請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94999
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 楊舜涵 | zh_TW |
dc.contributor.advisor | Shun-Han Yang | en |
dc.contributor.author | 李俊男 | zh_TW |
dc.contributor.author | Jun-Nan Li | en |
dc.date.accessioned | 2024-08-26T16:10:44Z | - |
dc.date.available | 2024-08-27 | - |
dc.date.copyright | 2024-08-26 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-12 | - |
dc.identifier.citation | Baldi F. (2013). Improving ship energy efficiency through a systems perspective, Department of Shipping and Marine Technology, Chalmers University of Technology, Göteborg, Sweden. (https://www.researchgate.net/publication/263467202_Improving_ship_energy_efficiency_through_a_systems_perspective)
Blendermann W. (1986). Die windkräfte am shiff, Technische universität hamburg-harburg. (https://tore.tuhh.de/bitstream/11420/919/1/Bericht_Nr.467_W.Blendermann_Die_Windkrfte_am_Schiff.pdf) Breslin S., Andersen P. (1993). Hydrodynamics of ship propellers, Cambridge University Press. (https://doi.org/10.1017/CBO9780511624254) Carlton J.S. (2012). Chapter 5 - The ship wake field, Marine propellers and propulsion (4th ed.). Butterworth-Heinemann, 57-78. (https://doi.org/10.1016/B978-0-08-100366-4.00012-2) Carlton J.S. (2019). Chapter 12 - Resistance and propulsion, Marine propellers and propulsion (4th ed.). Butterworth-Heinemann, 131-365. (https://doi.org/10.1016/B978-0-08-100366-4.00012-2) Castro A.M., Carrica P.M., Stern F. (2011). Full scale self-propulsion computations using discretized propeller for the KRISO container ship KCS, Computers & Fluids, 35-47. (https://doi.org/10.1016/j.compfluid.2011.07.005) Cichowicz J., Theotokatos G., Vassalos D. (2014). Dynamic energy modelling for ship life-cycle performance assessment. Ocean Engineering, 110, Part B, 49-61. (https://doi.org/10.1016/j.oceaneng.2015.05.041) DNV (2023a). Energy transition outlook 2023, Maritime forecast to 2050. (https://www.dnv.com/maritime/publications/maritime-forecast-2023/) DNV (2023b). Wave loads on vessels with forward speed, Wasim, Sesam user manual. Fan A., Yang J., Wu D., Vladimir N. (2022). A review of ship fuel consumption models. Ocean Engineering, 264. (https://doi.org/10.1016/j.oceaneng.2022.112405) Feng D., Ye B., Zhang Z., Wang X. (2020). Numerical simulation of the ship resistance of KCS in different water depths for model-scale and full-scale. Journal of Marine Science and Engineering, 8(10), 745. (https://doi.org/10.3390/jmse8100745) Froude, W. (1955). The papers of William Froude. Trans. RINA. Harvald SA. (1983). Resistance and propulsion of ships. Ocean Engineering, a Wiley series. Hansen S.V., Petersen J.B., Jensen J.J., Lützen M. (2012). Performance monitoring of ships. Technical University of Denmark (DTU). (https://core.ac.uk/download/pdf/19118319.pdf) IMO (2020). Fourth IMO GHG study 2020 full report. International Maritime Organization(IMO). (https://www.imo.org/en/OurWork/Environment/Pages/Fourth-IMO-Greenhouse-Gas-Study-2020.aspx) ITTC. (2017). ITTC – recommended procedures and guidelines: Resistance test. Resistance Committee of 28th ITTC. (https://www.ittc.info/media/8001/75-02-02-01.pdf) Katsoulakos T., Tsiochantari G., O'Donncha F., Kaklamanis E., Maccari A., & Mucharski M. (2024). Shipping Digital Twin Landscape. In B. Karakostas & T. Katsoulakos (Eds.), State-of-the-Art Digital Twin Applications for Shipping Sector Decarbonization (pp. 1-25). IGI Global. (https://doi.org/10.4018/978-1-6684-9848-4.ch001) Kim W.J., Van S.H., Kim D.H. (2001). Measurement of flows around modern commercial ship models. Experiments in Fluids, 31(5), 567-578. (https://doi.org/10.1007/s003480100332) Kristensen H.O., Lützen M. (2013). Prediction of resistance and propulsion power of ships, Technical University of Denmark and University of Southern Denmark. (https://www.danishshipping.dk/en/services/beregningsvaerktoejer/download/Basic_Model_Linkarea_Link/163/wp-2-report-4-resistance-and-propulsion-power.pdf) Lee C.M., Seo J.H., Yu J.W., Choi J.E., Lee I. (2019). Comparative study of prediction methods of power increase and propulsive performances in regular head short waves of KVLCC2 using CFD, International Journal of Naval Architecture and Ocean Engineering, 11(2), 883-898. (https://doi.org/10.1016/j.ijnaoe.2019.02.001) Le L.T., Lee G., Kim H., Woo S.H. (2020). Voyage-based statistical fuel consumption models of ocean-going container ships in Korea, Maritime Policy and Management, 47(3), 304-331. (https://www.tandfonline.com/doi/full/10.1080/03088839.2019.1684591) Liu S., Papanikolaou A. (2016). On the prediction of the added resistance of large ships in representative seaways, Ships and Offshore Structures, 12:5, 690-696. (https://www.tandfonline.com/doi/full/10.1080/17445302.2016.1200452) Liu S., Papanikolaou A. (2020). Regression analysis of experimental data for added resistance in waves of arbitrary heading and development of a semi-empirical formula, Ocean Engineering. (https://www.tandfonline.com/doi/full/10.1080/17445302.2016.1200452) MAN (2018). Basic principles of ship propulsion, Prinfo Trekroner, MAN Energy Solutions. (https://man-es.com/docs/default-source/marine/5510-0004-04_18-1021-basic-principles-of-ship-propulsion_web.pdf) MAN (2023). A powerful portfolio: MAN B&W two-stroke propulsion engines, MAN Energy Solutions. (https://www.man-es.com/marine/products/two-stroke-engines/two-stroke-engines-portfolio) MAN (2024). CEAS engine data report 8G70ME-C9.5 HL, MAN Energy Solutions. (https://www.man-es.com/marine/products/two-stroke-engines/two-stroke-engines-portfolio) MathWorks (2022). R2022b at a Glance, MathWorks (https://www.mathworks.com/products/new_products/release2022b.html?s_tid=srchtitle_2022b_2) MEPC (2018). Initial IMO strategy on reduction of GHG emissions from ships, Resolution MEPC, 304(72). (https://wwwcdn.imo.org/localresources/en/KnowledgeCentre/IndexofIMOResolutions/MEPCDocuments/MEPC.308(73).pdf) MEPC (2023). 2023 IMO strategy on reduction of GHG emissions from ships, Resolution MEPC, 377(80). (https://wwwcdn.imo.org/localresources/en/OurWork/Environment/Documents/annex/MEPC%2080/Annex%2015.pdf) Mou, X., Yuan, Y., Yan, X., & Zhao, G. (2017). A prediction model of fuel consumption for inland river ships based on random forest regression. J. Transp. Inf. Saf, 35(4), 100-105. (doi:10.3963/j.issn1674-4861.2017.04.013) Pan Z., Vada T., Han K. (2016) Computation of wave added resistance by control surface integration, International Conference on Ocean, Offshore and Arctic Engineering. (https://doi.org/10.1115/OMAE2016-54353) Park D.M., Kim Y., Seo M.G., Lee J. (2016). Study on added resistance of a tanker in head waves at different drafts, Ocean Engineering, 569-581. (https://doi.org/10.1016/j.oceaneng.2015.11.026) Roh M.I., Lee K.Y. (2018). Selection of main engine, Computational ship design, Singapore. Springer Nature Singapore Pte Ltd, 59-67. (https://doi.org/10.1007/978-981-10-4885-2) Sadat-Hosseini H., Wu P.C., Carrica P.M., Kim H., Toda Y., Stern F. (2013). CFD verification and validation of added resistance and motions of KVLCC2 with fixed and free surge in short and long head waves, Ocean Engineering, 240-273. (https://doi.org/10.1016/j.oceaneng.2012.12.016) Schneekluth H., Bertram V. (1998). Ship Design for Efficiency and Economy, Second edition, Butterworth-Heinemann, ISBN 0 7506 4133 9 Seo M.G., Yang K.K., Park D.M., Kim Y. (2014). Numerical analysis of added resistance on ships in short waves Ocean Engineering, 97-110. (http://dx.doi.org/10.1016/j.oceaneng.2014.05.011) Shi W., Stapersma D., Grimmelius H.T. (2009). Analysis of energy conversion in ship propulsion system in off-design operation conditions. Energy and Sustainability 2009, 121, 449–460. (https://www.witpress.com/Secure/elibrary/papers/ESUS09/ESUS09041FU1.pdf) Shigunov V., Moctar E., Papanikolaou A., Potthoff R., Liu S. (2018). International benchmark study on numerical simulation methods for prediction of manoeuvrability of ships in waves, Ocean Engineering, 365-385. (https://doi.org/10.1016/j.oceaneng.2018.07.031) SIMMAN (2014a). Geometry and conditions of MOERI KVLCC2 Tanker, SIMMAN 2014. (https://simman2014.dk/ship-data/moeri-kvlcc2-tanker/geometry-and-conditions-moeri-kvlcc2-tanker/) SIMMAN (2014b). Geometry and conditions of MOERI KCS Tanker, SIMMAN 2014. (https://simman2014.dk/ship-data/moeri-container-ship/geometry-and-conditions-moeri-container-ship/) Tao F., Sui F., Liu A., Qi Q., Zhang M., Song B., Guo Z., Lu S. C.-Y., Nee, A. Y. C. (2018). Digital twin-driven product design framework. International Journal of Production Research, 57(12), 3935–3953. (https://doi.org/10.1080/00207543.2018.1443229) Tillig F. (2017). A generic model for simulation of the energy performance of ships –from early design to operational conditions (NO. 2017: 02). Department of Shipping and Marine Technology, Chalmers University of Technology, Göteborg, Sweden. (https://publications.lib.chalmers.se/records/fulltext/249677/249677.pdf) Tillig F. (2020). Simulation model of a ship’s energy performance and transportation costs. Department of Shipping and Marine Technology, Chalmers University of Technology, Göteborg, Sweden. (https://research.chalmers.se/publication/516908/file/516908_Fulltext.pdf) Yasukawa H., Hirata N., Matsumoto A., Kuroiwa R., Mizokami S. (2019). Evaluations of wave-induced steady forces and turning motion of a full hull ship in waves. J Mar Sci Technol 24, 1-15. (https://doi.org/10.1007/s00773-018-0537-3) zyGrib (2016). GRIB file viewer visualisation de données météorologiques. (https://www.zygrib.org/index.php?page=home) 劉上齊, 張灝瓊, 陳冠臻, 林宗岳, 辛敬業. (2021). 結合半經驗式船舶失速預測方法與動態規劃法進行航路最佳化. 第33屆中國造船暨輪機工程研討會暨科技部成果發表會. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94999 | - |
dc.description.abstract | 為應對氣候變遷,航運業面臨減少能源浪費和溫室氣體排放的挑戰。為了實現節能減碳的目標,國際海事組織在2023年修訂的減少船舶溫室氣體排放戰略提出兩大要點分別為:基於目標船用燃料分階段降低溫室氣體強度的技術要點,及以海上溫室氣體排放定價機制為基礎的經濟要點。而本研究根據此兩項要點為基礎,透過建立計算船舶能耗的模型提供減少船舶溫室氣體排放的方法。
本研究旨在開發一種基於靜水阻力和波浪附加阻力的船舶能耗模型。該模型透過船舶阻力及推進效率之經驗公式與船舶水動力計算,能夠預測航程中船舶的能耗和二氧化碳排放,並推算出航程中的低能耗航速及碳稅。 本研究提出船舶能耗數值模型,以雙殼油輪KVLCC2及貨櫃輪KCS為案例,發展數值模型來模擬船舶的各種物理子系統,包括靜水阻力、波浪附加阻力、推進和引擎系統,並利用MATLAB-Simulink開發之模型進行航行模擬;利用Wasim計算任意波浪入射角及週期之波浪附加阻力,並建立於MATLAB-Simulink其資料庫,透過整合靜水阻力及波浪附加阻力,我們能夠快速計算船舶在不同海況下的能耗。 結果表明,本研究在MATLAB-Simulink中開發的船舶能耗模型透過與其他文獻的驗證可以針對給定航程產生合理的結果;在即時環境中,所需的計算量也相對較低。本研究以新加坡到臺灣之航線為例,輸入既有航程之預測海況,包含波浪週期、波浪入射角及波浪高度,計算航程之低能耗航速,並進行航程燃油消耗量及二氧化碳排放之比較,提供減少能源浪費和二氧化碳排放的解決方法,以本研究案例來說,船速的優化將可減少因阻力產生的能量消耗及二氧化碳排放約13%至20%,對於達到減少船舶溫室氣體排放戰略的目標具有實際的正向效益。 | zh_TW |
dc.description.abstract | To tackling climate change, the shipping industry faces the challenge of reducing energy waste and greenhouse gas (GHG) emissions. In order to achieve the goal, the International Maritime Organization (IMO) revised strategy for reducing GHG emissions from ships in 2023 and proposed two major points, including a technical point to reduce GHG intensity in stages based on target marine fuels, and an economic point based on the maritime GHG emissions pricing mechanism. Based on these two points, the study provides methods to reduce ship GHG emissions by establishing a model to calculate ship energy consumption.
The objective of the study is to develop a ship energy consumption model based on calm water resistance and wave added resistance. This model uses empirical formulas of ship resistance and propulsion efficiency and ship hydrodynamic calculations to predict the ship's energy consumption and carbon dioxide (CO2) emissions during a voyage, and calculate the low-energy consumption speeds and carbon tax during the voyage. The study proposed a numerical model that takes the double-hulled oil tanker, KVLCC2, and the container ship, KCS, as cases, a numerical model was developed to simulate various physical subsystems of a ship, including calm water resistance, wave added resistance, propulsion and engine systems. And the model developed by MATLAB-Simulink was used for navigation simulation. The model further uses Wasim to calculate the wave added resistance of any wave direction and period, and establishs them in the MATLAB-Simulink database. By integrating the calm water resistance and the wave added resistance, we can quickly evaluate the energy consumption of ships under different sea conditions. The results show that the ship energy consumption model developed in MATLAB-Simulink in the study can produce reasonable results for a given voyage through verification with other literature; the required computational effort is also relatively low to be used in a real-time environment. The study takes the route between Singapore and Taiwan as an example and inputs the sea conditions of the specified voyage to the numerical model, including wave period, wave direction and wave height. The model calculates the speed leading to low-energy consumption of the voyage, predicts the fuel consumption and CO2 emissions of the voyage, and provides solutions to reduce energy waste and CO2 emissions. Taking this study case as an example, optimizing ship speed will reduce energy consumption by resistance and CO2 emissions by about 13% to 20%. It has positive benefits for achieving the strategic goal of reducing ship GHG emissions. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-26T16:10:44Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-26T16:10:44Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iii 目次 v 圖次 ix 表次 xiv 符號列表 xvii 第一章 前言 1 1.1 背景與動機 1 1.2 研究目標 1 1.3 文獻回顧 2 1.3.1 現有船舶能耗系統 2 1.3.2 國際航運碳排策略. 4 1.3.3 現有靜水阻力之研究. 7 1.3.4 現有波浪附加阻力之研究. 8 第二章 研究方法 11 2.1 研究流程 11 2.2 軟體介紹 16 2.2.1 Simulink及其使用方法 16 2.2.2 Wasim及其使用方法. 16 2.3 靜水阻力及推進效率預測之經驗公式 16 2.3.1 船舶靜水阻力 17 2.3.2 船舶推進效率 20 2.4 波浪附加阻力 22 2.4.1 朗肯面板法 (Rankine panel method) 23 2.5 引擎的選用 23 2.6 航行計畫之模擬方法 25 2.6.1 航程及其海況 25 2.6.2 燃油消耗量及二氧化碳排放量 27 2.6.3 基於最小燃油消耗之航行速度 2828 第三章 模擬對象及環境參數設定 30 3.1 座標系及波浪入射角定義 30 3.2 模擬對象 31 3.2.1 KVLCC2 31 3.2.2 KCS 32 3.2.3 模型建立 33 3.2.4 網格建立與收斂性分析 35 3.2.4.1 船舶網格 3535 3.2.4.2 自由液面 38 3.3 模擬航程 42 3.3.1 波浪週期 43 3.3.2 波浪方向 43 3.3.3 波浪高度 44 3.4 環境參數及海況設定 44 3.4.1 船速及規則波之設定 47 3.4.2 時間步長及收斂性分析 47 第四章 結果與討論 51 4.1 靜水阻力之計算與驗證 51 4.1.1 KVLCC2靜水阻力之計算與驗證 53 4.1.2 KCS靜水阻力之計算與驗證 56 4.2 波浪附加阻力之計算與驗證 59 4.2.1 KVLCC2波浪附加阻力之計算與驗證 60 4.2.2 KCS波浪附加阻力之計算與驗證 63 4.3 推進效率之計算與驗證 65 4.3.1 KVLCC2推進效率之計算與驗證 65 4.3.2 KCS推進效率之計算與驗證 68 4.4 航行計畫模擬結果 70 4.4.1 基於最小燃油消耗之航行速度 70 4.4.2 燃油消耗量及二氧化碳排放量 75 4.5 航行碳稅預估 77 第五章 結論與未來展望 80 5.1 結論 80 5.2 未來展望 81 參考文獻 83 附錄A 87 附錄B 116 | - |
dc.language.iso | zh_TW | - |
dc.title | 基於動態海況之船舶碳排及能耗數值模型開發 | zh_TW |
dc.title | Development of Numerical Model of Ship Carbon Emissions and Energy Consumption Based on Dynamic Sea Conditions | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 簡鴻斌;辛敬業;羅志宏;郭振華 | zh_TW |
dc.contributor.oralexamcommittee | Hung-Pin Chien;Ching-Yeh Hsin;Jhih-Hong Luo;Jen-Hwa Guo | en |
dc.subject.keyword | 船舶能耗模型,二氧化碳排放,KVLCC2,KCS,靜水阻力,波浪附加阻力,Simulink,Wasim, | zh_TW |
dc.subject.keyword | ship energy consumption model,CO2 emission,KVLCC2,KCS,calm water resistance,wave added resistance,Simulink,Wasim, | en |
dc.relation.page | 122 | - |
dc.identifier.doi | 10.6342/NTU202403920 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2024-08-13 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 工程科學及海洋工程學系 | - |
顯示於系所單位: | 工程科學及海洋工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 目前未授權公開取用 | 9.44 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。