請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94992
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳明汝 | zh_TW |
dc.contributor.advisor | Ming-Ju Chen | en |
dc.contributor.author | 凌佳琪 | zh_TW |
dc.contributor.author | Jia Qi Leng | en |
dc.date.accessioned | 2024-08-23T16:20:17Z | - |
dc.date.available | 2024-08-24 | - |
dc.date.copyright | 2024-08-23 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-10 | - |
dc.identifier.citation | 中文文獻
王聖耀。2011。探討克弗爾粒與viili菌元之菌群分布並研究其分離菌株之生物膜形成機制。國立臺灣大學動物科學技術學研究所博士論文。 池德容。2022。藉由不同基質中代謝物和微生物組成探討克弗爾粒中的微生物交互作用。國立臺灣大學動物科學技術學研究所碩士論文。 郭卿雲。2004。另類的發酵乳-克弗爾。科學發展期刊。379: 6-11。 英文文獻 Alraddadi, F. A. J., T. Ross and S. M. Powell. 2023. Evaluation of the microbial communities in kefir grains and kefir over time. Int. Dairy J. 136: 105490. doi: j.idairyj.2022.105490 Amorim, F. G., L. B. Coitinho, A. T. Dias, A. G. F. Friques, B. L. Monteiro, L. C. D. de Rezende, T. de Melo Costa Pereira, B. P. Campagnaro, E. D. Pauw, E. C. Vasquez and L. Quinton. 2019. Identification of new bioactive peptides from Kefir milk through proteopeptidomics: bioprospection of antihypertensive molecules. Food Chem. 282: 109-119. doi: 10.1016/j.foodchem.2019.01.010 Avila-Reyes, S. V., C. E. Márquez-Morales, G. R. Moreno-León, A. R. Jiménez-Aparicio, M. L. Arenas-Ocampo, J. Solorza-Feria, E. García-Armenta, and J. C. Villalobos-Espinosa. 2022. Comparative analysis of fermentation conditions on the increase of biomass and morphology of milk kefir grains. Appl. Sci. 12: 2459. doi: 10.3390/app12052459 Bai, A. J. and V. R. Rai. 2011. Bacterial quorum sensing and food industry. Compr. Rev. Food Sci. F. 10: 183-193. doi: 10.1111/j.1541-4337.2011.00150.x Barãoa, C. E., S. J. Klososkia, K. H. Pinheiroa, V. A. Marcolinoa, O. V. Juniorb, A. G. da Cruzc, T. T. da Silvad and T. C. Pimentel. 2019. Growth kinetics of kefir biomass: influence of the incubation temperature in milk. Chem. Eng. Trans. 75: 499-504. doi: 10.3303/CET1975084 Bassler, B. L. and R. Losick. 2006. Bacterially speaking. Cell. 125: 237-246. doi: 10.1016/j.cell.2006.04.001 Blasche, S., Y. Kim, R. A. T. Mars, D. Machado, M. Maansson, E. Kafkia, A. Milanese, G. Zeller, B. Teusink, J. Nielsen, V. Benes, R. Neves, U. Sauer and K. R. Patil. 2021. Metabolic cooperation and spatiotemporal niche partitioning in a kefir microbial community. Nat. Microbiol. 6: 196–208. doi: 10.1038/s41564-020-00816-5. Bottazzi, V., and F. Bianchi. 1980. A note on scanning electron-microscopy of microorganisms associated with the kefir granule. J. Appl. Bacteriol. 48: 265-268. doi: 10.1111/j.1365-2672.1980.tb01225.x Calles-Enríquez, M., V. Ladero, M. Fernández, M. C. Martín and M. A. Alvarez. 2010. Extraction of RNA from fermented milk products for in situ gene expression analysis. Anal. Biochem. 400: 307-309. doi: 10.1016/j.ab.2010.02.010 Carasi, P., S. M. Racedo, C. Jacquot, D. E. Romanin, M. A. Serradell and M. C. Urdaci. 2015. Impact of kefir-derived Lactobacillus kefiri on the mucosal immune response and gut microbiota. J. Immunol. Res. 361604. doi: 10.1155/2015/361604 Castro-Bravo, N., J. M. Wells, A. Margolles, and P. Ruas-Madiedo. 2018. Interactions of surface exopolysaccharides from and within the intestinal environment. Front. Microbiol. 9: 2426. doi: 10.3389/fmicb.2018.02426 Cheirsilp, B., H. Shimizu and S. Shioya. 2003. Enhanced kefiran production by mixed culture of Lactobacillus kefiranofaciens and Saccharomyces cerevisiae. J. Biotechnol. 100: 43-53. doi: 10.1016/S0168-1656(02)00228-6 Chen, H., T. Tsai, Y. Tsai, J. Liao, C. Yen and C. Chen. 2016. Kefir peptides prevent high-fructose corn syrup-induced non-alcoholic fatty liver disease in a murine model by modulation of inflammation and the JAK2 signaling pathway. Nutr. Diabetes. 6: e237. doi: 10.1038/nutd.2016.49 Chen, H. C., S. Y. Wang and M. J. Chen. 2008. Microbiological study of lactic acid bacteria in kefir grains by culture-dependent and culture-independent methods. Food Microbiol. 25: 492-501. doi: 10.1016/j.fm.2008.01.003 Chen, T. H., S. Y. Wang, K. N. Chen, J. R. Liu and M. J. Chen. 2009. Microbiological and chemical properties of kefir manufactured by entrapped microorganisms isolated from kefir grains. J. Dairy Sci. 92: 3002-3013. doi: 10.3168/jds.2008-1669 Chen, Y. P., T. Y. Lee, W. S. Hong, H. H. Hsieh and M. J. Chen. 2013. Effects of Lactobacillus kefiranofaciens M1 isolated from kefir grains on enterohemorrhagic Escherichia coli infection using mouse and intestinal cell models. J. Dairy Sci. 96: 7467-7477. doi: 10.3168/jds.2013-7015 Codex Alimentarius Commission. 2011. Milk and milk products (CODEX STAN 243-2003). 2nd ed. World Health Organization (WHO) and Food and Agriculture Organization of the United Nations (FAO). Rome, Italy. Cufaoglu, G., and A. N. Erdinc. 2023. Comparative analyses of milk and water kefir: Fermentation temperature, physicochemical properties, sensory qualities, and metagenomic composition. Food Biosci. 55: 103079. doi: 10.1016/j.fbio.2023.103079 Cui, Y., M. Ning, H. Chen, X. Zeng, Y. Yue, Y. Yuan and T. Yue. 2022. Microbial diversity associated with Tibetan kefir grains and its protective effects against ethanol-induced oxidative stress in HepG2 cells. Food Biosci. 50: 102151. doi: 10.1016/j.fbio.2022.102151 Dertli, E. and A. H. Çon. 2017. Microbial diversity of traditional kefir grains and their role on kefir aroma. LWT. 85: 151-157. doi: 10.1016/j.lwt.2017.07.017 Diosma, G., D. E. Romanin, M. F. Rey-Burusco, A. Londero and G. L. Garrote. 2014. Yeasts from kefir grains: isolation, identification, and probiotic characterization. World J. Microbiol. Biotechnol. 30: 43-53. doi: 10.1007/s11274-013-1419-9 Dobson, A., O. O' Sullivan, P. D. Cotter, P. Ross and C. Hill. 2011. High-throughput sequence-based analysis of the bacterial composition of kefir and an associated kefir grain. FEMS Microbiol. 320: 56-62. doi: 10.1111/j.1574-6968.2011.02290.x Dong, J., B. Liu, T. Jiang, Y. Liu and L. Chen. 2017. The biofilm hypothesis: The formation mechanism of Tibetan kefir grains. Int. J. Dairy Technol. 71: 44-50. doi: 10.1111/1471-0307.12473 Dubois, M., K. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith. 1951. A colorimetric method for the determination of sugars. Nature 168: 167. doi: 10.1038/168167a0 Fan, D., L. G. Stoyanova, A. I. Netrusov. 2022. Microbiome and metabiotic properties of kefir grains and kefirs based on them. Microbiology. 91: 339-355. doi: 10.1134/S0026261722100885 Farag, M. A., S. A. Jomaa, A. A. El-Wahed and H. R. El-Seedi. 2020. The many faces of kefir fermented dairy products: quality characteristics, flavour chemistry, nutritional value, health benefits, and safety. Nutrients. 12: 346. doi: 10.3390/nu12020346 Farnworth, E. R. and I. Mainville. 2003. Kefir: a fermented milk product. In: E. R. Farnworth, editor, Handbook of fermented functional foods. CRC Press, Boca Raton, FL, USA. p. 89-127. Felsenstein, J. 1985. Confidence-limits on phylogenies: an approach using the boostrap. Evolution 39: 783-791. doi: 10.2307/2408678 Flemming, H. C. and J. Wingender. 2010. The biofilm matrix. Nat. Rev. Microbiol. 8: 623-633. doi: 10.1038/nrmicro2415 Fuqua, W. C., S. C. Winans and E. P. Greenberg. 1994. Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J. Bacteriol. 176: 269-275. doi: 10.1128/jb.176.2.269-275.1994 Garbers, I-M., T. J. Britz and R. C. Witthuhn. 2004. PCR-based denaturing gradient gel electrohoretictypification and identification of the microbial consortium present in kefir grains. World J. Microbiol. Biotechnol. 20: 687-693. doi: 10.1007/s11274-004-2624-3 Garofalo, C., A. Osimani, V. Milanović, L. Aquilanti, F. De Filippis, G. Stellato, S. Di Mauro, B. Turchetti, P. Buzzini, D. Ercolini, F. Clementi. 2015. Bacteria and yeast microbiota in milk kefir grains from different Italian regions. Food Microbiol. 49: 123-133. doi: 10.1016/j.fm.2015.01.017 Garrote, G. L., A. G. Abraham and G. L. De Antoni. 2001. Chemical and microbiological characterisation of kefir grains. J. Dairy Res. 68: 639–652. doi: 10.1017/S0022029901005210 Gholami, D., Z. Emruzi, A. R. Noori and S. Aminzadeh. 2019. Advances in bacterial identification and characterization: methods and applications. Adv. Res. Microb. Metab. Technol. 2: 119-136. doi: 10.22104/armmt.2020.4319.1044 Golowczyc, M. A., P. Mobili, G. L. Garrote, M. D. Serradel, A. G. Abraham, and G. L. De Antoni. 2009. Interaction between Lactobacillus kefir and Saccharomyces lipolytica isolated from kefir grains: evidence for lectin-like activity of bacterial surface proteins. J. Dairy Res. 76: 111-116. doi: 10.1017/S0022029908003749 Graz, M. 2024. Role of oxalic acid in fungal and bacterial metabolism and its biotechnological potential. World J. Microbiol. Biotechnol. 40: 178. doi: 10.1007/s11274-024-03973-5 Gu, Y., B. J. Zhang, J. J. Tian, L. J. Li, and Y. F. He. 2023. Physiology, quorum sensing, and proteomics of lactic acid bacteria were affected by Saccharomyces cerevisiae YE4. Food Res. Int. 166: 112612. doi: 10.1016/j.foodres.2023.112612 Gul, O., M. Mortas, I. Atalar, M. Dervisoglu and T. Kahyaoglu. 2015. Manufacture and characterization of kefir made from cow and buffalo milk, using kefir grain and starter culture. J. Dairy Sci. 98: 1517-1525. doi: 10.3168/jds.2014-8755 Guzel-Seydim, Z., T. Kok-Tas, B. Ertekin-Filiz, and A. C. Seydim. 2011. Effect of different growth conditions on biomass increase in kefir grains. J. Dairy Sci. 94: 1239-1242. doi: 10.3168/jds.2010-3349 Guzel-Seydim, Z., Ç. Gökırmaklı and A. Greene. 2021. A comparison of milk kefir and water kefir: Physical, chemical, microbiological and functional properties. Trends Food Sci. Technol. 113: 42-53. doi: 10.1016/j.tifs.2021.04.041 Guzel-Seydim, Z., J. T Wyffels, A. C Seydim and A. K Greene. 2005. Turkish kefir and kefir grains: microbial enumeration and electron microscobic observation. Int. J. Dairy Technol. 58: 25-29. doi: 10.1111/j.1471-0307.2005.00177.x Harrigan, W. F., 1998. Laboratory methods in food microbiology. Academic Press, San Diego, CA. Han, X., L. J. Zhang, H. Y. Wu, Y. F. Wu, and S. N. Zhao. 2018. Investigation of microorganisms involved in kefir biofilm formation. Anton. Leeuw. Int. J. G. 111: 2361-2370. doi: 10.1007/s10482-018-1125-6 Han, X., H. Yi, S. Zhao, J. Sun and Y. Wang. 2020. Prospects of artificial kefir grains prepared by cheese and encapsulated vectors to mimic natural kefir grains. J. Food Qual. 2020: 8839135. doi: 10.1155/2020/8839135 Hong, W., Y. Chen and M. Chen. 2010. The antiallergic effect of kefir Lactobacilli. J. Food Sci. 75: 244-253. doi: 10.1111/j.1750-3841.2010.01787.x Huang, Z. R., W. L. Guo, W. B. Zhou, L. Li, J. X. Xu, J. L. Hong, H. P. Liu, F. Zeng, W. D. Bai, B. Liu, L. Ni, P. F. Rao and X. C. Lv. 2019. Microbial communities and volatile metabolites in different traditional fermentation starters used for Hong Qu glutinous rice wine. Food Res. Int. 121: 593-603. doi: 10.1016/j.foodres.2018.12.024 Jefferson, K. K. 2004. What drives bacteria to produce a biofilm? FEMS Microbiol. Lett. 236: 163-173. doi: 10.1111/j.1574-6968.2004.tb09643.x Johansen, P. and L. Jespersen. 2017. Impact of quorum sensing on the quality of fermented foods. Curr. Opin. Food Sci. 13: 16-25. doi: 10.1016/j.cofs.2017.01.001 Kalamaki, M. S. and A. S. Angelidis. 2016. Isolation and molecular identification of yeasts in Greek kefir. Int. J. Dairy Technol. 70: 261-268. doi: 10.1111/1471-0307.12329 Kalamaki, M. S. and A. S. Angelidis. 2020. High-throughput, sequence-based analysis of the microbiota of Greek kefir grains from two geographic regions. Food Technol. Biotechnol. 58: 138-146. doi: 10.17113/ftb.58.02.20.6581 Kawarai, T., S. Furukawa, H. Ogihara, M. Yamasaki. 2007. Mixed-species biofilm formation by lactic acid bacteria and rice wine yeasts. Appl. Environ. Microbiol. 73: 4673-4676. doi: 10.1128/AEM.02891-06 Kim, D. H., H. Kim and K. H Seo. 2019. Microbial composition of Korean kefir and antimicrobial activity of Acetobacter fabarum DH1801. J. Food Safety. 40: e12728. doi: 10.1111/jfs.12728 Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide-sequences. J. Mol. Evol. 16: 111-120. doi: 10.1007/Bf01731581 Kooiman, P. 1968. The chemical structure of kefiran, the water-soluble polysaccharide of the kefir grain. Carbohydr. Res. 7: 200-211. doi: 10.1016/S0008-6215(00)81138-6 Korsak, N., B. Taminiau, M. Leclercq, C. Nezer, S. Crevecoeur, C. Ferauche, E. Detry, V. Delcenserie and G. Daube. 2015. Short communication: Evaluation of the microbiota of kefir samples using metagenetic analysis targeting the 16S and 26S ribosomal DNA fragments. J. Dairy Sci. 98: 3684-3689. doi: 10.3168/jds.2014-9065 Kotova, I. B., T. A. Cherdyntseva, A. I. Netrusov. 2016. Russian Kefir Grains Microbial Composition and Its Changes during Production Process. In: G. Donelli, editor. Advances in Microbiology, Infectious Diseases and Public Health. Springer, Cham. p. 93-121. doi: 10.1007/5584_2016_2 Kumar, S., G. Stecher, and K. Tamura. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33: 1870-1874. doi: 10.1093/molbev/msw054 Laureys, D. and L. De Vuyst. 2016. The water kefir grain inoculum determines the characteristics of the resulting water kefir fermentation process. J. Appl. Microbiol. 122: 719-732. doi: 10.1111/jam.13370 Leite, A. M. O., B. Mayo, C. T. C. C. Rachid, R. S. Peixoto, J. T. Silva, V. M. F. Paschoalin and, S. Delgado. 2012. Assessment of the microbial diversity of Brazilian kefir grains by PCR-DGGE and pyrosequencing analysis. Food Microbiol. 31: 215-221. doi: 10.1016/j.fm.2012.03.011 Liu, L., Y. Tao, Y. Li, X. Deng, G. Liu, Y. Yao, X. Chen, S. Yang, M. Tu, Q. Peng, L. Huang, W. Xiang and Y. Rao. 2022. Isolation and characterization of bacteria that produce quorum sensing molecules during the fermentation and deterioration of pickles. Int. J. Food Microbiol. 379: 109869. doi: 10.1016/j.ijfoodmicro.2022.109869 Lo, S. C., C. Y. Yang, D. C. Mathew and C. C. Huang. 2021. Growth and autolysis of the kefir yeast Kluyveromyces marxianus in lactate culture. Sci. Rep. 11: 14552. doi: 10.1038/s41598-021-94101-y Londero, A., M. F. Hamet, G. L. De Antoni, G. L. Garrote and A. G. Abraham. 2012. Kefir grains as a starter for whey fermentation at different temperatures: chemical and microbiological characterisation. J. Dairy Res. 79: 262-271. doi: 10.1017/S0022029912000179 Loreti, E., A. Alpi and P. Perata. 2000. Glucose and disaccharide-sensing mechanisms modulate the expression of α-amylase in barley embryos. Plant Physiol. 123: 939-948. doi: 10.1104/pp.123.3.939 Magalhães, K. T., G. V. de M. Pereira, D. R. Dias and R. F. Schwan. 2010. Microbial communities and chemical changes during fermentation of sugary Brazilian kefir. World J. Microbiol. Biotechnol. 26: 1241-1250. doi: 10.1007/s11274-009-0294-x Marsh, A. J., O. O' Sullivan, C. Hill, R. P. Ross and P. D. Cotter. 2013. Sequencing-based analysis of the bacterial and fungal composition of kefir grains and milks from multiple sources. PLoS One 8: e69371. doi: 10.1371/journal.pone.0069371 Marsili, R. T., H. Ostapenko, R. E. Simmons, and D. E. Green. 1981. High-Performance Liquid-Chromatographic determination of organic-acids in dairy-products. J. Food Sci. 46: 52-57. doi: 10.1111/j.1365-2621.1981.tb14529.x Motaghi, M., M. Mazaheri, N. Moazami, A. Farkhondeh, M. H. Fooladi and E. M. Goltapeh. 1997. Kefir production in Iran. World J. Microbiol. Biotechnol. 13: 579-581. doi: 10.1023/A:1018577728412 Mukai, T. T. Toba, T. Itoh and S. Adachi. 1990. Structural investigation of the capsular polysaccharide from Lactobacillus kefiranofaciens K1. Carbohydr. Res. 204: 227-232. doi: 10.1016/0008-6215(90)84039-w Nalbantoglu, U., A. Cakar, H. Dogan, N. Abaci, D. Ustek, K. Sayood and H. Can. 2014. Metagenomic analysis of the microbial community in kefir grains. Food Microbiol. 41: 42-51. doi: 10.1016/j.fm.2014.01.014 Naser, S. M., P. Dawyndt, B. Hoste, D. Gevers, K. Vandemeulebroecke, I. Cleenwerck, M. Vancanneyt, and J. Swings. 2007. Identification of lactobacilli by pheS and rpoA gene sequence analyses. Int. J. Syst. Evol. Microbiol. 57: 2777-2789. doi: 10.1099/ijs.0.64711-0 Nejati, F., S. Junner, J. Kurreck and P. Neubauer. 2020. Quantification of major bacteria and yeast species in kefir consortia by multiplex TaqMan qPCR. Front. Microbiol. 11: 1291. doi: 10.3389/fmicb.2020.01291 Nejati, F., S. Junne and P. Neubauer. 2020. A big world in small grain: a review of natural milk kefir starters. Microorganisms. 8: 192. doi: 10.3390/microorganisms8020192 Nejati, F., C. C. Capitain, J. L. Krause, G. Kang, R. Riedel, H. Chang, J. Kurreck, S. Junne, P. Weller and P. Neubauer. 2022. Traditional grain-based vs. commercial milk kefirs, how different are they? Appl. Sci. 12: 3838. doi: 10.3390/app12083838 Nealson, K. H. 1977. Autoinduction of bacterial luciferase: occurence, mechanism and significance. Arch. Microbiol. 112: 73-79. doi: 10.1007/BF00446657 Nealson, K. H. and J. W. Hastings. 1979. Bacterial bioluminescence: its control and ecological significance. Microbiol Rev. 43: 496-518. doi: 10.1128/mr.43.4.496-518.1979 Nealson, K. H., T. Olatt and J. W. Hastings. 1970. Cellular control of the synthesis and activity of the bacterial luminescent system. J. Biotechnol. 104: 313-322. doi: 10.1128/jb.104.1.313-322.1970 Nishimura, J., Y. Kawai, R. Aritomo, Y. Ito, S. Makino, S. Ikegami, E. Isogai, and T. Saito. 2013. Effect of formic acid on exopolysaccharide production in skim milk fermentation by Lactobacillus delbrueckii subsp. bulgaricus OLL1073R-1. Biosci. Microbiota Food Health. 32: 23-32. doi: 10.12938/bmfh.32.23 Nocker, A., P. Sossa-Fernandez, M. D. Burr, and A. K. Camper. 2007. Use of propidium monoazide for live/dead distinction in microbial ecology. Appl. Environ. Microbiol. 73: 5111-5117. doi: 10.1128/Aem.02987-06 Otles, S. and O. Cagindi. 2003. Kefir: a probiotic dairy-composition, nutritional and therapeutic aspects. Pak. J. Nutr. 2: 54-59. doi: 10.3923/pjn.2003.54.59 O'Toole, G. A., L. A. Pratt, P. I. Watnick, D. K. Newman, V. B. Weaver, and R. Kolter. 1999. Genetic approaches to study of biofilms. Method Enzymol. 310: 91-109. doi: 10.1016/s0076-6879(99)10008-9 Palmer, J., S. Flint and J. Brooks. 2007. Bacterial cell attachment, the beginning of a biofilm. J. Ind. Microbiol. Biotechnol. 34: 577-588. doi: 10.1007/s10295-007-0234-4 Pretzer, G., J. Snel, D. Molenaar, A. Wiersma, P. A. Bron, J. Lambert, W. M. de Vos, R. van der Meer, M. A. Smits, and M. Kleerebezem. 2005. Biodiversity-based identification and functional characterization of the mannose-specific adhesin of Lactobacillus plantarum. J. Bacteriol. 187: 6128-6136. doi: 10.1128/Jb.187.17.6128-6136.2005 Rodrigues, D., T. R. Santos, S. Sousa, A. M. Gomes, M. M. Pintado, F. X. Malcata, J. M. S. Lobo, J. P. Silva, P. Costa, M. H. Amaral and A. C. Freitas. 2010. On the viability of five probiotic strains when immobilised on various polymers. Int. J. Dairy Technol. 64: 137-144. doi: 10.1111/j.1471-0307.2010.00627.x Rosa, D. D., M. M. S. Dias, L. M. Grześkowiak, S. A. Reis, L. L. Conceição and M. C. G. Peluzio. 2017. Milk kefir: nutritional, microbiological and health benefits. Nutr. Res. Rev. 30: 82-96. doi: 10.1017/S0954422416000275 Saitou, N., and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425. doi: 10.1093/oxfordjournals.molbev.a040454 Santos, A., M. San Mauro, A. Sanchez, J. M. Torres and D. Marquina. 2003. The antimicrobial properties of different strains of Lactobacillus spp. isolated from kefir. Syst. Appl. Microbiol. 26: 434-437. doi: 10.1078/072320203322497464 Sauer, K., A. K. Camper, G. D. Ehrlich, J. W. Costerton and D. G. Davies. 2002. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J. Bacteriol. 184: 1140-1154. doi: 10.1128/jb.184.4.1140-1154.2002 Sauer, K., P. Stoodley, D. M. Goeres, L. Hall-Stoodley, M. Burmølle, P. S. Stewart and T. Bjarnsholt. 2022. The biofilm life cycle: expanding the conceptual model of biofilm formation. Nat. Rev. Microbiol. 20: 608-620. doi: 10.1038/s41579-022-00767-0 Schauder, S., K. Shokat, M. G. Surette and B. L. Bassler. 2001. The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum-sensing signal molecule. Mol. Microbiol. 41: 289-525. doi: 10.1046/j.1365-2958.2001.02532.x Sturme, M. H. J., M. Kleerebezem, J. Nakayama, A. D. L. Akkermans, E. E. Vaughan and W. M. de Vos. 2002. Cell to cell communication by autoinducing peptides in gram-positive bacteria. Anton. Leeuw. Int. J. G. 81: 233-243. doi: 10.1023/a:1020522919555 Tada, S., Y. Katakura, K. Ninomiya and S. Shioya. 2007. Fed-batch coculture of Lactobacillus kefiranofaciens with Saccharomyces cerevisiae for effective production of kefiran. J. Biosci. Bioeng. 103: 557-562. doi: 10.1263/jbb.103.557 Takizawa, S., S. Kojima, S. Tamura, S. Fujinaga, Y. Benno and T. Nakase. 1994. Lactobacillus kefirgranum sp. nov. and Lactobacillus parakefir sp. nov., two new species from kefir grains. Int. J. Syst. Evol. Microbiol. 44: 435-439. doi: 10.1099/00207713-44-3-435 Tanizawa, Y., H. Kobayashi, E. Kaminuma, M. Sakamoto, M. Ohkuma, Y. Nakamura, M. Arita, and M. Tohno. 2017. Genomic characterization reconfirms the taxonomic status of Lactobacillus parakefiri. Biosci. Microb. Food H. 36: 129-134. doi: 10.12938/bmfh.16-026 Tomasz, A. 1965. Control of the competent state in Pneumococcus by a hormone-like cell product: an example for a new type of regulatory mechanism in bacteria. Nature. 208: 155-159. doi: 10.1038/208155a0 Tung, Y., H. Chen, H. Wu, M. Ho, K. Chong and C. Chen. 2018. Kefir peptides prevent hyperlipidemia and obesity in high-fat-diet-induced obese rats via lipid metabolism modulation. Mol. Nutr. Food Res. 62: 1700505. doi: 10.1002/mnfr.201700505 Vénica, C. I., M. C. Perotti, and C. V. Bergamini. 2014. Organic acids profiles in lactose-hydrolyzed yogurt with different matrix composition. Dairy Sci. Technol. 94: 561-580. doi: 10.1007/s13594-014-0180-7 Ventura, M., V. Meylan, and R. Zink. 2003. Identification and tracing of species by use of enterobacterial repetitive intergenic consensus sequences. Appl. Environ. Microbiol. 69: 4296-4301. doi: 10.1128/Aem.69.7.4296-4301.2003 Wang, S. Y., H. C. Chen, J. R. Liu, Y. C. Lin and M. J. Chen. 2008. Identification of yeasts and evaluation of their distribution in Taiwanese kefir and viili starters. J. Dairy Sci. 91: 3798-3805. doi: 10.3168/jds.2007-0468 Wang, S. Y., K. N. Chen, Y. M. Lo, M. L. Chiang, H. C. Chen, J. R. Liu and M. J. Chen. 2012. Investigation of microorganisms involved in biosynthesis of the kefir grain. Food Microbiol. 32: 274-285. doi: 10.1016/j.fm.2012.07.001 Wang, X., J. Xiao, Y. Jia, Y. Pan and Y. Wang. 2018. Lactobacillus kefiranofaciens, the sole dominant and stable bacterial species, exhibits distinct morphotypes upon colonization in Tibetan kefir grains. Heliyon. 4: e00649. doi: 10.1016/j.heliyon.2018.e00649 Wang, Y., J. Wu, M. Lv, Z. Shao, M. Hungwe, J. Wang, X. Bai, J. Xie, Y. Wang and W. Geng. 2021. Metabolism characteristics of lactic acid bacteria and the expanding applications in food industry. Front. Bioeng. Biotechnol. 9: 612285. doi: 10.3389/fbioe.2021.612285 Watanabe, K., J. Fujimoto, M. Sasamoto, J. Dugersuren, T. Tumursuh, and S. Demberel. 2008. Diversity of lactic acid bacteria and yeasts in Airag and Tarag, traditional fermented milk products of Mongolia. World J. Microbiol. Biotechnol. 24: 1313-1325. doi: 10.1007/s11274-007-9604-3 Watanabe, K., J. Fujimoto, Y. Tomii, M. Sasamoto, H. Makino, Y. Kudo, and S. Okada. 2009. Lactobacillus kisonensis sp. nov., Lactobacillus otakiensis sp. nov., Lactobacillus rapi sp. nov. and Lactobacillus sunkii sp. nov., heterofermentative species isolated from sunki, a traditional Japanese pickle. Int. J. Syst. Evol. Microbiol. 59: 754-760. doi: 10.1099/ijs.0.004689-0 Witthuhn, R. C., T. Schoeman and T. J. Britz. 2004. Isolation and characterization of the microbial population of different South African kefir grains. Int. J. Dairy Technol. 57: 33-37. doi: 10.1111/j.1471-0307.2004.00126.x Wszolek, M., A. Y. Tamime, D. D. Muir and M. N. I. Barclay. 2001. Properties of kefir made in Scotland and Poland using bovine, caprine and ovine milk with different starter cultures. LWT. 34:251-261. doi: 10.1006/fstl.2001.0773 Xing, Z., W. Tang, Y. Yang, W. Geng, R. U. Rehman and Y. Wang. 2017. Colonization and gut flora modulation of Lactobacillus kefiranofaciens ZW3 in the intestinal tract of mice. Probiotics Antimicro. Prot. 10: 374-382. doi: 10.1007/s12602-017-9288-4 Youn, H., H. Kim, D. Kim, Y. Jang, H. Kim and K. Seo. 2023. Gut microbiota modulation via short-term administration of potential probiotic kefir yeast Kluyveromyces marxianus A4 and A5 in BALB/c mice. Food Sci. Biotechnol. 32: 589-598. doi: 10.1007/s10068-023-01268-3 Zheng, J., L. Ruan, M. Sun and M. Ganzle. 2015. A genomic view of lactobacilli and pediococci demonstrates that phylogeny matches ecology and physiology. Appl. Environ. Microbiol. 81: 7233-7243. doi: 10.1128/AEM.02116-15 Zheng, J. S., S. Wittouck, E. Salvetti, C. M. A. P. Franz, H. M. B. Harris, P. Mattarelli, P. W. O'Toole, B. Pot, P. Vandamme, J. Walter, K. Watanabe, S. Wuyts, G. E. Felis, M. G. Gänzle, and S. Lebeer. 2020. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 70: 2782-2858. doi: 10.1099/ijsem.0.004107 Zeng, L. J., Z. Y. Si, X. M. Zhao, P. X. Feng, J. X. Huang, X. F. Long, and Y. Yi. 2022. Metabolome analysis of the response and tolerance mechanisms of to Saccharomyces cerevisiae formic acid stress. Int. J. Biochem. Cell Biol. 148: 106236. doi: 10.1016/j.biocel.2022.106236 Zeng, X., Y. Wang, H. Jia, Z. Wang, Z. Gao, Y. Luo, Q. Sheng, Y. Yuan and T. Yue. 2022. Metagenomic analysis of microflora structure and functional capacity in probiotic Tibetan kefir grains. Food Res. Int. 151: 110849. doi: 10.1016/j.foodres.2021.110849 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94992 | - |
dc.description.abstract | 克弗爾是一種以克弗爾粒顆粒作為菌元之傳統發酵乳,其中含有乳酸菌 (LAB) 和酵母菌共生於多醣和蛋白基質中。許多研究指出傳統克弗爾具有對健康有益之好處。然而,克弗爾粒之形成機制仍然不清楚。本研究旨在藉由克弗爾優勢菌種共培養法來探討微生物的相互作用與克弗爾粒之形成。
透過三世代定序分析,臺灣克弗爾粒中含有五株優勢乳酸種與兩株優勢酵母菌種,其中有一株乳酸菌種,名為Lentilactobacillus parakefiri為之前未被分離與鑑定。因此,第一部分將臺灣乳清克弗爾粒中分離並以表觀型及基因型法進行鑑定,結果只有分離出一株菌株並將其命名為ML5。隨後測定其自聚集能力和生物膜形成,結果顯示ML5於pH 4.2下其自聚集能力顯著較強,但與其他乳酸菌和酵母菌之共聚集能力較弱。ML5於單株培養時所產生的生物膜較少,但與其他菌種共培養後則會形成較多生物膜。此特性得以假設聚集力較好之菌株共培養可形成小顆粒,因此進行共培養試驗,分為控制組 (7株優勢菌種) 與自聚集能力較強組 (Lactobacillus kefiranofaciens、Kazachstania turicensis與Lt. parakefiri),分別共培養於牛奶和乳清中,結果並沒有顆粒形成,但7株優勢菌種共培養中可以觀察到微生物附著於牛奶凝乳塊之表面。從以上结果,我們假設牛奶中的天然物質,如凝乳塊可以作為克弗爾微生物附著之載體。之後便使用PMA real-time PCR定量克弗爾粒粒中各優勢菌種的活菌數,其中主要最優勢乳酸菌種為Lb. kefiranofaciens (~108 CFU/mL) 和Kluyveromyces marxianus (~107 CFU/mL)。根據定量結果,即Lb. kefiranofaciens接種8 log CFU/mL,Lt. kefir、Klu. marxianus接種7 log CFU/mL,而Leu. mesenteroides、Lc. lactis、Lt. parakefiri和Kaz. turicensis則接種6 log CFU/mL,以7天間隔連續發酵的方式共培養此7株優勢菌種於40 mL牛奶,共培養實驗分為四組:控制組包括4 g克弗爾粒 (G0) 與0.1 g克弗爾粒粒 (G1)、純菌株組 (G2)、純菌株 + 0.1 g克弗爾粒 (G3) 及純菌株 + 0.1 g顆粒狀凝乳塊 (G4)。與G1組相比,額外添加純菌株之G3組稍微增加了克弗爾粒粒的重量,但沒有顯著差異,但部分優勢菌種長得較快。通過掃描式電子顯微鏡觀察到G4組的顆粒狀凝乳塊微結構與克弗爾粒相近,且可作為克弗爾粒優勢菌種貼附之載體。但是此試驗顯示酵母於共培養中之生長迅速,與克弗爾粒中的實際情況不同,因此將Klu. marxianus接種量調整至6 log CFU/mL及Lc. lactis與Kaz. turicensis調整至4-5 log CFU/mL,結果顯示G4中所有優勢菌種活菌數都較為穩定,可產出穩定菌相的克弗爾產品。隨著發酵時間的增加,發酵乳中的胞外多醣也隨之增加。 綜上所述,我們的研究結果證實以純菌共培養無法形成小顆粒,但以天然載體供克弗爾微生物附著使其發酵過程中持續生長,此法有望最後形成如同克弗爾粒之菌元,但未來還需進一步探討克弗爾優勢菌之間的相互作用。 | zh_TW |
dc.description.abstract | Kefir is a traditional fermented dairy product using kefir grains as starter cultures which are symbiotic mixtures of lactic acid bacteria (LAB) and yeasts embedded in a matrix of polysaccharides and proteins. Numerous studies elucidated that kefir provided health benefits. However, the mechanisms of kefir grain formation remained unclear. The present study aimed to produce kefir grains with different co-culture methods meanwhile understanding the relationship between dominant kefir species and other factors affected.
Through further next-generation sequencing, Taiwanese kefir grains contained five dominant bacterial species and two dominant yeast species. There was one bacterial species, named Lentilactobacillus parakefiri not isolated and identified before. Hence, this species was isolated from Taiwanese whey kefir grains and identified through phenotypic and genotypic methods. We isolated only one strain and designated it as ML5. We then assessed its cell surface properties, conducting tests for auto-aggregation and biofilm formation. Results showed that ML5 exhibited strong auto-aggregation at pH 4.2 but had weaker co-aggregation abitlity with other LAB and yeast. It also produced less biofilm in monoculture but formed more biofilm when co-culture with other species. This distinctive characteristic has the potential to facilitate the formation of small granules. Therefore, we co-cultured one group with seven dominant species and one group with species that possessed stronger auto-aggregation ability, which is Lactobacillus kefiranofaciens, Kazachstania turicensis and Lt. parakefiri in milk and whey with Leuconostoc mesenteroides that benefited the growth of Lb. kefiranofaciens. Results indicated that no grain formed, but co-culture of all seven dominant kefir species could be observed in the attachment of microbes onto the surface of the milk curd. From these results, we hypothesized that natural elements in milk such as hard curd could be the vector for microbes to obtain kefir grains. Then, viable cells of each dominant species in kefir grains were quantified using PMA real-time PCR. The most dominant bacteria and yeast were Lb. kefiranofaciens (~108 CFU/mL) and Kluyveromyces marxianus (~107 CFU/mL), respectively. According to the quantifying microbial proportion of kefir grains, we co-cultured these seven dominant species in 40 mL milk using a 7-day interval subcultural fermentation to obtain small kefir grains. The co-culture experiment was divided into four groups: Control included 4 g kefir grains (G0) and 0.1 g kefir grain (G1), pure strains group (G2), pure strains + 0.1 g kefir grains (G3), and pure strains + 0.1 g granular curd (G4). Compared with control group, additional pure strains slightly increased the weight of kefir grain but no significant difference and the amount of each dominant species faster in kefir grain (G3). Through scanning electron microscope and real-time PCR, additional granular curd (G4) could provide a vector for dominant species adhering since the amount of kefir species elevated and its appearance looked similar to kefir grains. Nevertheless, yeasts exhibited accelerated growth in co-culture which was differed from the actual conditions observed in kefir grains. Thus, inoculated amount was adjusted for each species and it seemed that all species were constantly grew in G4, potential to produce stable kefir product. The EPS production also increased with fermentation time. In summary, our findings suggest that relying solely on pure strains co-cultured in milk is insufficient for grain formation. Introducing a natural vector represents a promising approach for kefir species to thrive and develop grains. In the future, further research will explore the interplay between kefir species. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-23T16:20:17Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-23T16:20:17Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii 英文摘要 v 目次 vii 圖次 x 表次 xii 壹、文獻探討 1 一、克弗爾 (kefir) 1 (一) 傳統與商業發酵法之差異 1 (二) 克弗爾對健康之好處 3 二、克弗爾粒 (kefir grain) 5 (一) 克弗爾粒菌相與結構 (microbiota and structure of kefir grain) 5 (二) 從克弗爾粒分離與鑑定菌種之方法 6 三、克弗爾粒之形成 (kefir grain formation) 19 (一) 克弗爾微生物之特性 (characteristics of kefir microorganisms) 19 (二) 生物膜形成 (biofilm formation) 20 (三) 群體感應 (quorum sensing, QS) 24 貳、研究動機與目的 28 参、材料與方法 29 一、試驗設計 29 第一節:分離與鑑定Lt. parakefiri及探討其表觀特性 30 一、從臺灣克弗爾粒中分離與鑑定Lt. parakefiri 31 二、探討Lt. parakefiri之表觀特性 45 第二節:以real-time PCR定量優勢菌種於克弗爾粒之活菌數 48 第三節:利用共培養法探討克弗爾粒之形成 53 一、共培養自聚集與凝絮力較佳菌株 53 二、以特定菌數及顆粒狀凝乳塊粒與小顆克弗爾粒作為載體進行共培養 55 肆、結果 61 第一節、分離與鑑定Lt. parakefiri及其表觀特性探討 61 一、基因型鑑定之分析 61 二、表觀型鑑定之分析 67 三、藉由API 50 CHL商業套組分析乳酸菌對於醣類之利用 67 四、表觀特性 70 第二節、以real-time PCR定量優勢菌種於克弗爾粒之活菌數 73 一、牛奶、羊奶與乳清克弗爾粒之優勢菌種 73 二、菌群分布之差異 73 第三節:利用共培養法探討克弗爾粒之形成 78 一、共培養自聚集與凝絮力較佳菌株 78 1. pH值差異 78 2. 共培養發酵產物之外觀觀察 78 二、以特定菌數及顆粒狀凝乳塊粒與小顆克弗爾粒作為載體進行共培養 82 1. 共培養於不同繼代時間下克弗爾粒與顆粒狀凝乳塊及發酵乳樣品之分析 82 2. 微生物活菌數變化分析 85 3. 掃描式電子顯微鏡觀察 88 三、優勢菌種接種菌量調整後之共培養試驗 90 1. 接種量調整後之共培養於不同時間下克弗爾粒與顆粒狀凝乳塊及發酵乳之分析 90 2. 有機酸測定 90 3. 克弗爾粒與顆粒狀凝乳塊之微生物活菌數變化 100 4. 掃描式電子顯微鏡觀察 100 5. 發酵乳樣品中之微生物活菌數變化 106 6. 胞外多醣產量 106 伍、討論 112 第一節、分離與鑑定Lt. parakefiri及其表觀特性探討 112 第二節、以real-time PCR定量優勢菌種於克弗爾粒之活菌數 114 第三節:利用共培養法探討克弗爾粒之形成 115 一、共培養自聚集與凝絮力較佳菌株 115 二、以特定菌數及顆粒狀凝乳塊粒與小顆克弗爾粒作為載體進行共培養 115 陸、結論 118 柒、參考文獻 121 捌、附錄 135 | - |
dc.language.iso | zh_TW | - |
dc.title | 藉由共培養方法探討克弗爾微生物的交互作用與克弗爾粒之形成 | zh_TW |
dc.title | Investigation of kefir microbial interactions and kefir grain formation with different co-culture methods | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.coadvisor | 王聖耀 | zh_TW |
dc.contributor.coadvisor | Sheng-Yao Wang | en |
dc.contributor.oralexamcommittee | 黃麗娜;劉嚞睿;陳彥伯 | zh_TW |
dc.contributor.oralexamcommittee | Li-Na Huang;Je-Ruei Liu;Yen-Po Chen | en |
dc.subject.keyword | 克弗爾優勢菌種,克弗爾粒形成,天然載體,顆粒狀凝乳塊,共培養法, | zh_TW |
dc.subject.keyword | kefir dominant species,kefir grain formation,natural vector,granular curd,co-culture method, | en |
dc.relation.page | 139 | - |
dc.identifier.doi | 10.6342/NTU202402484 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2024-08-13 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 動物科學技術學系 | - |
顯示於系所單位: | 動物科學技術學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 目前未授權公開取用 | 9.26 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。