inflammatory mRNAs. Nucleic Acids Res.47(16):8838-8859 (2019). 59. Liang J, Saad Y, Lei T, et al. MCP-induced protein 1 deubiquitinates TRAF proteins and negatively regulates JNK and NF-kappaB signaling. J Exp Med.207(13):2959-2973 (2010). 60. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell.75(5):843-854 (1993). 61. Lai EC. Micro RNAs are complementary to 3' UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet.30(4):363-364 (2002). 62. Siomi H, Siomi MC. Posttranscriptional regulation of microRNA biogenesis in animals. Mol Cell.38(3):323-332 (2010). 63. O'Connell RM, Rao DS, Chaudhuri AA, Baltimore D. Physiological and pathological roles for microRNAs in the immune system. Nat Rev Immunol.10(2):111-122 (2010). 64. Davis BN, Hilyard AC, Lagna G, Hata A. SMAD proteins control DROSHA-mediated microRNA maturation. Nature.454(7200):56-61 (2008). 65. Sun Y, Oravecz-Wilson K, Bridges S, et al. miR-142 controls metabolic reprogramming that regulates dendritic cell activation. J Clin Invest.129(5):2029-2042 (2019). 66. Zhang P, Frederick MI, Heinemann IU. Terminal Uridylyltransferases TUT4/7 Regulate microRNA and mRNA Homeostasis. Cells.11(23) (2022). 67. Suzuki HI, Arase M, Matsuyama H, et al. MCPIP1 ribonuclease antagonizes dicer and terminates microRNA biogenesis through precursor microRNA degradation. Mol Cell.44(3):424-436 (2011). 68. Roy A, Zhang M, Saad Y, Kolattukudy PE. Antidicer RNAse activity of monocyte chemotactic protein-induced protein-1 is critical for inducing angiogenesis. Am J Physiol Cell Physiol.305(10):C1021-1032 (2013). 69. Shao Z, Shen Q, Yao B, et al. Identification and mechanism of G protein-biased ligands for chemokine receptor CCR1. Nat Chem Biol.18(3):264-271 (2022). 70. Alferink J, Lieberam I, Reindl W, et al. Compartmentalized production of CCL17 in vivo: strong inducibility in peripheral dendritic cells contrasts selective absence from the spleen. J Exp Med.197(5):585-599 (2003). 71. Semmling V, Lukacs-Kornek V, Thaiss CA, et al. Alternative cross-priming through CCL17-CCR4-mediated attraction of CTLs toward NKT cell-licensed DCs. Nat Immunol.11(4):313-320 (2010). 72. Greaves DR, Hakkinen T, Lucas AD, et al. Linked chromosome 16q13 chemokines, macrophage-derived chemokine, fractalkine, and thymus- and activation-regulated chemokine, are expressed in human atherosclerotic lesions. Arterioscler Thromb Vasc Biol.21(6):923-929 (2001). 73. Zhang Y, Ye Y, Tang X, et al. CCL17 acts as a novel therapeutic target in pathological cardiac hypertrophy and heart failure. J Exp Med.219(8) (2022). 74. Amo L, Kole HK, Scott B, Qi CF, Wu J, Bolland S. CCL17-producing cDC2s are essential in end-stage lupus nephritis and averted by a parasitic infection. J Clin Invest.131(11) (2021). 75. Chen YT, Hsu H, Lin CC, et al. Inflammatory macrophages switch to CCL17-expressing phenotype and promote peritoneal fibrosis. J Pathol.250(1):55-66 (2020). 76. Vulcano M, Albanesi C, Stoppacciaro A, et al. Dendritic cells as a major source of macrophage-derived chemokine/CCL22 in vitro and in vivo. Eur J Immunol.31(3):812-822 (2001). 77. Godiska R, Chantry D, Raport CJ, et al. Human macrophage-derived chemokine (MDC), a novel chemoattractant for monocytes, monocyte-derived dendritic cells, and natural killer cells. J Exp Med.185(9):1595-1604 (1997). 78. Panina-Bordignon P, Papi A, Mariani M, et al. The C-C chemokine receptors CCR4 and CCR8 identify airway T cells of allergen-challenged atopic asthmatics. J Clin Invest.107(11):1357-1364 (2001). 79. Baer C, Kimura S, Rana MS, et al. CCL22 mutations drive natural killer cell lymphoproliferative disease by deregulating microenvironmental crosstalk. Nat Genet.54(5):637-648 (2022). 80. Yoshie O, Matsushima K. CCR4 and its ligands: from bench to bedside. Int Immunol.27(1):11-20 (2015). 81. Villoslada P, Hauser SL, Bartke I, et al. Human nerve growth factor protects common marmosets against autoimmune encephalomyelitis by switching the balance of T helper cell type 1 and 2 cytokines within the central nervous system. J Exp Med.191(10):1799-1806 (2000). 82. Sather BD, Treuting P, Perdue N, et al. Altering the distribution of Foxp3(+) regulatory T cells results in tissue-specific inflammatory disease. J Exp Med.204(6):1335-1347 (2007). 83. Mizukami Y, Kono K, Kawaguchi Y, et al. CCL17 and CCL22 chemokines within tumor microenvironment are related to accumulation of Foxp3+ regulatory T cells in gastric cancer. Int J Cancer.122(10):2286-2293 (2008). 84. Carbo JM, Leon TE, Font-Diaz J, et al. Pharmacologic Activation of LXR Alters the Expression Profile of Tumor-Associated Macrophages and the Abundance of Regulatory T Cells in the Tumor Microenvironment. Cancer Res.81(4):968-985 (2021). 85. Roy S, Guler R, Parihar SP, et al. Batf2/Irf1 induces inflammatory responses in classically activated macrophages, lipopolysaccharides, and mycobacterial infection. J Immunol.194(12):6035-6044 (2015). 86. Liu J, Li J, Tuo Z, Hu W, Liu J. BATF2 inhibits PD-L1 expression and regulates CD8+ T-cell infiltration in non-small cell lung cancer. J Biol Chem.299(11):105302 (2023). | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95013 | - |
dc.description.abstract | 免疫網絡是一個複雜的系統,需要先天性免疫系統和適應性免疫系統之間的緊密配合,以在促發炎和抗發炎微環境中實現有效的反應。巨噬細胞透過啟動不同的極化狀態在先天免疫系統中發揮關鍵作用。它們大致分為 M1(促發炎)和 M2(抗發炎)巨噬細胞。在 M2 巨噬細胞中,M2a 亞型是研究最充分的亞型之一,並且透過 細胞介白素 4 (IL-4) 和/或 細胞介白素 13 (IL-13) 刺激而極化。調節型核糖核酸內切酶REGNASE-1 具有核糖核酸酶和去泛素酶活性,已知在促發炎狀態下參與各種免疫細胞的免疫抑製作用。然而,其在 M2 巨噬細胞中的調節功能仍不清楚。於本論文中,我們透過分析 mRNA定序數據中的差異表達基因來研究 REGNASE-1 在 M2a 巨噬細胞中的作用,並觀察到兩種 T 細胞趨化因子 CCL17 和 CCL22 的顯著減少。隨後的表徵表明,REGNASE-1 透過降解針對這些基因的 microRNA 來增強這些 mRNA 的穩定性。此外,在確認REGNASE-1 吸引調節性T 細胞 的能力後,我們觀察到,當將Lewis 肺癌細胞植入巨噬細胞特異性Regnase-1 敲除小鼠中時,腫瘤重量顯著減少。總的來說,我們的研究結果闡明了 REGNASE-1 在 M2a 中的作用及其對腫瘤生長的潛在影響。 | zh_TW |
dc.description.abstract | The immune network is a complex system requiring cohesive cross-talk between the innate and adaptive immune systems to achieve efficient responses in both pro-inflammatory and anti-inflammatory microenvironments. Macrophages play a key role in the innate immune system, initiating distinct polarization states. They are broadly classified into M1 (pro-inflammatory) and M2 (anti-inflammatory) macrophages. Among the M2 macrophages, the M2a subtype is one of the most well-studied and is polarized through IL-4 and/or IL-13 stimulation. REGNASE-1, which possesses both ribonuclease and deubiquitinase activities, is known to participate in immunosuppressive roles across various immune cells during pro-inflammatory states. However, its regulatory function in M2 macrophages remains unclear. Here, we investigate the role of REGNASE-1 in M2a macrophages by analyzing differentially expressed genes in mRNA sequencing data and observe significant reductions in two T cell-attractant chemokines, CCL17 and CCL22. Subsequent characterization reveals that REGNASE-1 enhances the stability of these mRNAs by degrading microRNAs targeting these genes. Furthermore, upon confirming the ability of REGNASE-1 to attract regulatory T cells (Tregs), we observed a marked reduction in tumor weight when Lewis lung carcinoma cells are implanted in macrophage-specific Regnase-1 knockout mice. Collectively, our findings elucidate the role of REGNASE-1 in M2a and their potential impact on tumor growth. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-26T16:15:09Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-26T16:15:09Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iii Abstracts iv Contents vi List of Figures ix List of Tables xiii Chapter I: Introduction 1 Overview of Macrophage 1 Macrophage development 1 Macrophage polarization 2 Signal transduction that modulating M2-like macrophage polarization 7 Role of macrophage in tumor microenvironment 10 The role of Regnase-1 in immune response regulation 11 Phenotype characterization of REGNASE-1 11 Functional characterization of REGNASE-1 13 Role of REGNASE-1 in MicroRNA biogenesis 14 Pathological importance of CCL17 and CCL22 18 Overview of CCL17 and CCL22 18 The role of CCL17 & CCL22 in Tumor microenvironment 22 Chapter II: Materials and Methods 25 Chapter III: Results 39 Regnase-1 expression is induced by IL-4 in BMDM and RAW264.7 macrophages 39 Generating Regnase-1 Deficient RAW264.7 Cells and Regnase-1 Total Knockout Mouse Models 39 REGNASE-1 regulates a subset of macrophage alternative polarization genes 41 REEGNASE-1 regulates Ccl17 and Ccl22 Production in M2a Polarized Macrophages 43 REGNASE-1 does not affect the phosphorylation of STAT6 45 Examination the potential REGNASE-1 targets found in mRNA-seq using RNA immunoprecipitation (RNA-IP). 46 The ribonuclease activity of REGNASE-1 is crucial for stabilizing Ccl17 and Ccl22 mRNA via their 3'UTR. 47 REGNASE-1 destabilizes microRNAs targeting Ccl17 and Ccl22. 49 Generate myeloid-specific Regnase-1 knockout mice. 52 Macrophage Regnase-1 enhances Treg cell recruitment by M2a macrophage. 54 Decreased LLC Tumor Growth in Macrophage-Specific Regnase-1 Deleted Mice Compared to Wild-Type mice. 55 Chapter VI: Discussion 56 Differential Contributions of REGNASE-1 to M2a Macrophage Polarization between This Study and Previous Research 57 Detection of Rearranged Immunoglobulin mRNAs in Regnase-1-/- BMDM mRNA-seq Analysis 58 The Impact of REGNASE-1 in tumor pathology 59 REGNASE-1 regulate M2a cytokines secretion 60 Figures 62 Tables 102 References 116 | - |
dc.language.iso | zh_TW | - |
dc.title | 調節型核醣核酸內切酶 REGNASE-1 對 M2a 巨噬細胞功能的影響及其與腫瘤生長的關聯性 | zh_TW |
dc.title | The Impact of REGNASE-1 on M2a Macrophage Function and Its Relevance in Tumor Growth | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 博士 | - |
dc.contributor.oralexamcommittee | 徐立中;李建國;楊鎧鍵;譚婉玉;詹世鵬;林志萱 | zh_TW |
dc.contributor.oralexamcommittee | Li-Chung Hsu;Chien-Kuo Lee;Kai-Chien Yang;Woan-Yuh Tarn;Shih-Peng Chan;Jr-Shiuan Lin | en |
dc.subject.keyword | 先天性免疫,替代極化巨噬細胞,小分子核糖核酸,調節型核糖核酸內切酶,第十七趨化因子,第二十二趨化因子, | zh_TW |
dc.subject.keyword | Innate immune responses,alternative polarized macrophage,microRNA,REGNASE-1,CCL17,CCL22, | en |
dc.relation.page | 122 | - |
dc.identifier.doi | 10.6342/NTU202403029 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-08-05 | - |
dc.contributor.author-college | 醫學院 | - |
dc.contributor.author-dept | 分子醫學研究所 | - |
顯示於系所單位: | 分子醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf | 4.92 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。