請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94985
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林慶仁 | zh_TW |
dc.contributor.advisor | Chin-Ren Lin | en |
dc.contributor.author | 楊金恒 | zh_TW |
dc.contributor.author | Chin-Heng Yang | en |
dc.date.accessioned | 2024-08-23T16:17:06Z | - |
dc.date.available | 2024-08-24 | - |
dc.date.copyright | 2024-08-23 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-12 | - |
dc.identifier.citation | Arnett, R., & Newhouse, T. (1965). Ocean-bottom seismograph. Proceedings of the IEEE, 53(12), 1899-1905.
Barash, T. W., Doll, C. G., Collins, J. A., Sutton, G. H., & Solomon, S. C. (1994). Quantitative evaluation of a passively leveled ocean bottom seismometer. Marine geophysical researches, 16, 347-363. Batchelor, G. K. (2000). An introduction to fluid dynamics. Cambridge university press. Brokešová, J. (2014). Short-period seismic rotations and translations recorded by Rotaphone. In: Department of Geophysics, Faculty of Mathematics and Physics, Charles …. Chao, S., Liang, S., Dengke, H., & Siqing, T. (2020). Study on the effect of dual-freedom coupling between the tilt geophones and the surface. Coal Geology & Exploration, 48(4), 29. Claassen, P., Dean, T., & McCarthy, B. (2015). The impact of tilted geophones on land seismic data quality. ASEG Extended Abstracts, 2015(1), 1-4. Crawford, W. C., & Webb, S. C. (2000). Identifying and removing tilt noise from low-frequency (< 0.1 Hz) seafloor vertical seismic data. Bulletin of the Seismological Society of America, 90(4), 952-963. Deffontaines, B., Lacombe, O., Angelier, J., Chu, H., Mouthereau, F., Lee, C., Deramond, J., Lee, J., Yu, M., & Liew, P. (1997). Quaternary transfer faulting in the Taiwan Foothills: evidence from a multisource approach. Tectonophysics, 274(1-3), 61-82. Duennebier, F. K., Blackinton, G., & Sutton, G. H. (1981). Current-generated noise recorded on ocean bottom seismometers. Marine geophysical researches, 5, 109-115. Duennebier, F. K., & Sutton, G. H. (2007). Why bury ocean bottom seismometers? Geochemistry, Geophysics, Geosystems, 8(2). https://doi.org/10.1029/2006gc001428 Fayon, L., Knapmeyer-Endrun, B., Lognonné, P., Bierwirth, M., Kramer, A., Delage, P., Karakostas, F., Kedar, S., Murdoch, N., & Garcia, R. F. (2018). A numerical model of the SEIS leveling system transfer matrix and resonances: Application to SEIS rotational seismology and dynamic ground interaction. Space Science Reviews, 214, 1-39. Francis, T., Porter, I., Lane, R., Osborne, P., Pooley, J., & Tomkins, P. (1975). Ocean bottom seismograph. Marine geophysical researches, 2(3), 195-213. Homeijer, B., Lazaroff, D., Milligan, D., Alley, R., Wu, J., Szepesi, M., Bicknell, B., Zhang, Z., Walmsley, R., & Hartwell, P. (2011). Hewlett packard's seismic grade MEMS accelerometer. 2011 IEEE 24th international conference on micro electro mechanical systems, Hou, Y., Jiao, R., & Yu, H. (2021). MEMS based geophones and seismometers. Sensors and Actuators A: Physical, 318. https://doi.org/10.1016/j.sna.2020.112498 Lewis, B. T., & Tuthill, J. D. (1981). Instrumental waveform distortion on ocean bottom seismometers. Marine geophysical researches, 5(1), 79-85. Lin, C.-r., Liao, Y.-C., Wang, C.-c., Kuo, B.-Y., Chen, H.-H., Jang, J.-p., Chen, P.-c., Chang, H.-k., Lin, F.-S., & Chang, K.-H. (2024). Development and evaluations of the broadband ocean bottom seismometer (Yardbird-BB OBS) in Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 35(1). https://doi.org/10.1007/s44195-024-00062-w Lin, C.-r., Lin, F.-S., Kuo, B.-Y., & Chang, K.-H. (2019). Mechanism Design and Data Analysis of 3D Ocean Current Meter (OCM) with Broadband OBS. AGU Fall Meeting Abstracts, Liu, D., Yang, T., Wang, Y., Wu, Y., & Huang, X. (2023). Pankun: A New Generation of Broadband Ocean Bottom Seismograph. Sensors (Basel), 23(11). https://doi.org/10.3390/s23114995 Lognonné, P., Banerdt, W. B., Giardini, D., Pike, W. T., Christensen, U., Laudet, P., De Raucourt, S., Zweifel, P., Calcutt, S., & Bierwirth, M. (2019). SEIS: Insight’s seismic experiment for internal structure of Mars. Space Science Reviews, 215, 1-170. Mantouka, A., Felisberto, P., Santos, P., Zabel, F., Saleiro, M., Jesus, S. M., & Sebastiao, L. (2017). Development and Testing of a Dual Accelerometer Vector Sensor for AUV Acoustic Surveys. Sensors (Basel), 17(6). https://doi.org/10.3390/s17061328 Milligan, D. J., Homeijer, B. D., & Walmsley, R. G. (2011). An ultra-low noise MEMS accelerometer for seismic imaging. SENSORS, 2011 IEEE, Nanometrics Inc. (2006). Trillium 120P Broadband Seismometer, User Guide. In ( Rev. 15149R3 ed.). Kanata, Ontario, Canada: Nanometrics Inc. Nanometrics Inc. (2023). Trillium Compact Broadband Seismometer. In: Nanometrics Inc. Ogata, K. (2009). Modern control engineering. Prentice Hall India. Peterson, J. R. (1993). Observations and modeling of seismic background noise (2331-1258). Pike, W., Standley, I., Calcutt, S., & Mukherjee, A. (2018). A broad-band silicon microseismometer with 0.25 NG/rtHz performance. 2018 IEEE Micro Electro Mechanical Systems (MEMS), Shariat-Panahi, S., Alegria, F. C., & Làzaro, A. M. (2009). Design and test of a high-resolution acquisition system for marine seismology. IEEE instrumentation & measurement magazine, 12(2), 8-15. Shinohara, M., Yamada, T., Shiobara, H., & Yamashita, Y. (2018). Development and evaluation of compact long-term broadband ocean bottom seismometer. 2018 OCEANS-MTS/IEEE Kobe Techno-Oceans (OTO), Shinohara, M., Yamada, T., Shiobara, H., & Yamashita, Y. (2021). Development of a Compact Broadband Ocean-Bottom Seismometer. Seismological Research Letters, 92(6), 3610-3625. https://doi.org/10.1785/0220210100 Shyu, J. B. H., Chuang, Y.-R., Chen, Y.-L., Lee, Y.-R., & Cheng, C.-T. (2016). A New On-Land Seismogenic Structure Source Database from the Taiwan Earthquake Model (TEM) Project for Seismic Hazard Analysis of Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 27(3). https://doi.org/10.3319/tao.2015.11.27.02(tem) Shyu, J. B. H., Sieh, K., Chen, Y. G., & Liu, C. S. (2005). Neotectonic architecture of Taiwan and its implications for future large earthquakes. Journal of Geophysical Research: Solid Earth, 110(B8). https://doi.org/10.1029/2004jb003251 Sutton, G., Duennebier, F., & Iwatake, B. (1981). Coupling of ocean bottom seismometers to soft bottom. Marine geophysical researches, 5, 35-51. Sutton, G. H., & Duennebier, F. K. (1987). Optimum design of ocean bottom seismometers. Marine geophysical researches, 9, 47-65. Sutton, G. H., McDonald, W. G., Prentiss, D., & Thanos, S. (1965). Ocean-bottom seismic observatories. Proceedings of the IEEE, 53(12), 1909-1921. Thomson, J., & Schneider, W. (1962). An automatic marine seismic monitoring and recording device. Proceedings of the IRE, 50(11), 2209-2216. Thwaites, F., Wooding, F., Ware, J., Peal, K., & Collins, J. (2005). A leveling system for an ocean-bottom seismometer. Proceedings of OCEANS 2005 MTS/IEEE, Tréhu, A. M., & Solomon, S. C. (1981). Coupling parameters of the MIT OBS at two nearshore sites. Marine geophysical researches, 5(1), 69-78. Ueda, T., Mitsuhata, Y., Uchida, T., Marui, A., & Ohsawa, K. (2014). A new marine magnetotelluric measurement system in a shallow-water environment for hydrogeological study. Journal of Applied Geophysics, 100, 23-31. https://doi.org/10.1016/j.jappgeo.2013.10.003 Wang, C.-C., Chen, P.-C., Kuo, B.-Y., & Lin, C.-R. (2012). Development of a geophone-based ocean bottom seismometer in Taiwan 2012 Oceans - Yeosu, Wang, C.-C., Chen, P.-C., Lin, C.-R., & Kuo, B.-Y. (2011). Development of a short-period ocean bottom seismometer in Taiwan. 2011 IEEE Symposium on Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies, Wang, P. C. (1967). Subsurface geology and oil possibilities of the Taoyuan-Miaoli offshore region, Taiwan. Wang, X., Piao, S., Lei, Y., & Li, N. (2018). In Design of an Ocean Bottom Seismometer Sensor: Minimize Vibration Experienced by Underwater Low-Frequency Noise. Sensors (Basel), 18(10). https://doi.org/10.3390/s18103446 Zhao, A., Bi, X., Hui, J., Zeng, C., & Ma, L. (2018). Application and Extension of Vertical Intensity Lower-Mode in Methods for Target Depth-Resolution with a Single-Vector Sensor. Sensors (Basel), 18(7). https://doi.org/10.3390/s18072073 Zou, X., Thiruvenkatanathan, P., & Seshia, A. A. (2014). A seismic-grade resonant MEMS accelerometer. Journal of Microelectromechanical Systems, 23(4), 768-770. 林啟文、盧詩丁、石同生、劉彥求、林偉雄、林燕慧(2007)台灣北部的活動斷層。經濟部中央地質調查所特刊,19號,共129頁。 林慶仁(2000)。台灣現行測震儀器之特性檢測研究。國立中央大學,碩士論文。 林慶仁(2009)。台灣東部海域地震觀測研究暨儀器研發。國立中央大學,博士論文。 陳冠宇(2014)。台灣北部由造山帶至弧後張裂之陸域及海域構造研究。國立中央大學地球科學系,博士論文,共183頁。 陳又嘉(2024)。淺海型海底電磁儀的研發與元件驗證方法。國立臺灣大學,碩士論文。 黃雯苓(2007)台灣東北部海域斷層系統之研究。國立臺灣海洋大學應用地球研究所,碩士論文,共90頁。 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94985 | - |
dc.description.abstract | 海底地震儀於水下獨立作業時,由於海床的不平整以及水流等擾動,使得感震器的姿態難以掌握。任何感震器對於傾角皆存在一定敏感度,過大的傾角會降低感測器的表現,尤其是信號的振幅。因此,多數的海底地震儀皆有搭載平衡裝置,校正角度為360°。然而,根據我們先前部署的經驗,確保感震器於海床保持水平姿態,並不需要過高的校正角度。因此,在本研究中我們基於低角度的假設,設計出全新概念的平衡機構。我們也透過振動平台測試,確保新型設計不會對地動信號造成影響。在控制方面,除了原有的週期性檢查外,我們還嘗試在系統中加入臨界值監控,目的是將信號品質最佳化。基於全新的平衡裝置,我們整合出一地震儀原型 CH01,並將其與信號品質良好的寬頻地震站進行共站比對。儘管雜訊水平不如預期,但在區域地震觀測方面仍具有一定水準。研究最後,我們也對淺海型 OBS 的未來發展提出幾個論點。現階段,為了符合成本效益,淺海型 OBS 應朝繫泊式方向發展,並需考量目標佈放的環境與時長,提出更完善的設計。未來應整合OBS系統並實際進行水下測試,以確保裝置的穩定性和可靠性。 | zh_TW |
dc.description.abstract | Ocean Bottom Seismometers (OBS) face significant challenges in maintaining proper sensor orientation due to uneven seabeds and water currents during underwater operations. Since all seismic sensors are sensitive to tilt, excessive tilt can degrade their performance, particularly in signal amplitude. Consequently, most OBS are equipped with leveling devices that offer 360° correction angles. However, our previous deployment experiences indicate that such extensive correction angles are unnecessary. In this study, we propose a novel leveling device based on a low-angle hypothesis, aiming to reduce complexity and cost while maintaining functionality.
We conducted vibration platform tests to ensure that the new design does not interfere with ground motion signals. Additionally, we incorporated threshold monitoring into the system alongside traditional periodic checks to optimize signal quality. Using the new leveling device, we assembled a prototype seismometer, CH01, and compared its performance with that of high-quality broadband seismic stations. Despite higher-than-expected noise levels, CH01 demonstrated satisfactory performance in regional earthquake observations. Finally, to achieve cost-effectiveness, we suggest that shallow-water OBS should be designed as moored systems. Future research should focus on optimizing the assembly process of the leveling device, conducting comprehensive tests, and performing actual underwater tests to ensure device stability and reliability. Considerations of deployment environments and durations will be essential for refining the design and improving the overall performance of the OBS system. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-23T16:17:06Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-23T16:17:06Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 目 次 i
圖 次 iii 表 次 v 中文摘要 vi Abstract vii 第一章 緒論 1 1.1研究動機 1 1.2 OBS自動平衡裝置 1 1.3前人研究 3 第二章 低角度自動平衡裝置設計 5 2.1感震器選擇 5 2.2機械傳動設計 6 2.3控制電路架構 7 2.3.1電源管理 7 2.3.信號調整器 8 2.3.3臨界值監控器 8 2.4系統控制流程 8 第三章 平衡機構檢測方式 21 3.1機構共振檢驗方法 21 3.2傾角臨界值測試 21 第四章 平衡機構檢測結果 25 4.1機構共振檢驗結果 25 4.2傾角臨界值測試結果 25 第五章 儀器共站測試與成果 29 5.1共站測試 29 5.2資料處理與討論 29 第六章 討論 41 6.1平衡裝置設計 41 6.1.1 傾角臨界值監控 41 6.1.2 裝置比較與分析 41 6.2淺海OBS設計 42 6.2.1部署與回收方式 42 6.2.2水密艙體設計 43 第七章 結論 50 參考文獻 51 附錄 A 平衡裝置工作紀錄 56 附錄 B 平衡裝置主要零件 69 附錄 C Geophone規格書 70 附錄 D 傾斜計規格書 71 | - |
dc.language.iso | zh_TW | - |
dc.title | 應用於短週期海底地震儀之低角度平衡裝置設計 | zh_TW |
dc.title | The design of a low-angle active leveling system for short-period Ocean Bottom Seismometer | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.coadvisor | 龔源成 | zh_TW |
dc.contributor.coadvisor | Yuancheng Gung | en |
dc.contributor.oralexamcommittee | 郭本垣;吳逸民 | zh_TW |
dc.contributor.oralexamcommittee | Ban-Yuan Kuo;Yih-Min Wu | en |
dc.subject.keyword | 海底地震儀(OBS),自動平衡裝置,區域地震觀測,淺海型OBS,水下儀器, | zh_TW |
dc.subject.keyword | Ocean Bottom Seismometers(OBS),Leveling System,Regional Earthquake Observation,Shallow-Water OBS,Underwater Instruments, | en |
dc.relation.page | 72 | - |
dc.identifier.doi | 10.6342/NTU202404206 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-08-13 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 地質科學系 | - |
dc.date.embargo-lift | 2027-06-15 | - |
顯示於系所單位: | 地質科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 此日期後於網路公開 2027-06-15 | 4.76 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。