Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94996
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳建甫zh_TW
dc.contributor.advisorChien-Fu Chenen
dc.contributor.author朱立生zh_TW
dc.contributor.authorLi-Sheng Chuen
dc.date.accessioned2024-08-26T16:09:37Z-
dc.date.available2024-08-27-
dc.date.copyright2024-08-26-
dc.date.issued2024-
dc.date.submitted2024-08-12-
dc.identifier.citation[1] J. A. Joglar et al., "2023 ACC/AHA/ACCP/HRS guideline for the diagnosis and management of atrial fibrillation: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines," Circulation, vol. 149, no. 1, pp. e1-e156, 2024.
[2] G. A. Roth, G. A. Mensah, and V. Fuster, "The Global Burden of Cardiovascular Diseases and Risks: A Compass for Global Action," J Am Coll Cardiol, vol. 76, no. 25, pp. 2980-2981, Dec 22 2020, doi: 10.1016/j.jacc.2020.11.021.
[3] J. G. Ripoll et al., "Coagulation Tests and Bleeding Classification After Cardiopulmonary Bypass: A Prospective Study," J. Cardiothorac. Vasc. Anesth., Article vol. 37, no. 6, pp. 933-941, Jun 2023, doi: 10.1053/j.jvca.2023.01.038.
[4] G. P. Dobson, "Trauma of major surgery: A global problem that is not going away," Int J Surg, vol. 81, pp. 47-54, Sep 2020, doi: 10.1016/j.ijsu.2020.07.017.
[5] M. Božič Mijovski, "Chapter Five - Advances in monitoring anticoagulant therapy," in Advances in Clinical Chemistry, vol. 90, G. S. Makowski Ed.: Elsevier, 2019, pp. 197-213.
[6] M. Roshal and M. Reyes Gil, "Chapter 133 - 5 and Fibrinogen Evaluation," in Transfusion Medicine and Hemostasis (Third Edition), B. H. Shaz, C. D. Hillyer, and M. Reyes Gil Eds.: Elsevier, 2019, pp. 793-798.
[7] J. P. Meizoso et al., "Role of fibrinogen in trauma-induced coagulopathy," Journal of the American College of Surgeons, vol. 234, no. 4, pp. 465-473, 2022.
[8] S. N. Stabler, S. S. Li, A. Karpov, and E. N. Vu, "Use of fibrinogen concentrate for trauma-related bleeding: a systematic-review and meta-analysis," Journal of Trauma and Acute Care Surgery, vol. 89, no. 6, pp. 1212-1224, 2020.
[9] F. M. Carrier et al., "Preoperative fibrinogen level and bleeding in liver transplantation for end-stage liver disease: a cohort study," Transplantation, vol. 107, no. 3, pp. 693-702, 2023.
[10] N. Tekkesin and C. Kılınc, "Optical and mechanical clot detection methodologies: a comparison study for routine coagulation testing," J. Clin. Lab. Anal., vol. 26, no. 3, pp. 125-129, 2012.
[11] L. F. Harris, V. Castro-Lopez, and A. J. Killard, "Coagulation monitoring devices: Past, present, and future at the point of care," TrAC Trends in Analytical Chemistry, vol. 50, pp. 85-95, 2013.
[12] K. A. Tanaka, R. A. Henderson, and E. R. Strauss, "Evolution of viscoelastic coagulation testing," Expert Rev. Hematol., Review vol. 13, no. 7, pp. 697-707, Jul 2020, doi: 10.1080/17474086.2020.1758929.
[13] S. E. Smith, B. Barlow, L. Ha, S. E. Park, and T. N. Branan, "Non-trauma uses of viscoelastic hemostatic assays in critical care: A narrative review and primer for pharmacists," J. Am. Coll. Clin. Pharm., Review vol. 6, no. 11, pp. 1265-1278, Nov 2023, doi: 10.1002/jac5.1828.
[14] S. S. Nath, C. K. Pandey, and S. Kumar, "Clinical application of viscoelastic point-of-care tests of coagulation-shifting paradigms," Ann. Card. Anaesth., Review vol. 25, no. 1, pp. 1-10, Jan-Mar 2022, doi: 10.4103/aca.aca_319_20.
[15] O. Volod et al., "Viscoelastic Hemostatic Assays: A Primer on Legacy and New Generation Devices," J. Clin. Med., Review vol. 11, no. 3, p. 22, Feb 2022, Art no. 860, doi: 10.3390/jcm11030860.
[16] D. Bolliger and K. A. Tanaka, "Point-of-Care Coagulation Testing in Cardiac Surgery," Semin Thromb Hemost, vol. 43, no. 4, pp. 386-396, Jun 2017, doi: 10.1055/s-0037-1599153.
[17] E. Khalaf-Adeli, M. Alavi, A. Alizadeh-Ghavidel, and A. A. Pourfathollah, "Comparison of standard coagulation testing with thromboelastometry tests in cardiac surgery," Journal of Cardiovascular and Thoracic Research, vol. 11, no. 4, p. 300, 2019.
[18] O. Cakmak et al., "A cartridge based sensor array platform for multiple coagulation measurements from plasma," Lab Chip, Article vol. 15, no. 1, pp. 113-120, 2015, doi: 10.1039/c4lc00809j.
[19] C. H. Shih, C. H. Lu, J. H. Wu, C. H. Lin, J. M. Wang, and C. Y. Lin, "Prothrombin time tests on a microfluidic disc analyzer," Sens. Actuator B-Chem., Article vol. 161, no. 1, pp. 1184-1190, Jan 2012, doi: 10.1016/j.snb.2011.11.025.
[20] J. Saidykhan, L. Selevic, S. Cinti, J. E. May, and A. J. Killard, "Paper-Based Lateral Flow Device for the Sustainable Measurement of Human Plasma Fibrinogen in Low-Resource Settings," Anal. Chem., Article vol. 93, no. 41, pp. 14007-14013, Oct 2021, doi: 10.1021/acs.analchem.1c03665.
[21] S. D. Sahli, J. Rössler, D. W. Tscholl, J. D. Studt, D. R. Spahn, and A. Kaserer, "Point-of-Care Diagnostics in Coagulation Management," Sensors, Review vol. 20, no. 15, p. 21, Aug 2020, Art no. 4254, doi: 10.3390/s20154254.
[22] H. Y. Lim et al., "Global coagulation assays in patients with chronic kidney disease and their role in predicting thrombotic risk," Thromb. Res., Article vol. 226, pp. 127-135, Jun 2023, doi: 10.1016/j.thromres.2023.04.016.
[23] N. X. Williams et al., "Fully printed prothrombin time sensor for point-of-care testing," Biosens. Bioelectron., Article vol. 172, p. 10, Jan 2021, Art no. 112770, doi: 10.1016/j.bios.2020.112770.
[24] D. H. Li et al., "Point-of-care blood coagulation assay enabled by printed circuit board-based digital microfluidics," Lab Chip, Article vol. 22, no. 4, pp. 709-716, Feb 2022, doi: 10.1039/d1lc00981h.
[25] W. M. Xu, M. Althumayri, A. Mohammad, and H. C. Koydemir, "Foldable low-cost point-of-care device for testing blood coagulation using smartphones," Biosens. Bioelectron., Article vol. 242, p. 9, Dec 2023, Art no. 115755, doi: 10.1016/j.bios.2023.115755.
[26] J. Chan, K. Michaelsen, J. K. Estergreen, D. E. Sabath, and S. Gollakota, "Micro-mechanical blood clot testing using smartphones," Nature Communications, Article vol. 13, no. 1, p. 12, Feb 2022, Art no. 831, doi: 10.1038/s41467-022-28499-y.
[27] Y. M. Liao, P. Y. Chiu, Y. S. Chien, and C. F. Chen, "Music Box-Inspired Semi-Automatic Hematocrit Validation Device," ACS Sens., Article vol. 8, no. 8, pp. 2952-2959, Jul 2023, doi: 10.1021/acssensors.3c00129.
[28] R. I. Litvinov, M. Pieters, Z. de Lange-Loots, and J. W. Weisel, "Fibrinogen and fibrin," Macromolecular Protein Complexes III: Structure and Function, pp. 471-501, 2021.
[29] Y. Hashimoto, "Surface modification of polymers by vacuum ultraviolet Illumination containing low wavelength below 160 nm and microfluidic applications of irradiated polycarbonate," Polymer, vol. 287, p. 126439, 2023.
[30] J. H. Lin et al., "A Multifunctional Microfluidic Device for Blood Typing and Primary Screening of Blood Diseases," ACS Sens., Article vol. 5, no. 10, pp. 3082-3090, Oct 2020, doi: 10.1021/acssensors.0c00969.
[31] M. Gonda, T. Utsunomiya, T. Ichii, and H. Sugimura, "Room temperature bonding of cycloolefin polymer by vacuum ultraviolet surface photoactivation," International Journal of Adhesion and Adhesives, vol. 100, p. 102604, 2020.
[32] E. Gray, J. Hogwood, and B. Mulloy, "The anticoagulant and antithrombotic mechanisms of heparin," Heparin-A century of progress, pp. 43-61, 2012.
[33] M. Qiu et al., "Pharmacological and clinical application of heparin progress: An essential drug for modern medicine," Biomed. Pharmacother., Review vol. 139, p. 17, Jul 2021, Art no. 111561, doi: 10.1016/j.biopha.2021.111561.
[34] S. Wang, C. Qi, Z. Liu, T. Xu, and C. Yao, "Endogenous heparin-like substances may cause coagulopathy in a patient with severe postpartum hemorrhage," Transfusion Medicine and Hemotherapy, vol. 47, no. 4, pp. 337-343, 2020.
[35] L. Wang, W.-B. He, X.-M. Yu, D.-L. Hu, and H. Jiang, "Prolonged prothrombin time at admission predicts poor clinical outcome in COVID-19 patients," World Journal of Clinical Cases, vol. 8, no. 19, p. 4370, 2020.
[36] V. de Kleijne, I. Kohler, A. C. Heijboer, and M. T. Ackermans, "Solutions for hematocrit bias in dried blood spot hormone analysis," Bioanalysis, Review vol. 13, no. 16, pp. 1293-1308, Aug 2021, doi: 10.4155/bio-2021-0119.
[37] D. Apipongrat, P. Police, R. Lamool, P. Butthep, and W. Chantkran, "Validation of high concentrated thrombin time assay for unfractionated heparin monitoring," J. Clin. Lab. Anal., Article vol. 36, no. 10, p. 9, Oct 2022, Art no. e24695, doi: 10.1002/jcla.24695.
[38] H. Li, D. Han, G. M. Pauletti, M. A. Hegener, and A. J. Steckl, "Correcting the effect of hematocrit in whole blood coagulation analysis on paper-based lateral flow device," Analytical methods, vol. 10, no. 24, pp. 2869-2874, 2018.
[39] L. Livshits et al., "Back to the "Gold Standard": How Precise is Hematocrit Detection Today?," Med. J. Hematol. Infect. Dis., Article vol. 14, p. 12, Jul 2022, Art no. e2022049, doi: 10.4084/mjhid.2022.049.
[40] S. Su et al., "Association between Hematocrit and Acute Kidney Injury in Patients with Acute Myocardial Infarction," Reviews in Cardiovascular Medicine, vol. 25, no. 6, p. 228, 2024.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94996-
dc.description.abstract本研究開發攜帶式半自動離心裝置 (semi-automatic centrifuge) 結合微流道晶片進行凝血狀況檢測,此裝置透過半自動設計,僅需手動旋轉操作手柄 (hand crank),即可完成定扭矩彈簧 (constant torque spring) 的蓄力,並通過齒輪間的組合達到提升離心平臺輸出轉速的效果。離心力作為晶片內血液樣品與反應試劑的驅動力,於微流道內設計凹槽產生高低差,增加其混合效果的同時,透過流道出口端微狹縫 (microslit) 的過濾機制來析全血血液樣品中的凝血酶時間 (thrombin time)。再利用行動裝置進行數據運算和資料上傳,即時監測患者的凝血狀況。為了觸發血液中凝血級聯反應 (coagulation cascade),預先將凝血酶 (thrombin) 添加至流道中,使血液中原本易於溶解的纖維蛋白原 (soluble fibrinogen) 轉變為不可溶解的網狀纖維蛋白 (insoluble fibrin strands),並纏繞於紅血球上形成血液凝塊 (blood clot),這些凝塊形成共價鍵時會進行收縮,同時也提升凝塊的機械強度。此時,當血液凝塊被離心力驅動至高度僅有 5.29 μm 的微狹縫時,狹縫的微小高度能有效阻擋血液凝塊,使血液凝塊堆積於微狹縫前形成紅色線段,通過觀察紅色線段長度來辨識凝血酶時間。另外,我們結合血容比校準公式,與未校準的實驗結果相比,可以有效消除血容比差異的影響,能夠依據凝血長度分辨不同凝血狀況。本離心平臺上整合塑膠毛細管進行血容比檢測,幫助我們在每次檢測中可獲取更全面的血液資訊。最後,根據人類臨床檢體的檢測結果與 Bland-Altman plot 分析,發現本研究的凝血酶時間檢測結果與血容比檢測結果與臨床檢測結果有高度一致性。期望本平臺能夠為抗凝血治療的患者或是醫療資源匱乏地區提供即時檢測和長期的血液監測。zh_TW
dc.description.abstractIn this work, we developed a portable semi-automatic centrifuge for coagulation status detection integrated with a microfluidic chip. The device utilizes a semi-automatic design, manually rotating a hand crank to store energy in a constant torque spring. This mechanism through the gear design, enhances the output rotation speed of the centrifuge platform. Within the microfluidic channel, blood samples and reagents are mixed through centrifugal force, with strategically designed grooves creating height variations to optimize the mixing process. Simultaneously, a microslit filtration mechanism at the channel outlet analyzes thrombin time in whole blood samples. Data computation and upload are performed using a mobile device to monitor the real-time coagulation status of patients. To initiate the coagulation cascade, thrombin is pre-loaded into the microchannel, where it converts soluble fibrinogen into insoluble fibrin strands that entrap red blood cells, forming blood clots. These clots contract upon the formation of covalent bonds, thereby increasing their mechanical strength. The thrombin time is determined by observing the length of the blood clots accumulated at the microslit, which has a height of 5.29 μm and effectively blocks the blood clots to form a red line. Additionally, by incorporating a hematocrit calibration formula, the effects of hematocrit variation are effectively minimized, allowing for distinct differentiation of different coagulation statuses based on clot length. We have also integrated a plastic capillary tube on the centrifuge platform for hematocrit detection, ensuring comprehensive blood information with each measurement. Finally, based on the results of human clinical samples and Bland-Altman plot analysis, it was found that the thrombin time and hematocrit measurements in this study are highly consistent with clinical test results. With the help of this platform, anticoagulant therapy patients and those in underserved areas can get real-time testing and long-term blood monitoring.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-26T16:09:37Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-26T16:09:37Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
致謝 ii
摘要 iii
Abstract iv
目次 vi
圖次 iix
表次 x
第一章、前言與文獻回顧 1
1.1 血栓與抗凝治療 1
1.2 凝血酶時間 2
1.3 凝血狀況常規檢測方法 2
1.3.1 傳統凝血狀況檢測方法 2
1.3.2 黏彈性止血分析 3
1.4 凝血檢測技術 4
1.4.1 微機電系統檢測平臺 4
1.4.2 光學檢測平臺 5
1.4.3 側向層流紙張檢測平臺 6
1.5 血漿檢測方法的挑戰與限制 7
1.5.1 電化學檢測平臺 8
1.5.2 印刷電路板微流體檢測平臺 9
1.5.3 微流道檢測平臺 10
1.5.4 微機械檢測平臺 11
1.6 本研究開發之檢測平臺 12
第二章、實驗材料與方法 14
2.1 實驗設置 14
2.1.1 實驗藥品、試劑及耗材 14
2.1.2 實驗設備及儀器 14
2.2 微流道晶片製作 16
2.2.1孔洞和微流道加工之實驗步驟 16
2.2.2 微狹縫製作之實驗步驟 16
2.3 血液樣品配置 17
2.3.1 血容比調配之實驗步驟 17
2.3.2 肝素濃度調配之實驗步驟 17
2.4 凝血酶溶液配置 18
2.5 實驗參數與最佳化條件測試之實驗步驟 18
2.5.1 凝血酶溶液濃度之最佳化測試 18
2.5.2 平臺離心轉速之最佳化測試 18
2.5.3 流道之彎道曲率半徑最佳化測試 19
2.6 微流道晶片之凝血實驗測試 19
2.6.1 肝素濃度檢量線 19
2.6.2 血容比檢量線 19
2.7 血容比參數影響之校正 20
2.7.1 Kolmogorov-Smirnov Test 20
2.7.2 T-Test 21
2.8 塑膠毛細管之血容比檢測實驗測試 21
2.9 臨床檢體測試 21
第三章、結果與討論 23
3.1 凝血機制與實驗設計驗證 25
3.2 肝素濃度調配對凝血酶時間之影響分析 27
3.3 實驗參數之最佳化測試 29
3.4 微流道晶片之凝血實驗測試 31
3.5 血容比參數影響之校準方法 33
3.7 塑膠毛細管之血容比檢測實驗測試 36
3.8 臨床檢體測試 38
第四章、結論與未來展望 40
參考文獻 41
-
dc.language.isozh_TW-
dc.subject攜帶式半自動離心裝置zh_TW
dc.subject微流道晶片zh_TW
dc.subject凝血酶時間zh_TW
dc.subject即時檢測zh_TW
dc.subject凝血級聯反應zh_TW
dc.subjectcoagulation cascadeen
dc.subjectPoint-of-Care testingen
dc.subjectthrombin timeen
dc.subjectportable semi-automatic centrifugeen
dc.subjectmicrofluidic disken
dc.title微流道晶片結合半自動攜帶式離心裝置應用於凝血狀況檢測zh_TW
dc.titleMicrofluidic disk integrated with semi-automatic centrifuge for Point-of-Care blood coagulation testingen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林子恩;蘇裕家;游佳欣zh_TW
dc.contributor.oralexamcommitteeTzu-En Lin;Yu-Chia Su;Jiashing Yuen
dc.subject.keyword微流道晶片,攜帶式半自動離心裝置,凝血級聯反應,即時檢測,凝血酶時間,zh_TW
dc.subject.keywordmicrofluidic disk,portable semi-automatic centrifuge,coagulation cascade,Point-of-Care testing,thrombin time,en
dc.relation.page44-
dc.identifier.doi10.6342/NTU202403935-
dc.rights.note未授權-
dc.date.accepted2024-08-13-
dc.contributor.author-college工學院-
dc.contributor.author-dept應用力學研究所-
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
2.47 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved