Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 流行病學與預防醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94960
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張慶國zh_TW
dc.contributor.advisorChin-Kuo Changen
dc.contributor.author林智文zh_TW
dc.contributor.authorChih-Wen Linen
dc.date.accessioned2024-08-21T16:55:34Z-
dc.date.available2024-08-22-
dc.date.copyright2024-08-21-
dc.date.issued2024-
dc.date.submitted2024-07-30-
dc.identifier.citation1. Consensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis. (1993). Am J Med, 94(6), 646-650.
2. Strom, O., Borgstrom, F., Kanis, J. A., Compston, J., Cooper, C., McCloskey, E. V., & Jonsson, B. (2011). Osteoporosis: burden, health care provision and opportunities in the EU: a report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos, 6, 59-155.
3. Lin, Y. C., & Pan, W. H. (2011). Bone mineral density in adults in Taiwan: results of the Nutrition and Health Survey in Taiwan 2005-2008 (NAHSIT 2005-2008). Asia Pac J Clin Nutr, 20(2), 283-291.
4. Chandran, M., Brind'Amour, K., Fujiwara, S., Ha, Y. C., Tang, H., Hwang, J. S., Tinker, J., & Eisman, J. A. (2023). Prevalence of osteoporosis and incidence of related fractures in developed economies in the Asia Pacific region: a systematic review. Osteoporos Int, 34(6), 1037-1053.
5. Lee, M. T., Fu, S. H., Hsu, C. C., Chen, H. M., Lin, J. W., Tsai, K. S., Hwang, J. S., Lin, S. C., Wu, C. H., & Wang, C. Y. (2023). Epidemiology and clinical impact of osteoporosis in Taiwan: A 12-year trend of a nationwide population-based study. J Formos Med Assoc, 122 Suppl 1, S21-S35.
6. Eiskjaer, S., Ostgard, S. E., Jakobsen, B. W., Jensen, J., & Lucht, U. (1992). Years of potential life lost after hip fracture among postmenopausal women. Acta Orthop Scand, 63(3), 293-296.
7. Collaborators, G. B. D. F. (2021). Global, regional, and national burden of bone fractures in 204 countries and territories, 1990-2019: a systematic analysis from the Global Burden of Disease Study 2019. Lancet Healthy Longev, 2(9), e580-e592.
8. Shen, Y., Huang, X., Wu, J., Lin, X., Zhou, X., Zhu, Z., Pan, X., Xu, J., Qiao, J., Zhang, T., Ye, L., Jiang, H., Ren, Y., & Shan, P. F. (2022). The Global Burden of Osteoporosis, Low Bone Mass, and Its Related Fracture in 204 Countries and Territories, 1990-2019. Front Endocrinol (Lausanne), 13, 882241.
9. Corrado, A., Cici, D., Rotondo, C., Maruotti, N., & Cantatore, F. P. (2020). Molecular Basis of Bone Aging. Int J Mol Sci, 21(10).
10. Fitzpatrick, L. A. (2002). Secondary causes of osteoporosis. Mayo Clin Proc, 77(5), 453-468.
11. Sozen, T., Ozisik, L., & Basaran, N. C. (2017). An overview and management of osteoporosis. Eur J Rheumatol, 4(1), 46-56.
12. Tai, T. W., Huang, C. F., Huang, H. K., Yang, R. S., Chen, J. F., Cheng, T. T., Chen, F. P., Chen, C. H., Chang, Y. F., Hung, W. C., Han, D. S., Chan, D. C., Tsai, C. C., Chen, I. W., Chan, W. P., Chang, H. J., Hwang, J. S., & Wu, C. H. (2023). Clinical practice guidelines for the prevention and treatment of osteoporosis in Taiwan: 2022 update. J Formos Med Assoc, 122 Suppl 1, S4-S13.
13. Green, A. D., Colon-Emeric, C. S., Bastian, L., Drake, M. T., & Lyles, K. W. (2004). Does this woman have osteoporosis? JAMA, 292(23), 2890-2900.
14. Koh, L. K., Sedrine, W. B., Torralba, T. P., Kung, A., Fujiwara, S., Chan, S. P., Huang, Q. R., Rajatanavin, R., Tsai, K. S., Park, H. M., Reginster, J. Y., & Osteoporosis Self-Assessment Tool for Asians Research, G. (2001). A simple tool to identify asian women at increased risk of osteoporosis. Osteoporos Int, 12(8), 699-705.
15. Su, F. M., Liu, D. H., Chen, J. F., Yu, S. F., Chiu, W. C., Hsu, C. Y., Ko, C. H., Tsai, C. C., & Cheng, T. T. (2015). Development and Validation of an Osteoporosis Self-Assessment Tool for Taiwan (OSTAi) Postmenopausal Women-A Sub-Study of the Taiwan OsteoPorosis Survey (TOPS). PLoS One, 10(6), e0130716.
16. Liu, D. H., Hsu, C. Y., Wu, P. C., Chen, Y. C., Chen, Y. Y., Chen, J. F., Yu, S. F., & Cheng, T. T. (2021). Simple Self-Assessment Tool to Predict Osteoporosis in Taiwanese Men. Front Med (Lausanne), 8, 713535.
17. Baim, S., Binkley, N., Bilezikian, J. P., Kendler, D. L., Hans, D. B., Lewiecki, E. M., & Silverman, S. (2008). Official Positions of the International Society for Clinical Densitometry and executive summary of the 2007 ISCD Position Development Conference. J Clin Densitom, 11(1), 75-91.
18. Kanis, J. A., Johnell, O., Oden, A., Johansson, H., & McCloskey, E. (2008). FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos Int, 19(4), 385-397.
19. Shao, C. J., Hsieh, Y. H., Tsai, C. H., & Lai, K. A. (2009). A nationwide seven-year trend of hip fractures in the elderly population of Taiwan. Bone, 44(1), 125-129.
20. Kanis, J. A., Oden, A., Johansson, H., Borgstrom, F., Strom, O., & McCloskey, E. (2009). FRAX and its applications to clinical practice. Bone, 44(5), 734-743.
21. Kanis, J. A., McCloskey, E. V., Johansson, H., Oden, A., Strom, O., & Borgstrom, F. (2010). Development and use of FRAX in osteoporosis. Osteoporos Int, 21 Suppl 2, S407-413.
22. Pocket Reference to Osteoporosis, S. Ferrari, Roux, C., Editor 2019, Springer International Publishing.
23. Looker, A. C., Wahner, H. W., Dunn, W. L., Calvo, M. S., Harris, T. B., Heyse, S. P., Johnston, C. C., Jr., & Lindsay, R. (1998). Updated data on proximal femur bone mineral levels of US adults. Osteoporos Int, 8(5), 468-489.
24. Kanis, J. A. (2002). Diagnosis of osteoporosis and assessment of fracture risk. Lancet, 359(9321), 1929-1936.
25. Kanis, J. A., McCloskey, E. V., Johansson, H., Oden, A., Melton, L. J., 3rd, & Khaltaev, N. (2008). A reference standard for the description of osteoporosis. Bone, 42(3), 467-475.
26. Kanis, J. A. (1994). Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. WHO Study Group. Osteoporos Int, 4(6), 368-381.
27. Genant, H. K., Wu, C. Y., van Kuijk, C., & Nevitt, M. C. (1993). Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res, 8(9), 1137-1148.
28. Krieg, M. A., Barkmann, R., Gonnelli, S., Stewart, A., Bauer, D. C., Del Rio Barquero, L., Kaufman, J. J., Lorenc, R., Miller, P. D., Olszynski, W. P., Poiana, C., Schott, A. M., Lewiecki, E. M., & Hans, D. (2008). Quantitative ultrasound in the management of osteoporosis: the 2007 ISCD Official Positions. J Clin Densitom, 11(1), 163-187.
29. Nayak, S., Olkin, I., Liu, H., Grabe, M., Gould, M. K., Allen, I. E., Owens, D. K., & Bravata, D. M. (2006). Meta-analysis: accuracy of quantitative ultrasound for identifying patients with osteoporosis. Ann Intern Med, 144(11), 832-841.
30. Khaw, K. T., Reeve, J., Luben, R., Bingham, S., Welch, A., Wareham, N., Oakes, S., & Day, N. (2004). Prediction of total and hip fracture risk in men and women by quantitative ultrasound of the calcaneus: EPIC-Norfolk prospective population study. Lancet, 363(9404), 197-202.
31. Fujiwara, S., Sone, T., Yamazaki, K., Yoshimura, N., Nakatsuka, K., Masunari, N., Fujita, S., Kushida, K., & Fukunaga, M. (2005). Heel bone ultrasound predicts non-spine fracture in Japanese men and women. Osteoporos Int, 16(12), 2107-2112.
32. Blake, G. M., & Fogelman, I. (2009). The clinical role of dual energy X-ray absorptiometry. Eur J Radiol, 71(3), 406-414.
33. Lane, N. E. (2006). Epidemiology, etiology, and diagnosis of osteoporosis. Am J Obstet Gynecol, 194(2 Suppl), S3-11.
34. Strotmeyer, E. S., Cauley, J. A., Schwartz, A. V., Nevitt, M. C., Resnick, H. E., Zmuda, J. M., Bauer, D. C., Tylavsky, F. A., de Rekeneire, N., Harris, T. B., Newman, A. B., & Health, A. B. C. S. (2004). Diabetes is associated independently of body composition with BMD and bone volume in older white and black men and women: The Health, Aging, and Body Composition Study. J Bone Miner Res, 19(7), 1084-1091.
35. Ma, L., Oei, L., Jiang, L., Estrada, K., Chen, H., Wang, Z., Yu, Q., Zillikens, M. C., Gao, X., & Rivadeneira, F. (2012). Association between bone mineral density and type 2 diabetes mellitus: a meta-analysis of observational studies. Eur J Epidemiol, 27(5), 319-332.
36. Oei, L., Zillikens, M. C., Dehghan, A., Buitendijk, G. H., Castano-Betancourt, M. C., Estrada, K., Stolk, L., Oei, E. H., van Meurs, J. B., Janssen, J. A., Hofman, A., van Leeuwen, J. P., Witteman, J. C., Pols, H. A., Uitterlinden, A. G., Klaver, C. C., Franco, O. H., & Rivadeneira, F. (2013). High bone mineral density and fracture risk in type 2 diabetes as skeletal complications of inadequate glucose control: the Rotterdam Study. Diabetes Care, 36(6), 1619-1628.
37. Haeusler, R. A., McGraw, T. E., & Accili, D. (2018). Biochemical and cellular properties of insulin receptor signalling. Nat Rev Mol Cell Biol, 19(1), 31-44.
38. Faienza, M. F., Luce, V., Ventura, A., Colaianni, G., Colucci, S., Cavallo, L., Grano, M., & Brunetti, G. (2015). Skeleton and glucose metabolism: a bone-pancreas loop. Int J Endocrinol, 2015, 758148.
39. Fulzele, K., Riddle, R. C., DiGirolamo, D. J., Cao, X., Wan, C., Chen, D., Faugere, M. C., Aja, S., Hussain, M. A., Bruning, J. C., & Clemens, T. L. (2010). Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition. Cell, 142(2), 309-319.
40. Pi, M., Wu, Y., & Quarles, L. D. (2011). GPRC6A mediates responses to osteocalcin in beta-cells in vitro and pancreas in vivo. J Bone Miner Res, 26(7), 1680-1683.
41. Pi, M., & Quarles, L. D. (2012). Multiligand specificity and wide tissue expression of GPRC6A reveals new endocrine networks. Endocrinology, 153(5), 2062-2069.
42. DeFronzo, R. A., Tobin, J. D., & Andres, R. (1979). Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol, 237(3), E214-223.
43. Greenfield, M. S., Doberne, L., Kraemer, F., Tobey, T., & Reaven, G. (1981). Assessment of insulin resistance with the insulin suppression test and the euglycemic clamp. Diabetes, 30(5), 387-392.
44. Tam, C. S., Xie, W., Johnson, W. D., Cefalu, W. T., Redman, L. M., & Ravussin, E. (2012). Defining insulin resistance from hyperinsulinemic-euglycemic clamps. Diabetes Care, 35(7), 1605-1610.
45. Choi, C. S., Kim, M. Y., Han, K., & Lee, M. S. (2012). Assessment of beta-cell function in human patients. Islets, 4(2), 79-83.
46. Park, S. Y., Gautier, J. F., & Chon, S. (2021). Assessment of Insulin Secretion and Insulin Resistance in Human. Diabetes Metab J, 45(5), 641-654.
47. Matthews, D. R., Hosker, J. P., Rudenski, A. S., Naylor, B. A., Treacher, D. F., & Turner, R. C. (1985). Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia, 28(7), 412-419.
48. Wilding, J. P. (2014). The role of the kidneys in glucose homeostasis in type 2 diabetes: clinical implications and therapeutic significance through sodium glucose co-transporter 2 inhibitors. Metabolism, 63(10), 1228-1237.
49. Yue, X. D., Wang, J. Y., Zhang, X. R., Yang, J. H., Shan, C. Y., Zheng, M. Y., Ren, H. Z., Zhang, Y., Yang, S. H., Guo, Z. H., Chang, B., & Chang, B. C. (2017). Characteristics and Impact Factors of Renal Threshold for Glucose Excretion in Patients with Type 2 Diabetes Mellitus. J Korean Med Sci, 32(4), 621-627.
50. Hieshima, K., Sugiyama, S., Yoshida, A., Kurinami, N., Suzuki, T., Ijima, H., Miyamoto, F., Kajiwara, K., Jinnouchi, K., Jinnouchi, T., & Jinnouchi, H. (2020). Elevation of the renal threshold for glucose is associated with insulin resistance and higher glycated hemoglobin levels. J Diabetes Investig, 11(3), 617-625.
51. Levy, J. C., Matthews, D. R., & Hermans, M. P. (1998). Correct homeostasis model assessment (HOMA) evaluation uses the computer program. Diabetes Care, 21(12), 2191-2192.
52. HOMA2 calculator. University of Oxford, 2019. Available from: https://www.dtu.ox.ac.uk/homacalculator/.
53. Katz, A., Nambi, S. S., Mather, K., Baron, A. D., Follmann, D. A., Sullivan, G., & Quon, M. J. (2000). Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans. J Clin Endocrinol Metab, 85(7), 2402-2410.
54. Kim, T. J., Kim, H. J., Kim, Y. B., Lee, J. Y., Lee, H. S., Hong, J. H., & Lee, J. W. (2016). Comparison of Surrogate Markers as Measures of Uncomplicated Insulin Resistance in Korean Adults. Korean J Fam Med, 37(3), 188-196.
55. McAuley, K. A., Williams, S. M., Mann, J. I., Walker, R. J., Lewis-Barned, N. J., Temple, L. A., & Duncan, A. W. (2001). Diagnosing insulin resistance in the general population. Diabetes Care, 24(3), 460-464.
56. Moon, S., Park, J. H., Jang, E. J., Park, Y. K., Yu, J. M., Park, J. S., Ahn, Y., Choi, S. H., & Yoo, H. J. (2018). The Cut-off Values of Surrogate Measures for Insulin Sensitivity in a Healthy Population in Korea according to the Korean National Health and Nutrition Examination Survey (KNHANES) 2007-2010. J Korean Med Sci, 33(29), e197.
57. Samuel, V. T., & Shulman, G. I. (2016). The pathogenesis of insulin resistance: integrating signaling pathways and substrate flux. J Clin Invest, 126(1), 12-22.
58. Ogawa, W., Araki, E., Ishigaki, Y., Hirota, Y., Maegawa, H., Yamauchi, T., Yorifuji, T., & Katagiri, H. (2022). New classification and diagnostic criteria for insulin resistance syndrome. Endocr J, 69(2), 107-113.
59. Nolan, C. J., & Prentki, M. (2019). Insulin resistance and insulin hypersecretion in the metabolic syndrome and type 2 diabetes: Time for a conceptual framework shift. Diab Vasc Dis Res, 16(2), 118-127.
60. Thomas, D. D., Corkey, B. E., Istfan, N. W., & Apovian, C. M. (2019). Hyperinsulinemia: An Early Indicator of Metabolic Dysfunction. J Endocr Soc, 3(9), 1727-1747.
61. Petersen, M. C., & Shulman, G. I. (2018). Mechanisms of Insulin Action and Insulin Resistance. Physiol Rev, 98(4), 2133-2223.
62. Gallwitz, B. (2006). The fate of Beta-cells in type 2 diabetes and the possible role of pharmacological interventions. Rev Diabet Stud, 3(4), 208-216.
63. Pennings, N., Jaber, J., & Ahiawodzi, P. (2018). Ten-year weight gain is associated with elevated fasting insulin levels and precedes glucose elevation. Diabetes Metab Res Rev, 34(4), e2986.
64. Abdul-Ghani, M., & DeFronzo, R. A. (2021). Insulin Resistance and Hyperinsulinemia: the Egg and the Chicken. J Clin Endocrinol Metab, 106(4), e1897-e1899.
65. Costantini, S., & Conte, C. (2019). Bone health in diabetes and prediabetes. World J Diabetes, 10(8), 421-445.
66. Ye, S., Shi, L., & Zhang, Z. (2023). Effect of insulin resistance on gonadotropin and bone mineral density in nondiabetic postmenopausal women. Front Endocrinol (Lausanne), 14, 1235102.
67. Fu, Y. H., Liu, W. J., Lee, C. L., & Wang, J. S. (2022). Associations of insulin resistance and insulin secretion with bone mineral density and osteoporosis in a general population. Front Endocrinol (Lausanne), 13, 971960.
68. Campillo-Sanchez, F., Usategui-Martin, R., Ruiz-de Temino, A., Gil, J., Ruiz-Mambrilla, M., Fernandez-Gomez, J. M., Duenas-Laita, A., & Perez-Castrillon, J. L. (2020). Relationship between Insulin Resistance (HOMA-IR), Trabecular Bone Score (TBS), and Three-Dimensional Dual-Energy X-ray Absorptiometry (3D-DXA) in Non-Diabetic Postmenopausal Women. J Clin Med, 9(6).
69. Yang, J., Hong, N., Shim, J. S., Rhee, Y., & Kim, H. C. (2018). Association of Insulin Resistance with Lower Bone Volume and Strength Index of the Proximal Femur in Nondiabetic Postmenopausal Women. J Bone Metab, 25(2), 123-132.
70. Kalimeri, M., Leek, F., Wang, N. X., Koh, H. R., Roy, N. C., Cameron-Smith, D., Kruger, M. C., Henry, C. J., & Totman, J. J. (2018). Association of Insulin Resistance with Bone Strength and Bone Turnover in Menopausal Chinese-Singaporean Women without Diabetes. Int J Environ Res Public Health, 15(5).
71. Li, G., Xu, Z., Lin, H., Chen, Y., Li, X., & Chang, S. (2018). Association between insulin resistance and the magnetic resonance spectroscopy-determined marrow fat fraction in nondiabetic postmenopausal women. Menopause, 25(6), 676-682.
72. Shanbhogue, V. V., Finkelstein, J. S., Bouxsein, M. L., & Yu, E. W. (2016). Association Between Insulin Resistance and Bone Structure in Nondiabetic Postmenopausal Women. J Clin Endocrinol Metab, 101(8), 3114-3122.
73. Zheng, T., Yang, L., Liu, Y., Liu, H., Yu, J., Zhang, X., & Qin, S. (2015). Plasma DPP4 Activities Are Associated With Osteoporosis in Postmenopausal Women With Normal Glucose Tolerance. J Clin Endocrinol Metab, 100(10), 3862-3870.
74. Shin, D., Kim, S., Kim, K. H., Lee, K., & Park, S. M. (2014). Association between insulin resistance and bone mass in men. J Clin Endocrinol Metab, 99(3), 988-995.
75. Srikanthan, P., Crandall, C. J., Miller-Martinez, D., Seeman, T. E., Greendale, G. A., Binkley, N., & Karlamangla, A. S. (2014). Insulin resistance and bone strength: findings from the study of midlife in the United States. J Bone Miner Res, 29(4), 796-803
76. Liang, J., Lian, S., Qian, X., Wang, N., Huang, H., Yao, J., Tang, K., Chen, L., Li, L., Lin, W., Chen, H., Li, M., Lin, L., Lu, J., Bi, Y., Wang, W., Ning, G., Wen, J., & Chen, G. (2017). Association Between Bone Mineral Density and Pancreatic beta-Cell Function in Elderly Men and Postmenopausal Women. J Endocr Soc, 1(8), 1085-1094.
77. American Diabetes, A. (2019). Standards of Medical Care in Diabetes-2019 Abridged for Primary Care Providers. Clin Diabetes, 37(1), 11-34.
78. 2023台灣成人骨質疏鬆症防治之共識及指引。中華民國骨質疏鬆症學會,台灣成人骨質疏鬆症防治指引編輯小組彙編,2023。
79. Garg, M. K., & Kharb, S. (2013). Dual energy X-ray absorptiometry: Pitfalls in measurement and interpretation of bone mineral density. Indian J Endocrinol Metab, 17(2), 203-210.
80. Tenne, M., McGuigan, F., Besjakov, J., Gerdhem, P., & Akesson, K. (2013). Degenerative changes at the lumbar spine--implications for bone mineral density measurement in elderly women. Osteoporos Int, 24(4), 1419-1428.
81. Dehghan, M., & Merchant, A. T. (2008). Is bioelectrical impedance accurate for use in large epidemiological studies? Nutr J, 7, 26.
82. Duren, D. L., Sherwood, R. J., Czerwinski, S. A., Lee, M., Choh, A. C., Siervogel, R. M., & Cameron Chumlea, W. (2008). Body composition methods: comparisons and interpretation. J Diabetes Sci Technol, 2(6), 1139-1146.
83. Verney, J., Metz, L., Chaplais, E., Cardenoux, C., Pereira, B., & Thivel, D. (2016). Bioelectrical impedance is an accurate method to assess body composition in obese but not severely obese adolescents. Nutr Res, 36(7), 663-670.
84. Verney, J., Schwartz, C., Amiche, S., Pereira, B., & Thivel, D. (2015). Comparisons of a Multi-Frequency Bioelectrical Impedance Analysis to the Dual-Energy X-Ray Absorptiometry Scan in Healthy Young Adults Depending on their Physical Activity Level. J Hum Kinet, 47, 73-80.
85. Leahy, S., O'Neill, C., Sohun, R., & Jakeman, P. (2012). A comparison of dual energy X-ray absorptiometry and bioelectrical impedance analysis to measure total and segmental body composition in healthy young adults. Eur J Appl Physiol, 112(2), 589-595.
86. Yamada, Y., Nishizawa, M., Uchiyama, T., Kasahara, Y., Shindo, M., Miyachi, M., & Tanaka, S. (2017). Developing and Validating an Age-Independent Equation Using Multi-Frequency Bioelectrical Impedance Analysis for Estimation of Appendicular Skeletal Muscle Mass and Establishing a Cutoff for Sarcopenia. Int J Environ Res Public Health, 14(7).
87. Chen, L. K., Liu, L. K., Woo, J., Assantachai, P., Auyeung, T. W., Bahyah, K. S., Chou, M. Y., Chen, L. Y., Hsu, P. S., Krairit, O., Lee, J. S., Lee, W. J., Lee, Y., Liang, C. K., Limpawattana, P., Lin, C. S., Peng, L. N., Satake, S., Suzuki, T., . . . Arai, H. (2014). Sarcopenia in Asia: consensus report of the Asian Working Group for Sarcopenia. J Am Med Dir Assoc, 15(2), 95-101.
88. Breusch, T. S.; Pagan, A. R. (1979). A Simple Test for Heteroskedasticity and Random Coefficient Variation. Econometrica, 47(5), 1287–1294.
89. Cook, R. D.; Weisberg, S. (1983). Diagnostics for Heteroskedasticity in Regression. Biometrika, 70(1), 1–10.
90. DeLong, E. R., DeLong, D. M., & Clarke-Pearson, D. L. (1988). Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics, 44(3), 837-845.
91. Roden, M., & Shulman, G. I. (2019). The integrative biology of type 2 diabetes. Nature, 576(7785), 51-60.
92. Dienelt, A., & zur Nieden, N. I. (2011). Hyperglycemia impairs skeletogenesis from embryonic stem cells by affecting osteoblast and osteoclast differentiation. Stem Cells Dev, 20(3), 465-474.
93. Starup-Linde, J., Eriksen, S. A., Lykkeboe, S., Handberg, A., & Vestergaard, P. (2014). Biochemical markers of bone turnover in diabetes patients--a meta-analysis, and a methodological study on the effects of glucose on bone markers. Osteoporos Int, 25(6), 1697-1708.
94. Saito, M., & Marumo, K. (2015). Effects of Collagen Crosslinking on Bone Material Properties in Health and Disease. Calcif Tissue Int, 97(3), 242-261.
95. Tang, S. Y., Zeenath, U., & Vashishth, D. (2007). Effects of non-enzymatic glycation on cancellous bone fragility. Bone, 40(4), 1144-1151.
96. Kan, B., Zhao, Q., Wang, L., Xue, S., Cai, H., & Yang, S. (2021). Association between lipid biomarkers and osteoporosis: a cross-sectional study. BMC Musculoskelet Disord, 22(1), 759.
97. Nuttall, M. E., & Gimble, J. M. (2004). Controlling the balance between osteoblastogenesis and adipogenesis and the consequent therapeutic implications. Curr Opin Pharmacol, 4(3), 290-294.
98. Yamaguchi, T., Sugimoto, T., Yano, S., Yamauchi, M., Sowa, H., Chen, Q., & Chihara, K. (2002). Plasma lipids and osteoporosis in postmenopausal women. Endocr J, 49(2), 211-217.
99. Parhami, F., Jackson, S. M., Tintut, Y., Le, V., Balucan, J. P., Territo, M., & Demer, L. L. (1999). Atherogenic diet and minimally oxidized low density lipoprotein inhibit osteogenic and promote adipogenic differentiation of marrow stromal cells. J Bone Miner Res, 14(12), 2067-2078.
100. Bredella, M. A., Gill, C. M., Gerweck, A. V., Landa, M. G., Kumar, V., Daley, S. M., Torriani, M., & Miller, K. K. (2013). Ectopic and serum lipid levels are positively associated with bone marrow fat in obesity. Radiology, 269(2), 534-541.
101. Schwartz, A. V., Sigurdsson, S., Hue, T. F., Lang, T. F., Harris, T. B., Rosen, C. J., Vittinghoff, E., Siggeirsdottir, K., Sigurdsson, G., Oskarsdottir, D., Shet, K., Palermo, L., Gudnason, V., & Li, X. (2013). Vertebral bone marrow fat associated with lower trabecular BMD and prevalent vertebral fracture in older adults. J Clin Endocrinol Metab, 98(6), 2294-2300.
102. Viegas, M., Costa, C., Lopes, A., Griz, L., Medeiro, M. A., & Bandeira, F. (2011). Prevalence of osteoporosis and vertebral fractures in postmenopausal women with type 2 diabetes mellitus and their relationship with duration of the disease and chronic complications. J Diabetes Complications, 25(4), 216-221.
103. Moayeri, A., Mohamadpour, M., Mousavi, S. F., Shirzadpour, E., Mohamadpour, S., & Amraei, M. (2017). Fracture risk in patients with type 2 diabetes mellitus and possible risk factors: a systematic review and meta-analysis. Ther Clin Risk Manag, 13, 455-468.
104. Silva, B. C., Leslie, W. D., Resch, H., Lamy, O., Lesnyak, O., Binkley, N., McCloskey, E. V., Kanis, J. A., & Bilezikian, J. P. (2014). Trabecular bone score: a noninvasive analytical method based upon the DXA image. J Bone Miner Res, 29(3), 518-530.
105. Harvey, N. C., Gluer, C. C., Binkley, N., McCloskey, E. V., Brandi, M. L., Cooper, C., Kendler, D., Lamy, O., Laslop, A., Camargos, B. M., Reginster, J. Y., Rizzoli, R., & Kanis, J. A. (2015). Trabecular bone score (TBS) as a new complementary approach for osteoporosis evaluation in clinical practice. Bone, 78, 216-224.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94960-
dc.description.abstract背景
  骨質疏鬆症是公共衛生上的重要議題,而第二型糖尿病是其風險因子之一。已知第二型糖尿病患者有較高的胰島素阻抗,並伴隨較高的骨質疏鬆症風險。然而,非糖尿病者的胰島素阻抗與骨質密度、骨質疏鬆症風險的關係,過去研究並未有一致的結論。本研究旨在探索非糖尿病者的胰島素阻抗與骨質疏鬆症及骨質密度的相關性。

方法
  本文採橫斷式研究設計,納入台北一家健檢中心在2023年的所有受檢者。研究對象為無糖尿病的50歲以上男性及停經後婦女,分別採用六項胰島素阻抗(或敏感度)指標:Homeostatic model assessments of insulin resistance and β-cell function(HOMA-IR、HOMA-β、HOMA2-IR、HOMA2-β)、Quantitative insulin sensitivity check index(QUICKI)、McAuley,以羅吉斯迴歸模型及線性迴歸模型取得多變項調整後之骨質疏鬆症的勝算比及胰島素阻抗(或敏感度)與三部位(左側股骨頸、左側髖骨、腰椎)骨質密度的相關性。

結果
  共有2,202人進入研究分析。胰島素阻抗指標中,HOMA-IR、HOMA2-IR與骨質疏鬆的發生有顯著正相關(HOMA2-IR調整後勝算比為1.16,95%信賴區間為1.01-1.32),而胰島素敏感度指標QUICKI、McAuley,則與骨質疏鬆症呈顯著負相關。隨著胰島素阻抗指標中HOMA-IR、HOMA2-IR增加,左側股骨頸、左側髖骨、腰椎的骨質密度均顯著下降,而胰島素敏感度指標QUICKI、McAuley與骨質密度則為顯著正相關。

結論
  非糖尿病的50歲以上男性及停經後婦女,胰島素阻抗指數越高,伴隨較高的骨質疏鬆症風險與較低的三部位(左側股骨頸、左側髖骨、腰椎)骨質密度。因此,非糖尿病者若出現較高的胰島素阻抗,可能需要採取相關措施以預防未來骨質疏鬆症的發生。
zh_TW
dc.description.abstractBackground
Osteoporosis is a crucial issue in public health, and type 2 diabetes is one of the risk factors. It is known that type 2 diabetes patients have higher insulin resistance and higher risk of osteoporosis. However, currently there is no consensus on the relationship between insulin resistance (IR) and osteoporosis or bone mineral density (BMD) in nondiabetics. Hence, we aimed to explore the association between IR and osteoporosis as well as BMD in nondiabetics.

Methods
We utilized a cross-sectional study design, including all participants from a health examination center in Taipei in 2023. The study subjects were nondiabetic men over 50 years old and postmenopausal women. Six indices of insulin resistance (or sensitivity) were used: Homeostatic model assessments (HOMA-IR, HOMA-β, HOMA2-IR, HOMA2-β), Quantitative insulin sensitivity check index (QUICKI) and McAuley. Logistic regression and linear regression models were employed to obtain multivariable adjusted odds ratios for osteoporosis and to access the associations between insulin resistance (or sensitivity) and BMD of the left femoral neck, left hip and lumbar spine.

Results
A total of 2,202 individuals were included in the analysis. Among the IR indices, HOMA-IR and HOMA2-IR were positively associated with osteoporosis significantly (aOR for HOMA2-IR 1.16 (95% CI 1.01-1.32)), but the insulin sensitivity (IS) indices QUICKI and McAuley were negatively associated with osteoporosis significantly. As HOMA-IR and HOMA2-IR increased, BMD in the left femoral neck, left hip and lumbar spine significantly decreased, while QUICKI and McAuley were positively associated with BMD significantly.

Conclusion
In nondiabetic men over 50 years old and postmenopausal women, higher IR is associated with a higher risk of osteoporosis and lower BMD in the left femoral neck, left hip and lumbar spine. As a result, preventive strategies are necessary in nondiabetic individuals with higher insulin resistance to against future osteoporosis.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-21T16:55:34Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-21T16:55:34Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 I
致謝 II
中文摘要 III
Abstract V
Table of Contents VII
List of Figures and Tables IX
Chapter 1 Background 1
1.1 Epidemiology 1
1.2 Pathophysiology 2
1.3 Risk factors and screening strategies 3
1.4 Diagnosis 5
1.5 Type 2 diabetes mellitus (DM) and osteoporosis 8
1.6 Insulin sensitivity and resistance 10
1.7 Literature review and summary 14
1.8 Research gaps and study aims 20
Chapter 2 Materials and methods 21
2.1 Study design and participants 21
2.2 Insulin resistance (IR) and sensitivity measurements 23
2.3 Bone mineral density (BMD) measurements 25
2.4 Anthropometric measurements 27
2.5 Clinical and laboratory measurements 29
2.6 Statistical analyses 31
Chapter 3 Results 35
3.1 Characteristics of the study population 35
3.2 Associations between insulin resistance/sensitivity and osteoporosis 40
3.3 Associations between insulin resistance/sensitivity and BMD 42
3.4 Subgroup analysis by different characteristics 45
3.5 Model comparisons 48
Chapter 4 Discussion 50
4.1 Main findings 50
4.2 Comparisons with previous studies 52
4.3 Biological mechanisms 55
4.4 Clinical and public health implications 57
4.5 Limitations and strengths 59
4.6 Future directions and conclusions 61
References 62
Appendices 74
Appendix 1 Secondary causes of osteoporosis 74
Appendix 2 Screening tests for occult vertebral fractures 78
Appendix 3 Osteoporosis Self-assessment Tool for Asians (OSTA) 79
Appendix 4 One-Minute Osteoporosis Risk Awareness Test 80
Appendix 5 Fracture Risk Assessment Tool (FRAX) 81
Appendix 6 Medications for osteoporosis 82
Appendix 7 Scatter matrix of the independent variables 83
Appendix 8 Spline curves and studentized Breusch-Pagan test 84
-
dc.language.isoen-
dc.subject胰島素敏感度zh_TW
dc.subject胰島素阻抗zh_TW
dc.subject骨質密度zh_TW
dc.subject骨質疏鬆症zh_TW
dc.subject第二型糖尿病zh_TW
dc.subjectType 2 diabetesen
dc.subjectOsteoporosisen
dc.subjectBone mineral densityen
dc.subjectInsulin sensitivityen
dc.subjectInsulin resistanceen
dc.title臺灣中老年非糖尿病族群胰島素阻抗與骨質疏鬆之相關性zh_TW
dc.titleAssociation between Insulin Resistance and Osteoporosis in Middle-to-Elderly Nondiabetic Population in Taiwanen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林先和;林英欽zh_TW
dc.contributor.oralexamcommitteeHsien-Ho Lin;Ying-Chin Linen
dc.subject.keyword胰島素阻抗,胰島素敏感度,第二型糖尿病,骨質疏鬆症,骨質密度,zh_TW
dc.subject.keywordInsulin resistance,Insulin sensitivity,Type 2 diabetes,Osteoporosis,Bone mineral density,en
dc.relation.page86-
dc.identifier.doi10.6342/NTU202402004-
dc.rights.note未授權-
dc.date.accepted2024-07-30-
dc.contributor.author-college公共衛生學院-
dc.contributor.author-dept流行病學與預防醫學研究所-
顯示於系所單位:流行病學與預防醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
1.59 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved