Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95003
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳育任zh_TW
dc.contributor.advisorYuh-Renn Wuen
dc.contributor.author黃信雯zh_TW
dc.contributor.authorHsin-Wen Huangen
dc.date.accessioned2024-08-26T16:11:57Z-
dc.date.available2024-08-27-
dc.date.copyright2024-08-26-
dc.date.issued2024-
dc.date.submitted2024-08-12-
dc.identifier.citationY. Quan, S. Yue, and B. Liao, “Impact of electron-phonon interaction on thermal transport: A review,” Nanoscale and Microscale Thermophysical Engineering, vol. 25, no. 2, pp. 73–90, 2021.
B. Liao, B. Qiu, J. Zhou, S. Huberman, K. Esfarjani, and G. Chen, “Significant reduction of lattice thermal conductivity by the electron-phonon interaction in silicon with high carrier concentrations: A first-principles study,” Physical review letters, vol. 114, no. 11, p. 115901, 2015.
N. Goldsman, L. Henrickson, and J. Frey, “A physics-based analytical/numerical solution to the boltzmann transport equation for use in device simulation,” Solid state electronics, vol. 34, no. 4, pp. 389–396, 1991.
C. Jacoboni and L. Reggiani, “The monte carlo method for the solution of charge transport in semiconductors with applications to covalent materials,” Reviews of modern Physics, vol. 55, no. 3, p. 645, 1983.
N. Serra and D. Esseni, “Mobility enhancement in strained nn-finfets: Basic in sight and stress engineering,” IEEE Transactions on Electron Devices, vol. 57, no. 2, pp. 482–490, 2010.
D. Esseni, P. Palestri, and L. Selmi, MOS transistors with arbitrary crystal orientation, p. 348–365. Cambridge University Press, 2011.
N. Hugenholtz, “Perturbation theory of large quantum systems,” Physica, vol. 23, no. 1-5, pp. 481–532, 1957.
S. L. Chuang, Physics of photonic devices. John Wiley & Sons, 2012.
J.Singh, Electronicandoptoelectronicpropertiesofsemiconductorstructures. Cambridge University Press, 2007.
Y. X. Ma, H. Su, W. M. Tang, and P. T. Lai, “Review on remote phonon scattering in transistors with metal-oxide-semiconductor structures adopting high-k gate dielectrics,” Journal of Vacuum Science & Technology B, vol. 41, no. 6, 2023.
M. V. Fischetti, D. A. Neumayer, and E. A. Cartier, “Effective electron mobility in si inversion layers in metal–oxide–semiconductor systems with a high-𝜅 insulator: The role of remote phonon scattering,” Journal of Applied Physics, vol. 90, no. 9, pp. 4587–4608, 2001.
B. Hu, “Screening-induced surface polar optical phonon scattering in dual-gated graphene field effect transistors,” Physica B: Condensed Matter, vol. 461, pp. 118-121, 2015.
D. Esseni and A. Abramo, “Modeling of electron mobility degradation by remote coulomb scattering in ultrathin oxide mosfets,” IEEE Transactions on Electron Devices, vol. 50, no. 7, pp. 1665–1674, 2003.
F. Gámiz, J. López-Villanueva, J. Jiménez-Tejada, I. Melchor, and A. Palma, “A comprehensive model for coulomb scattering in inversion layers,” Journal of applied physics, vol. 75, no. 2, pp. 924–934, 1994.
S. Barraud, O. Bonno, and M. Cassé, “The influence of coulomb centers located in hfo2/sio2 gate stacks on the effective electron mobility,” Journal of Applied Physics, vol. 104, no. 7, 2008.
H. Jung, H. Ohtsuka, K. Taniguchi, and C. Hamaguchi, “Ionized impurity scattering rate for full band monte carlo simulation in heavily doped n-type silicon,” Journal of applied physics, vol. 79, no. 5, pp. 2559–2565, 1996.
E. B. Ramayya, D. Vasileska, S. Goodnick, and I. Knezevic, “Electron transport in silicon nanowires: The role of acoustic phonon confinement and surface roughness scattering,” Journal of Applied Physics, vol. 104, no. 6, 2008.
T. Ando, A. B. Fowler, and F. Stern, “Electronic properties of two-dimensional systems,” Reviews of Modern Physics, vol. 54, no. 2, p. 437, 1982.
S. M. Thomas, Electrical characterisation of novel silicon MOSFETs and finFETs. PhD thesis, University of Warwick, 2011.
E. Pop, R. Dutton, and K. Goodson, “Detailed heat generation simulations via the monte carlo method,” in International Conference on Simulation of Semiconductor Processes and Devices, 2003. SISPAD 2003., pp. 121–124, IEEE, 2003.
I.-T. Lin and J.-M. Liu, “Surface polar optical phonon scattering of carriers in graphene on various substrates,” Applied Physics Letters, vol. 103, no. 8, 2013.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95003-
dc.description.abstract本研究主要分析矽(110)侷限系統在低溫下電子傳輸情形。常溫下,載子之傳輸特性主要受聲子散射影響;有別於常溫,低溫下的載子傳輸須額外考慮進表面粗糙散射、遠程庫倫散射、雜質散射之影響。因此,文中首先根據量子效應計算出矽(110)侷限系統之子帶資訊,計算出材料聲子散射率,介電層所貢獻的遠程聲子散射率、表面粗糙散射率、遠程庫倫散射率、雜質散射率,讚以蒙地卡羅法評估出各條件下的電子遷移率。發現隨溫度調降,除表面粗糙散射數值不隨之改變外,其餘散射機制散射率皆隨溫度變小,原因為聲子佔居比例的下降,與固定通道載子濃度下屏蔽效應隨溫度下降的提升;因此,在此過程中,表面粗糙散射所佔的比例越來越高。除此之外,文中亦討論不同載子濃度下電子遷移率的變化。當通道載子濃度的低時,屏蔽效應減弱,遠程庫倫散射所佔比例提升;而隨載子濃度上升,屏蔽效應增強,遠程庫倫散射機制下降,以致電子遷移率升高;而再隨載子濃度越趨提升,電子分佈越靠近材料界面,因此電子受表面粗糙散射影響程度變得顯著,導致電子遷移率再次下降,最後得凹口向下的電子遷移率隨載子濃度分佈的趨勢。而此研究建立之低溫模型可推廣至其他系統,協助對該系統下載子遷移率的分析以及成因之釐清。zh_TW
dc.description.abstractThis study primarily analyzes the electron transport properties in silicon (110) confinement systems at low temperatures. At room temperature, the transport characteristics of carriers are mainly influenced by phonon scattering. However, unlike at room temperature, carrier transport at low temperatures must additionally consider the effects of surface roughness scattering, remote Coulombic scattering, and impurity scattering. Therefore, this paper first calculates the subband information of the silicon (110) confinement system based on quantum effects, and computes the phonon scattering rate of the material, the remote phonon scattering rate contributed by the dielectric layer, the surface roughness scattering rate, the remote Coulomb scattering rate, and the impurity scattering rate. Using the Monte Carlo method, the electron mobility under various conditions is evaluated. It is found that, as the temperature decreases, the scattering rates of all mechanisms except for surface roughness scattering decrease due to the reduction in phonon occupation and the enhancement of the screening effect at a fixed channel carrier concentration. Therefore, the proportion of surface roughness scattering increases during this process. Besides, this paper also discusses the changes in electron mobility under different carrier concentrations. When the channel carrier concentration becomes lower, the screening effect weakens, and the proportion of remote Coulombic scattering increases. As the carrier concentration increases, the screening effect strengthens, and the remote Coulombic scattering mechanism decreases, resulting in an increase in electron mobility. However, as the carrier concentration continues to rise, the electron distribution moves closer to the material interface, making the impact of surface roughness scattering more significant, leading to a decrease in electron mobility again. This results in a downward concave trend of electron mobility with respect to carrier concentration. The low-temperature model established in this study can be extended to other systems, helping the analysis and clarification of carrier mobility and its causes in those systems.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-26T16:11:57Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-26T16:11:57Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgements ii
摘要 iii
Abstract iv
Contents vi
List of Figures ix
List of Tables xiii
Chapter1 Introduction 1
1.1 Motivation 1
1.2 Carrier Transport under the Cryogenic System 2
1.3 Simulation of the Transport Properties 2
1.4 Silicon (110) Confinement FinFET 3
1.5 Thesis overview 5
Chapter2 Methodology 6
2.1 Overview 6
2.2 Scattering Mechanism 7
2.3 Acoustic Phonon Scattering 8
2.4 Optical Phonon Scattering 10
2.5 Equivalent Intervalley Phonon Scattering 11
2.6 Remote Phonon Scattering 12
2.7 Remote Coulombic Scattering 14
2.8 Impurity Scattering 16
2.9 Surface Roughness Scattering 17
2.10 Monte Carlo Method 18
2.11 Poisson, Drift-Diffusion, and Schrödinger Solver 19
Chapter3 Results and Discussion 21
3.1 Silicon (110) confinement system 21
3.1.1 Valleys in Conduction Band 22
3.2 Electron-phonon Scattering 23
3.2.1 Acoustic Phonon Scattering 23
3.2.2 Optical Phonon Scattering 25
3.2.3 Equivalent Intervalley Scattering 26
3.2.4 Remote Phonon Scattering 29
3.2.5 Field-dependent Mobility in Electron-phonon Scattering 31
3.3 Surface Roughness Scattering 33
3.3.1 Field-dependent Mobility in Surface Roughness Scattering 34
3.4 Remote Coulombic Scattering 35
3.4.1 Field-dependent Mobility in Remote Coulombic Scattering 37
3.5 Impurity Scattering 38
3.5.1 Field-dependent Mobility of Impurity Scattering 39
3.6 Total Mobility with Device 2D-DDCC Simulation 41
3.6.1 2D Simulation Structure 41
3.6.2 Wavefunction Results 41
3.6.3 Scattering Rate under Temperatures with Various Inversion Layer Concentration 42
3.6.4 Mobility under Temperatures with Different Inversion Layer Concentration 45
Chapter 4 Conclusion 51
References 53
-
dc.language.isoen-
dc.title矽(110)侷限效應在低溫環境下電子傳輸情形之研究zh_TW
dc.titleStudy of 2D Electron Transport in Silicon (110) Confinement under the Cryogenic Environmenten
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳建宏;吳肇欣zh_TW
dc.contributor.oralexamcommitteeEdward Chen;Chao-Hsin Wuen
dc.subject.keyword低溫系統,載子遷移率,矽(110)侷限系統,蒙地卡羅法,zh_TW
dc.subject.keywordCryogenic system,Mobility,Silicon (110) confinement,Monte Carlo method,en
dc.relation.page55-
dc.identifier.doi10.6342/NTU202404100-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-13-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept光電工程學研究所-
dc.date.embargo-lift2025-08-14-
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  此日期後於網路公開 2025-08-14
2.26 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved