請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94991
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 鄭憶中 | zh_TW |
dc.contributor.advisor | I-Chung Cheng | en |
dc.contributor.author | 林瑋廷 | zh_TW |
dc.contributor.author | Wei-Ting Lin | en |
dc.date.accessioned | 2024-08-23T16:19:46Z | - |
dc.date.available | 2024-09-12 | - |
dc.date.copyright | 2024-08-23 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-11 | - |
dc.identifier.citation | [1] S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future, nature, 488 (2012) 294-303.
[2] F.W. Lucas, R.G. Grim, S.A. Tacey, C.A. Downes, J. Hasse, A.M. Roman, C.A. Farberow, J.A. Schaidle, A. Holewinski, Electrochemical routes for the valorization of biomass-derived feedstocks: from chemistry to application, ACS Energy Letters, 6 (2021) 1205-1270. [3] J.J. Bozell, G.R. Petersen, Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited, Green chemistry, 12 (2010) 539-554. [4] M. Asakawa, A. Shrotri, H. Kobayashi, A. Fukuoka, Solvent basicity controlled deformylation for the formation of furfural from glucose and fructose, Green chemistry, 21 (2019) 6146-6153. [5] C. Barrett, J. Chheda, G. Huber, J. Dumesic, Single-reactor process for sequential aldol-condensation and hydrogenation of biomass-derived compounds in water, Applied catalysis B: environmental, 66 (2006) 111-118. [6] T. Werpy, G. Petersen, Top value added chemicals from biomass: volume I--results of screening for potential candidates from sugars and synthesis gas, National Renewable Energy Lab.(NREL), Golden, CO (United States), 2004. [7] R. Mariscal, P. Maireles-Torres, M. Ojeda, I. Sádaba, M.L. Granados, Furfural: a renewable and versatile platform molecule for the synthesis of chemicals and fuels, Energy & environmental science, 9 (2016) 1144-1189. [8] J.P. Lange, E. Van Der Heide, J. van Buijtenen, R. Price, Furfural—a promising platform for lignocellulosic biofuels, ChemSusChem, 5 (2012) 150-166. [9] H. Li, S. Zhang, H. Luo, A Ce-promoted Ni–B amorphous alloy catalyst (Ni–Ce–B) for liquid-phase furfural hydrogenation to furfural alcohol, Materials Letters, 58 (2004) 2741-2746. [10] B. Nagaraja, A. Padmasri, B.D. Raju, K.R. Rao, Vapor phase selective hydrogenation of furfural to furfuryl alcohol over Cu–MgO coprecipitated catalysts, Journal of Molecular Catalysis A: Chemical, 265 (2007) 90-97. [11] S.K. Jaatinen, R.S. Karinen, J.S. Lehtonen, Liquid Phase Furfural Hydrotreatment to 2‐Methylfuran with Carbon Supported Copper, Nickel, and Iron Catalysts, ChemistrySelect, 2 (2017) 51-60. [12] D.K. Mishra, S. Kumar, R.S. Shukla, Furfuryl alcohol—a promising platform chemical, Biomass, Biofuels, Biochemicals, Elsevier2020, pp. 323-353. [13] C. Wang, H. Xu, R. Daniel, A. Ghafourian, J.M. Herreros, S. Shuai, X. Ma, Combustion characteristics and emissions of 2-methylfuran compared to 2, 5-dimethylfuran, gasoline and ethanol in a DISI engine, Fuel, 103 (2013) 200-211. [14] Y.-L. Zhu, H.-W. Xiang, Y.-W. Li, H. Jiao, G.-S. Wu, B. Zhong, G.-Q. Guo, A new strategy for the efficient synthesis of 2-methylfuran and γ-butyrolactone, New Journal of Chemistry, 27 (2003) 208-210. [15] Y. Xu, B. Zhang, Recent advances in electrochemical hydrogen production from water assisted by alternative oxidation reactions, ChemElectroChem, 6 (2019) 3214-3226. [16] X.H. Chadderdon, D.J. Chadderdon, T. Pfennig, B.H. Shanks, W. Li, Paired electrocatalytic hydrogenation and oxidation of 5-(hydroxymethyl) furfural for efficient production of biomass-derived monomers, Green chemistry, 21 (2019) 6210-6219. [17] A.S. May, E.J. Biddinger, Strategies to control electrochemical hydrogenation and hydrogenolysis of furfural and minimize undesired side reactions, ACS Catalysis, 10 (2020) 3212-3221. [18] Z. Li, M. Garedew, C.H. Lam, J.E. Jackson, D.J. Miller, C.M. Saffron, Mild electrocatalytic hydrogenation and hydrodeoxygenation of bio-oil derived phenolic compounds using ruthenium supported on activated carbon cloth, Green Chemistry, 14 (2012) 2540-2549. [19] J. Erlebacher, M.J. Aziz, A. Karma, N. Dimitrov, K. Sieradzki, Evolution of nanoporosity in dealloying, nature, 410 (2001) 450-453. [20] H. Lechtman, Pre-Columbian surface metallurgy, Scientific American, 250 (1984) 56-63. [21] H.W. Pickering, Characteristic features of alloy polarization curves, Corrosion Science, 23 (1983) 1107-1120. [22] K. Wagner, S. Brankovic, N. Dimitrov, K. Sieradzki, Dealloying below the critical potential, Journal of the Electrochemical Society, 144 (1997) 3545. [23] J. Biener, A.M. Hodge, J.R. Hayes, C.A. Volkert, L.A. Zepeda-Ruiz, A.V. Hamza, F.F. Abraham, Size effects on the mechanical behavior of nanoporous Au, Nano letters, 6 (2006) 2379-2382. [24] G. Li, X. Song, Z. Sun, S. Yang, B. Ding, S. Yang, Z. Yang, F. Wang, Nanoporous Ag prepared from the melt-spun Cu-Ag alloys, Solid state sciences, 13 (2011) 1379-1384. [25] F. Chen, X. Chen, L. Zou, Y. Yao, Y. Lin, Q. Shen, E.J. Lavernia, L. Zhang, Fabrication and mechanical behavior of bulk nanoporous Cu via chemical de-alloying of Cu–Al alloys, Materials Science and Engineering: A, 660 (2016) 241-250. [26] M. Lesiak, M. Binczarski, S. Karski, W. Maniukiewicz, J. Rogowski, E. Szubiakiewicz, J. Berlowska, P. Dziugan, I. Witońska, Hydrogenation of furfural over Pd–Cu/Al2O3 catalysts. The role of interaction between palladium and copper on determining catalytic properties, Journal of Molecular Catalysis A: Chemical, 395 (2014) 337-348. [27] P. Munnik, P.E. De Jongh, K.P. De Jong, Recent developments in the synthesis of supported catalysts, Chemical reviews, 115 (2015) 6687-6718. [28] L. Baijun, L. Lianhai, W. Bingchun, C. Tianxi, K. Iwatani, Liquid phase selective hydrogenation of furfural on Raney nickel modified by impregnation of salts of heteropolyacids, Applied Catalysis A: General, 171 (1998) 117-122. [29] M. Chen, Q. Guo, Y. Fu, Electrocatalytic hydrogenation of furfural to furfuryl alcohol using platinum supported on activated carbon fibers, Electrochimica Acta, 135 (2014) 139-146. [30] Z. Li, S. Kelkar, C.H. Lam, K. Luczek, J.E. Jackson, D.J. Miller, C.M. Saffron, Aqueous electrocatalytic hydrogenation of furfural using a sacrificial anode, Electrochimica Acta, 64 (2012) 87-93. [31] W.C. Albert, A. Lowy, The electrochemical reduction of furfural, Transactions of The Electrochemical Society, 75 (1939) 367. [32] P. Nilges, U. Schröder, Electrochemistry for biofuel generation: production of furans by electrocatalytic hydrogenation of furfurals, Energy & Environmental Science, 6 (2013) 2925-2931. [33] S. Chen, R. Wojcieszak, F. Dumeignil, E. Marceau, S.b. Royer, How catalysts and experimental conditions determine the selective hydroconversion of furfural and 5-hydroxymethylfurfural, Chemical reviews, 118 (2018) 11023-11117. [34] B. Liu, L. Cheng, L. Curtiss, J. Greeley, Effects of van der Waals density functional corrections on trends in furfural adsorption and hydrogenation on close-packed transition metal surfaces, Surface science, 622 (2014) 51-59. [35] K. Xiong, W. Wan, J.G. Chen, Reaction pathways of furfural, furfuryl alcohol and 2-methylfuran on Cu (111) and NiCu bimetallic surfaces, Surface Science, 652 (2016) 91-97. [36] J. Brenk, S. Hassan-Pour, P. Spiess, B. Friedrich, Examination of an alternative method for the pyrometallurgical production of copper-chromium alloys, IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2016, pp. 012016. [37] S. Srivastava, G. Jadeja, J. Parikh, A versatile bi-metallic copper–cobalt catalyst for liquid phase hydrogenation of furfural to 2-methylfuran, RSC advances, 6 (2016) 1649-1658. [38] P. Weerachawanasak, P. Krawmanee, W. Inkamhaeng, F.J.C.S. Aires, T. Sooknoi, J. Panpranot, Development of bimetallic Ni-Cu/SiO2 catalysts for liquid phase selective hydrogenation of furfural to furfuryl alcohol, Catalysis Communications, 149 (2021) 106221. [39] I. Melián-Cabrera, M.L. Granados, J. Fierro, Reverse topotactic transformation of a Cu–Zn–Al catalyst during wet Pd impregnation: relevance for the performance in methanol synthesis from CO2/H2 mixtures, Journal of Catalysis, 210 (2002) 273-284. [40] M.A. Azam, M. Mupit, Carbon nanomaterial-based sensor: Synthesis and characterization, Carbon Nanomaterials-Based Sensors, Elsevier2022, pp. 15-28. [41] C.C. McCrory, S. Jung, J.C. Peters, T.F. Jaramillo, Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction, Journal of the American Chemical Society, 135 (2013) 16977-16987. [42] W. Schmickler, Electronic effects in the electric double layer, Chemical reviews, 96 (1996) 3177-3200. [43] I.R. Kleckner, M.P. Foster, An introduction to NMR-based approaches for measuring protein dynamics, Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1814 (2011) 942-968. [44] S. PLEANJAI, Y. SEANSUPHAN, S. SAKULKHAEMARUETHAI, W. SREVARIT, C. PINSUWAN, T. LAOCHAI, Gas Chromatography with Vacuum-Assisted Sampling System in the Analysis of Hydrogen-Balanced Nitrogen Gas, International Journal of Environmental and Rural Development, 5 (2014) 47-50. [45] Z. Qi, C. Zhao, X. Wang, J. Lin, W. Shao, Z. Zhang, X. Bian, Formation and characterization of monolithic nanoporous copper by chemical dealloying of Al− Cu alloys, The Journal of Physical Chemistry C, 113 (2009) 6694-6698. [46] S. Sayas, J. Da Costa-Serra, A. Chica, Sustainable production of hydrogen via steam reforming of furfural (SRF) with Co-catalyst supported on sepiolite, International Journal of Hydrogen Energy, 46 (2021) 17481-17489. [47] G.J. Haddad, J. Goodwin, The impact of aqueous impregnation on the properties of prereduced vs precalcined Co/SiO2, Journal of Catalysis, 157 (1995) 25-34. [48] W.-Y. Zeng, J.-H. Lai, I.-C. Cheng, Effect of Dealloying Time and Post-Annealing on the Surface Morphology and Electrocatalytic Behavior of Nanoporous Copper Films for CO2 Reduction Reaction, Journal of The Electrochemical Society, 168 (2021) 123501. [49] M. Rivera, U. Pal, X. Wang, J. Gonzalez-Rodriguez, S. Gamboa, Rapid activation of MmNi5− xMx based MH alloy through Pd nanoparticle impregnation, Journal of power sources, 155 (2006) 470-474. [50] C. Yang, W. Xue, H. Yin, Z. Lu, A. Wang, L. Shen, Y. Jiang, Hydrogenation of 3-nitro-4-methoxy-acetylaniline with H 2 to 3-amino-4-methoxy-acetylaniline catalyzed by bimetallic copper/nickel nanoparticles, New Journal of Chemistry, 41 (2017) 3358-3366. [51] Z. Zhang, Z. Pei, H. Chen, K. Chen, Z. Hou, X. Lu, P. Ouyang, J. Fu, Catalytic in-situ hydrogenation of furfural over bimetallic Cu–Ni alloy catalysts in isopropanol, Industrial & Engineering Chemistry Research, 57 (2018) 4225-4230. [52] B. Seemala, C.M. Cai, R. Kumar, C.E. Wyman, P. Christopher, Effects of Cu–Ni bimetallic catalyst composition and support on activity, selectivity, and stability for furfural conversion to 2-methyfuran, ACS sustainable chemistry & engineering, 6 (2018) 2152-2161. [53] Z. Yang, X. Chou, H. Kan, Z. Xiao, Y. Ding, Nanoporous copper catalysts for the fluidized electrocatalytic hydrogenation of furfural to furfuryl alcohol, ACS Sustainable Chemistry & Engineering, 10 (2022) 7418-7425. [54] M.M. Villaverde, N.M. Bertero, T.F. Garetto, A.J. Marchi, Selective liquid-phase hydrogenation of furfural to furfuryl alcohol over Cu-based catalysts, Catalysis today, 213 (2013) 87-92. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94991 | - |
dc.description.abstract | 電化學加氫(Electrochemical hydrogenation)最近成為一種綠色且創新的方法,用於將生物質衍生的化合物,如糠醛(furfural),轉化為糠醇(FOL)和2-甲基呋喃(MF),這兩者作為可持續燃料和原材料都具有價值。FOL因其優秀的化學性質,主要應用於製造樹脂;而MF具有高能量密度和良好的燃燒性能,常被用於製作燃料添加劑。
然而,低法拉第效率和產物生產率在大多數情況下仍然是電催化正在面臨的一個挑戰。本研究利用化學去合金的方式,將銅鋁合金製備為奈米多孔銅(NPC)。NPC作為觸媒具有高電化學活性表面積的特性,提供更多的氫吸附位點(Hads)參與還原反應,以提高產物選擇性和產量。與商業銅粉相比,NPC在兩小時定電壓實驗結果顯示,在-1V (V vs. Ag/AgCl)電位下,FOL和MF的法拉第效率分別從43.2%提升至83.0%和從0%提升至12.5%,且各產物的產量均增加了4-6倍。NPC高比表面積的特性除了反應在法拉第效率和產率外,同時NPC在催化過程中亦能夠抑制氫析出反應,與商業銅粉相比,將H2的法拉第效率從12.7%抑制到0.6%。 此外,本研究成功利用含浸法,將鈷、鎳和鈀分別擔載到NPC擔體上,進行糠醛電催化實驗。這在過去的研究中並沒有使用NPC作為擔體的先例。通過這些實驗,本研究旨在探討雙金屬觸媒在糠醛電催化中的協同效應。 結果表明,Ni/NPC觸媒的催化活性顯著優於商業銅粉,其歸因於NPC作為擔體的高電化學活性表面積特性。同時,Ni/NPC相較於NPC,傾向於產MF,在-1V (V vs. Ag/AgCl)電位下將MF的選擇性提高19.1%,且在各電位下其MF的產量皆大於NPC兩倍,表明了Ni/NPC在糠醛電催化中的應用潛力。本研究強調了NPC觸媒在糠醛電催化領域中的高催化活性,並可透過含浸法製備M/NPC觸媒,進一步調整產物選擇性。 | zh_TW |
dc.description.abstract | Electrochemical hydrogenation (ECH) has recently become a green and innovative method for converting biomass-derived compounds, such as furfural (FF), into furfuryl alcohol (FOL) and 2-methylfuran (MF), both of which are valuable as sustainable fuels and raw materials. However, low Faradaic efficiency(FE) and product yield remain challenges in most cases of electrocatalysis. This study used chemical dealloying to prepare nanoporous copper (NPC) from a Cu-Al alloy. NPC, as a catalyst, has a high electrochemically active surface area, providing more hydrogen adsorption sites for the reduction reaction, thereby enhancing product selectivity and yield. Compared to commercial copper powder, NPC showed in 2hr constant potential experiments at -1V an increase in FE for FOL from 43.2% to 83.0% and for MF from 0% to 12.5%, with product yields increasing by 4-6 times. The high surface area of NPC not only improves FE and yield but also suppresses the hydrogen evolution reaction, reducing the FE for H2 from 12.7% to 0.6% compared to Cu powder. Additionally, this study successfully employed an impregnation method to load Co, Ni, and Pd onto the NPC support for FF ECH experiments. This is the first instance of using NPC as a support in such studies. Through these experiments, the study aimed to investigate the synergistic effects of bimetallic catalysts on ECH of FF. The results indicated that the catalytic activity of the Ni/NPC catalyst significantly outperformed copper powder, attributed to the high ECSA of the NPC support. Furthermore, Ni/NPC, compared to NPC alone, tended to produce more MF, increasing MF selectivity by 19.1% at -1V, with MF yields being twice as high at all tested potentials. This demonstrates the potential of Ni/NPC for FF ECH. This study highlights the high catalytic activity of NPC catalysts in FF ECH and suggests that M/NPC catalysts can further tune product selectivity. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-23T16:19:45Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-23T16:19:46Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 論文口試委員審定書 i
致謝 ii 摘要 iii Abstract iv 目次 v 圖次 viii 表次 xiv 第 1 章、 緒論 1 1.1、 研究背景 1 1.2、 研究目的 4 第 2 章、 文獻回顧 5 2.1、 奈米多孔金屬去合金 5 2.2、 擔體(support) 8 2.3、 含浸法(Impregnation method) 10 2.4、 實驗條件對產物選擇性的影響 12 第 3 章、 實驗步驟 16 3.1、 Cu33Al67 合金製備 16 3.2、 化學去合金 17 3.3、 含浸法 (Impregnation method) 20 3.3.1、 Co/NPC含浸法 21 3.3.2、 Ni/NPC含浸法 21 3.3.3、 Pd/NPC含浸法 22 3.4、 觸媒的活化 ( Reduction) 22 3.5、 電化學電極製作 26 3.6、 電化學分析 27 3.6.1、 循環伏安法(Cyclic Voltammetry, CV) 28 3.6.2、 線性掃描伏安法(Linear Sweep Voltammetry, LSV) 29 3.6.3、 電化學活性表面積(Electrochemical Active Surface Area, ECSA) 30 3.7、 形貌特徵與成分分析 33 3.7.1、 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 33 3.7.2、 能量散布光譜儀 (Energy Dispersive X-ray Spectroscopy, EDS) 33 3.7.3、 感應耦合電漿放射光譜儀 (Inductively Coupled Plasma Optical Emission Spectroscopy , ICP-OES) 34 3.7.4、 X光繞射分析 (X-ray diffraction analysis, XRD) 35 3.8、 產物分析 36 3.8.1、 核磁共振光譜儀(Nuclear Magnetic Resonance, NMR) 36 3.8.2、 氣相層析-熱導檢測器 (Gas Chromatography - Thermal Conductivity Detector, GC-TCD) 37 3.8.3、 法拉第效率(Faradaic efficiency, FE) 39 3.8.4、 產物生成率 (Production rate, PR) 40 第 4 章、 結果與討論 41 4.1、 NPC系統 41 4.1.1、 SEM表面形貌結構 41 4.1.2、 EDS半定量元素分析 43 4.1.3、 X光繞射分析 (X-ray diffraction analysis, XRD) 44 4.1.4、 電化學分析 45 4.1.5、 觸媒活性與分析 47 4.1.6、 產物生成率(Production rate, PR) 49 4.2、 Co/NPC系統 50 4.2.1、 SEM表面形貌結構 50 4.2.2、 EDS半定量元素分析與mapping 52 4.2.3、 X光繞射分析 (X-ray diffraction analysis, XRD) 54 4.2.4、 電化學分析 54 4.2.5、 觸媒活性與分析 57 4.2.6、 產物生成率(Production rate, PR) 57 4.3、 Ni/NPC系統 59 4.3.1、 SEM表面形貌結構 59 4.3.2、 EDS半定量元素分析與mapping 61 4.3.3、 X光繞射分析 (X-ray diffraction analysis, XRD) 62 4.3.4、 電化學分析 64 4.3.5、 觸媒活性與分析 67 4.3.6、 產物生成率(Production rate, PR) 68 4.4、 Pd/NPC 系統 69 4.4.1、 SEM表面形貌結構 69 4.4.2、 EDS半定量元素分析與mapping 72 4.4.3、 X光繞射分析 (X-ray diffraction analysis, XRD) 74 4.4.4、 電化學分析 75 4.4.5、 觸媒活性與分析 77 4.4.6、 產物生成率(Production rate, PR) 78 第 5 章、 結論 80 第 6 章、 未來展望 81 第 7 章、 附錄 82 參考文獻 84 | - |
dc.language.iso | zh_TW | - |
dc.title | 以含浸法合成金屬奈米多孔銅基粉末觸媒應用於糠醛的電氫化反應 | zh_TW |
dc.title | Metal-containing nanoporous copper-based powder catalyst prepared by impregnation for application to electrocatalytic hydrogenation of furfural | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 游文岳;洪維松 | zh_TW |
dc.contributor.oralexamcommittee | Wen-Yueh Yu;Wei-Song Hung | en |
dc.subject.keyword | 奈米多孔銅,糠醛,電催化,含浸法,觸媒, | zh_TW |
dc.subject.keyword | nanoporous copper,furfural,ECH,impregnation method,catalyst, | en |
dc.relation.page | 88 | - |
dc.identifier.doi | 10.6342/NTU202403649 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2024-08-13 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 機械工程學系 | - |
dc.date.embargo-lift | 2029-08-15 | - |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 目前未授權公開取用 | 4.82 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。