請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94958
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張曉華 | zh_TW |
dc.contributor.advisor | Hsiao-Hua Chang | en |
dc.contributor.author | 汪佑寶 | zh_TW |
dc.contributor.author | Yu-Pao Wang | en |
dc.date.accessioned | 2024-08-21T16:54:50Z | - |
dc.date.available | 2024-08-22 | - |
dc.date.copyright | 2024-08-21 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-07-29 | - |
dc.identifier.citation | Aachoui, Y., Sagulenko, V., Miao, E. A., & Stacey, K. J. (2013). Inflammasome-mediated pyroptotic and apoptotic cell death, and defense against infection. Current Opinion in Microbiology, 16(3), 319–326. https://doi.org/10.1016/j.mib.2013.04.004
Alizadehgharib, S., Östberg, A.-K., Larsson, L., & Dahlgren, U. (2018). The Immunomodulatory Properties of 2-Hydroxyethyl Methacrylate are Mediated by the NLRP3 Inflammasome. The Journal of Adhesive Dentistry, 20(3), 213–220. https://doi.org/10.3290/j.jad.a40514 Azad, M. B., Chen, Y., & Gibson, S. B. (2009). Regulation of Autophagy by Reactive Oxygen Species (ROS): Implications for Cancer Progression and Treatment. Antioxidants & Redox Signaling, 11(4), 777–790. https://doi.org/10.1089/ars.2008.2270 Banerjee, I., Behl, B., Mendonca, M., Shrivastava, G., Russo, A. J., Menoret, A., Ghosh, A., Vella, A. T., Vanaja, S. K., Sarkar, S. N., Fitzgerald, K. A., & Rathinam, V. A. K. (2018). Gasdermin D Restrains Type I Interferon Response to Cytosolic DNA by Disrupting Ionic Homeostasis. Immunity, 49(3), 413-426.e5. https://doi.org/10.1016/j.immuni.2018.07.006 Barth, S., Glick, D., & Macleod, K. F. (2010). Autophagy: Assays and artifacts. The Journal of Pathology, 221(2), 117–124. https://doi.org/10.1002/path.2694 Bertheloot, D., Latz, E., & Franklin, B. S. (2021). Necroptosis, pyroptosis and apoptosis: An intricate game of cell death. Cellular & Molecular Immunology, 18(5), 1106–1121. https://doi.org/10.1038/s41423-020-00630-3 Bostanci, N., Meier, A., Guggenheim, B., & Belibasakis, G. N. (2011). Regulation of NLRP3 and AIM2 inflammasome gene expression levels in gingival fibroblasts by oral biofilms. Cellular Immunology, 270(1), 88–93. https://doi.org/10.1016/j.cellimm.2011.04.002 Buzun, K., Gornowicz, A., Lesyk, R., Bielawski, K., & Bielawska, A. (2021). Autophagy Modulators in Cancer Therapy. International Journal of Molecular Sciences, 22(11), 5804. https://doi.org/10.3390/ijms22115804 Carrilho, E., Cardoso, M., Ferreira, M. M., Marto, C. M., Paula, A., & Coelho, A. S. (2019). 10-MDP Based Dental Adhesives: Adhesive Interface Characterization and Adhesive Stability—A Systematic Review. Materials, 12(5), 790. https://doi.org/10.3390/ma12050790 Chang, H.-H., Chang, M.-C., Huang, G.-F., Wang, Y.-L., Chan, C.-P., Wang, T.-M., Lin, P.-S., & Jeng, J.-H. (2012). Effect of triethylene glycol dimethacrylate on the cytotoxicity, cyclooxygenase-2 expression and prostanoids production in human dental pulp cells. International Endodontic Journal, 45(9), 848–858. https://doi.org/10.1111/j.1365-2591.2012.02042.x Chang, H.-H., Chang, M.-C., Lin, L.-D., Lee, J.-J., Wang, T.-M., Huang, C.-H., Yang, T.-T., Lin, H.-J., & Jeng, J.-H. (2010). The mechanisms of cytotoxicity of urethane dimethacrylate to Chinese hamster ovary cells. Biomaterials, 31(27), 6917–6925. https://doi.org/10.1016/j.biomaterials.2010.05.059 Chang, H.-H., Chang, M.-C., Wang, H.-H., Huang, G.-F., Lee, Y.-L., Wang, Y.-L., Chan, C.-P., Yeung, S.-Y., Tseng, S.-K., & Jeng, J.-H. (2014a). Urethane dimethacrylate induces cytotoxicity and regulates cyclooxygenase-2, hemeoxygenase and carboxylesterase expression in human dental pulp cells. Acta Biomaterialia, 10(2), 722–731. https://doi.org/10.1016/j.actbio.2013.10.006 Chang, H.-H., Chang, M.-C., Wang, H.-H., Huang, G.-F., Lee, Y.-L., Wang, Y.-L., Chan, C.-P., Yeung, S.-Y., Tseng, S.-K., & Jeng, J.-H. (2014b). Urethane dimethacrylate induces cytotoxicity and regulates cyclooxygenase-2, hemeoxygenase and carboxylesterase expression in human dental pulp cells. Acta Biomaterialia, 10(2), 722–731. https://doi.org/10.1016/j.actbio.2013.10.006 Chang, H.-H., Guo, M.-K., Kasten, F. H., Chang, M.-C., Huang, G.-F., Wang, Y.-L., Wang, R.-S., & Jeng, J.-H. (2005). Stimulation of glutathione depletion, ROS production and cell cycle arrest of dental pulp cells and gingival epithelial cells by HEMA. Biomaterials, 26(7), 745–753. https://doi.org/10.1016/j.biomaterials.2004.03.021 Chang, M.-C., Chen, J.-H., Lee, H.-N., Chen, S.-Y., Zhong, B.-H., Dhingra, K., Pan, Y.-H., Chang, H.-H., Chen, Y.-J., & Jeng, J.-H. (2023). Inducing cathepsin L expression/production, lysosomal activation, and autophagy of human dental pulp cells by dentin bonding agents, camphorquinone and BisGMA and the related mechanisms. Biomaterials Advances, 145, 213253. https://doi.org/10.1016/j.bioadv.2022.213253 Chang, M.-C., Chen, L.-I., Chan, C.-P., Lee, J.-J., Wang, T.-M., Yang, T.-T., Lin, P.-S., Lin, H.-J., Chang, H.-H., & Jeng, J.-H. (2010). The role of reactive oxygen species and hemeoxygenase-1 expression in the cytotoxicity, cell cycle alteration and apoptosis of dental pulp cells induced by BisGMA. Biomaterials, 31(32), 8164–8171. https://doi.org/10.1016/j.biomaterials.2010.07.049 Chang, M.-C., Lin, L.-D., Chan, C.-P., Chang, H.-H., Chen, L.-I., Lin, H.-J., Yeh, H.-W., Tseng, W.-Y., Lin, P.-S., Lin, C.-C., & Jeng, J.-H. (2009). The effect of BisGMA on cyclooxygenase-2 expression, PGE2 production and cytotoxicity via reactive oxygen species- and MEK/ERK-dependent and -independent pathways. Biomaterials, 30(25), 4070–4077. https://doi.org/10.1016/j.biomaterials.2009.04.034 Chang, M.-C., Lin, L.-D., Chuang, F.-H., Chan, C.-P., Wang, T.-M., Lee, J.-J., Jeng, P.-Y., Tseng, W.-Y., Lin, H.-J., & Jeng, J.-H. (2012). Carboxylesterase expression in human dental pulp cells: Role in regulation of BisGMA-induced prostanoid production and cytotoxicity. Acta Biomaterialia, 8(3), 1380–1387. https://doi.org/10.1016/j.actbio.2011.09.011 Chang, M.-C., Lin, L.-D., Wu, M.-T., Chan, C.-P., Chang, H.-H., Lee, M.-S., Sun, T.-Y., Jeng, P.-Y., Yeung, S.-Y., Lin, H.-J., & Jeng, J.-H. (2015). Effects of Camphorquinone on Cytotoxicity, Cell Cycle Regulation and Prostaglandin E2 Production of Dental Pulp Cells: Role of ROS, ATM/Chk2, MEK/ERK and Hemeoxygenase-1. PLOS ONE, 10(12), e0143663. https://doi.org/10.1371/journal.pone.0143663 Chen, X., Tian, P.-C., Wang, K., Wang, M., & Wang, K. (2022). Pyroptosis: Role and Mechanisms in Cardiovascular Disease. Frontiers in Cardiovascular Medicine, 9, 897815. https://doi.org/10.3389/fcvm.2022.897815 Chen, Y., Azad, M. B., & Gibson, S. B. (2009). Superoxide is the major reactive oxygen species regulating autophagy. Cell Death and Differentiation, 16(7), 1040–1052. https://doi.org/10.1038/cdd.2009.49 Chuang, S.-Y., Yang, C.-H., Chou, C.-C., Chiang, Y.-P., Chuang, T.-H., & Hsu, L.-C. (2013). TLR-induced PAI-2 expression suppresses IL-1β processing via increasing autophagy and NLRP3 degradation. Proceedings of the National Academy of Sciences of the United States of America, 110(40), 16079–16084. https://doi.org/10.1073/pnas.1306556110 Coll, R. C., Robertson, A. A. B., Chae, J. J., Higgins, S. C., Muñoz-Planillo, R., Inserra, M. C., Vetter, I., Dungan, L. S., Monks, B. G., Stutz, A., Croker, D. E., Butler, M. S., Haneklaus, M., Sutton, C. E., Núñez, G., Latz, E., Kastner, D. L., Mills, K. H. G., Masters, S. L., … O’Neill, L. A. J. (2015). A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nature Medicine, 21(3), 248–255. https://doi.org/10.1038/nm.3806 Deretic, V. (2021). Autophagy in inflammation, infection, and immunometabolism. Immunity, 54(3), 437–453. https://doi.org/10.1016/j.immuni.2021.01.018 Duewell, P., Kono, H., Rayner, K. J., Sirois, C. M., Vladimer, G., Bauernfeind, F. G., Abela, G. S., Franchi, L., Nuñez, G., Schnurr, M., Espevik, T., Lien, E., Fitzgerald, K. A., Rock, K. L., Moore, K. J., Wright, S. D., Hornung, V., & Latz, E. (2010). NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature, 464(7293), 1357–1361. https://doi.org/10.1038/nature08938 Fehrenbach, J., Isolan, C. P., & Münchow, E. A. (2021). Is the presence of 10-MDP associated to higher bonding performance for self-etching adhesive systems? A meta-analysis of in vitro studies. Dental Materials: Official Publication of the Academy of Dental Materials, 37(10), 1463–1485. https://doi.org/10.1016/j.dental.2021.08.014 Feitosa, V. P., Pomacóndor-Hernández, C., Ogliari, F. A., Leal, F., Correr, A. B., & Sauro, S. (2014). Chemical interaction of 10-MDP (methacryloyloxi-decyl-dihydrogen-phosphate) in zinc-doped self-etch adhesives. Journal of Dentistry, 42(3), 359–365. https://doi.org/10.1016/j.jdent.2014.01.003 Fuchs, Y., & Steller, H. (2011). Programmed cell death in animal development and disease. Cell, 147(4), 742–758. https://doi.org/10.1016/j.cell.2011.10.033 Fujisawa, S., Kadoma, Y., & Komoda, Y. (1990). Hemolysis mechanism of dental adhesive monomer (methacryloyloxydecyl dihydrogen phosphate) using a phosphatidylcholine liposome system as a model for biomembranes. Dental Materials Journal, 9(2), 136–146. https://doi.org/10.4012/dmj.9.136 Fujita, K., & Nishiyama, N. (2006). 13C NMR analysis of the etching efficacy of acidic monomers in self-etching primers. Journal of Dentistry, 34(2), 123–133. https://doi.org/10.1016/j.jdent.2005.04.005 Fujita Nakajima, K., Nikaido, T., Arita, A., Hirayama, S., & Nishiyama, N. (2018). Demineralization capacity of commercial 10-methacryloyloxydecyl dihydrogen phosphate-based all-in-one adhesive. Dental Materials: Official Publication of the Academy of Dental Materials, 34(10), 1555–1565. https://doi.org/10.1016/j.dental.2018.06.027 Fukegawa, D., Hayakawa, S., Yoshida, Y., Suzuki, K., Osaka, A., & Meerbeek, B. V. (2006). Chemical Interaction of Phosphoric Acid Ester with Hydroxyapatite. Journal of Dental Research, 85(10), 941–944. https://doi.org/10.1177/154405910608501014 Funderburk, S. F., Wang, Q. J., & Yue, Z. (2010). The Beclin 1-VPS34 complex—At the crossroads of autophagy and beyond. Trends in Cell Biology, 20(6), 355–362. https://doi.org/10.1016/j.tcb.2010.03.002 Galluzzi, L., Bravo-San Pedro, J. M., Kepp, O., & Kroemer, G. (2016). Regulated cell death and adaptive stress responses. Cellular and Molecular Life Sciences: CMLS, 73(11–12), 2405–2410. https://doi.org/10.1007/s00018-016-2209-y Galluzzi, L., Kepp, O., & Kroemer, G. (2012). Mitochondria: Master regulators of danger signalling. Nature Reviews. Molecular Cell Biology, 13(12), 780–788. https://doi.org/10.1038/nrm3479 Galluzzi, L., Maiuri, M. C., Vitale, I., Zischka, H., Castedo, M., Zitvogel, L., & Kroemer, G. (2007). Cell death modalities: Classification and pathophysiological implications. Cell Death and Differentiation, 14(7), 1237–1243. https://doi.org/10.1038/sj.cdd.4402148 Galluzzi, L., Vitale, I., Aaronson, S. A., Abrams, J. M., Adam, D., Agostinis, P., Alnemri, E. S., Altucci, L., Amelio, I., Andrews, D. W., Annicchiarico-Petruzzelli, M., Antonov, A. V., Arama, E., Baehrecke, E. H., Barlev, N. A., Bazan, N. G., Bernassola, F., Bertrand, M. J. M., Bianchi, K., … Kroemer, G. (2018). Molecular mechanisms of cell death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death & Differentiation, 25(3), 486–541. https://doi.org/10.1038/s41418-017-0012-4 Glick, D., Barth, S., & Macleod, K. F. (2010a). Autophagy: Cellular and molecular mechanisms. The Journal of Pathology, 221(1), 3–12. https://doi.org/10.1002/path.2697 Glick, D., Barth, S., & Macleod, K. F. (2010b). Autophagy: Cellular and molecular mechanisms. The Journal of Pathology, 221(1), 3–12. https://doi.org/10.1002/path.2697 Hanks, C. T., Strawn, S. E., Wataha, J. C., & Craig, R. G. (1991). Cytotoxic effects of resin components on cultured mammalian fibroblasts. Journal of Dental Research, 70(11), 1450–1455. https://doi.org/10.1177/00220345910700111201 Hass, V., Abuna, G., Pinheiro Feitosa, V., Martini, E. C., Sinhoreti, M. A., Furtado Carvalho, R., Coelho Bandéca, M., Sauro, S., & Loguercio, A. D. (2017). Self-Etching Enamel Bonding Using Acidic Functional Monomers with Different-length Carbon Chains and Hydrophilicity. The Journal of Adhesive Dentistry, 19(6), 497–505. https://doi.org/10.3290/j.jad.a39565 He, Y., Zhao, X., Subahan, N. R., Fan, L., Gao, J., & Chen, H. (2014). The prognostic value of autophagy-related markers beclin-1 and microtubule-associated protein light chain 3B in cancers: A systematic review and meta-analysis. Tumor Biology, 35(8), 7317–7326. https://doi.org/10.1007/s13277-014-2060-4 Heneka, M. T., Kummer, M. P., Stutz, A., Delekate, A., Schwartz, S., Vieira-Saecker, A., Griep, A., Axt, D., Remus, A., Tzeng, T.-C., Gelpi, E., Halle, A., Korte, M., Latz, E., & Golenbock, D. T. (2013). NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature, 493(7434), 674–678. https://doi.org/10.1038/nature11729 Inoue, S., Koshiro, K., Yoshida, Y., De Munck, J., Nagakane, K., Suzuki, K., Sano, H., & Van Meerbeek, B. (2005). Hydrolytic stability of self-etch adhesives bonded to dentin. Journal of Dental Research, 84(12), 1160–1164. https://doi.org/10.1177/154405910508401213 Iwai, H., & Nishiyama, N. (2012). Effect of calcium salt of functional monomer on bonding performance. Journal of Dental Research, 91(11), 1043–1048. https://doi.org/10.1177/0022034512458925 Jochums, A., Volk, J., Perduns, R., Plum, M., Schertl, P., Bakopoulou, A., & Geurtsen, W. (2021). Influence of 2-hydroxyethyl methacrylate (HEMA) exposure on angiogenic differentiation of dental pulp stem cells (DPSCs). Dental Materials: Official Publication of the Academy of Dental Materials, 37(3), 534–546. https://doi.org/10.1016/j.dental.2020.12.008 Johansen, T., & Lamark, T. (2011). Selective autophagy mediated by autophagic adapter proteins. Autophagy, 7(3), 279–296. https://doi.org/10.4161/auto.7.3.14487 Kim, E., Park, H., Lee, S., & Kim, S. (2015). Effect of the Acidic Dental Resin Monomer 10‐methacryloyloxydecyl Dihydrogen Phosphate on Odontoblastic Differentiation of Human Dental Pulp Cells. Basic & Clinical Pharmacology & Toxicology, 117(5), 340–349. https://doi.org/10.1111/bcpt.12404 Kirkin, V., McEwan, D. G., Novak, I., & Dikic, I. (2009). A role for ubiquitin in selective autophagy. Molecular Cell, 34(3), 259–269. https://doi.org/10.1016/j.molcel.2009.04.026 Komatsu, M., Waguri, S., Koike, M., Sou, Y., Ueno, T., Hara, T., Mizushima, N., Iwata, J., Ezaki, J., Murata, S., Hamazaki, J., Nishito, Y., Iemura, S., Natsume, T., Yanagawa, T., Uwayama, J., Warabi, E., Yoshida, H., Ishii, T., … Tanaka, K. (2007). Homeostatic Levels of p62 Control Cytoplasmic Inclusion Body Formation in Autophagy-Deficient Mice. Cell, 131(6), 1149–1163. https://doi.org/10.1016/j.cell.2007.10.035 Kosan, E., Prates-Soares, A., Blunck, U., Neumann, K., & Bitter, K. (2021). Root canal pre-treatment and adhesive system affect bond strength durability of fiber posts ex vivo. Clinical Oral Investigations, 25(11), 6419–6434. https://doi.org/10.1007/s00784-021-03945-1 Krifka, S., Spagnuolo, G., Schmalz, G., & Schweikl, H. (2013). A review of adaptive mechanisms in cell responses towards oxidative stress caused by dental resin monomers. Biomaterials, 34(19), 4555–4563. https://doi.org/10.1016/j.biomaterials.2013.03.019 Krysko, D. V., Garg, A. D., Kaczmarek, A., Krysko, O., Agostinis, P., & Vandenabeele, P. (2012). Immunogenic cell death and DAMPs in cancer therapy. Nature Reviews. Cancer, 12(12), 860–875. https://doi.org/10.1038/nrc3380 Kummer, J. A., Broekhuizen, R., Everett, H., Agostini, L., Kuijk, L., Martinon, F., van Bruggen, R., & Tschopp, J. (2007). Inflammasome components NALP 1 and 3 show distinct but separate expression profiles in human tissues suggesting a site-specific role in the inflammatory response. The Journal of Histochemistry and Cytochemistry: Official Journal of the Histochemistry Society, 55(5), 443–452. https://doi.org/10.1369/jhc.6A7101.2006 Landuyt, K. L. V., Snauwaert, J., Munck, J. D., Peumans, M., Yoshida, Y., Poitevin, A., Coutinho, E., Suzuki, K., Lambrechts, P., & Meerbeek, B. V. (2007). Systematic review of the chemical composition of contemporary dental adhesives. Biomaterials, 28(26), 3757–3785. https://doi.org/10.1016/j.biomaterials.2007.04.044 Liu, X., Liu, L., Wang, X., Jin, Y., Wang, S., Xie, Q., Jin, Y., Zhang, M., Liu, Y., Li, J., Wang, Z., Fu, X., & Jin, C.-Y. (2023). Necroptosis inhibits autophagy by regulating the formation of RIP3/p62/Keap1 complex in shikonin-induced ROS dependent cell death of human bladder cancer. Phytomedicine, 118, 154943. https://doi.org/10.1016/j.phymed.2023.154943 Lovász, B. V., Lempel, E., Szalma, J., Sétáló, G., Vecsernyés, M., & Berta, G. (2021). Influence of TEGDMA monomer on MMP-2, MMP-8, and MMP-9 production and collagenase activity in pulp cells. Clinical Oral Investigations, 25(4), 2269–2279. https://doi.org/10.1007/s00784-020-03545-5 Lu, F., Lan, Z., Xin, Z., He, C., Guo, Z., Xia, X., & Hu, T. (2020). Emerging insights into molecular mechanisms underlying pyroptosis and functions of inflammasomes in diseases. Journal of Cellular Physiology, 235(4), 3207–3221. https://doi.org/10.1002/jcp.29268 Mathew, R., Karp, C. M., Beaudoin, B., Vuong, N., Chen, G., Chen, H.-Y., Bray, K., Reddy, A., Bhanot, G., Gelinas, C., Dipaola, R. S., Karantza-Wadsworth, V., & White, E. (2009). Autophagy suppresses tumorigenesis through elimination of p62. Cell, 137(6), 1062–1075. https://doi.org/10.1016/j.cell.2009.03.048 McAfee, Q., Zhang, Z., Samanta, A., Levi, S. M., Ma, X.-H., Piao, S., Lynch, J. P., Uehara, T., Sepulveda, A. R., Davis, L. E., Winkler, J. D., & Amaravadi, R. K. (2012). Autophagy inhibitor Lys05 has single-agent antitumor activity and reproduces the phenotype of a genetic autophagy deficiency. Proceedings of the National Academy of Sciences, 109(21), 8253–8258. https://doi.org/10.1073/pnas.1118193109 Miller, D. R., Cramer, S. D., & Thorburn, A. (2020). The interplay of autophagy and non-apoptotic cell death pathways. International Review of Cell and Molecular Biology, 352, 159–187. https://doi.org/10.1016/bs.ircmb.2019.12.004 Mizushima, N., Noda, T., Yoshimori, T., Tanaka, Y., Ishii, T., George, M. D., Klionsky, D. J., Ohsumi, M., & Ohsumi, Y. (1998). A protein conjugation system essential for autophagy. Nature, 395(6700), 395–398. https://doi.org/10.1038/26506 Netea-Maier, R. T., Plantinga, T. S., van de Veerdonk, F. L., Smit, J. W., & Netea, M. G. (2016). Modulation of inflammation by autophagy: Consequences for human disease. Autophagy, 12(2), 245–260. https://doi.org/10.1080/15548627.2015.1071759 Nishida, M., Imazato, S., Takahashi, Y., Ebisu, S., Ishimoto, T., Nakano, T., Yasuda, Y., & Saito, T. (2010). The influence of the antibacterial monomer 12-methacryloyloxydodecylpyridinium bromide on the proliferation, differentiation and mineralization of odontoblast-like cells. Biomaterials, 31(7), 1518–1532. https://doi.org/10.1016/j.biomaterials.2009.11.023 Orrenius, S., Kaminskyy, V. O., & Zhivotovsky, B. (2013). Autophagy in Toxicology: Cause or Consequence? Annual Review of Pharmacology and Toxicology, 53(1), 275–297. https://doi.org/10.1146/annurev-pharmtox-011112-140210 Park, J.-M., Seo, M., Jung, C. H., Grunwald, D., Stone, M., Otto, N. M., Toso, E., Ahn, Y., Kyba, M., Griffin, T. J., Higgins, L., & Kim, D.-H. (2018). ULK1 phosphorylates Ser30 of BECN1 in association with ATG14 to stimulate autophagy induction. Autophagy, 14(4), 584–597. https://doi.org/10.1080/15548627.2017.1422851 Putzeys, E., Duca, R. C., Coppens, L., Vanoirbeek, J., Godderis, L., Meerbeek, B. V., & Landuyt, K. L. V. (2018). In-vitro transdentinal diffusion of monomers from adhesives. Journal of Dentistry, 75, 91–97. https://doi.org/10.1016/j.jdent.2018.05.023 Qu, X., Yu, J., Bhagat, G., Furuya, N., Hibshoosh, H., Troxel, A., Rosen, J., Eskelinen, E.-L., Mizushima, N., Ohsumi, Y., Cattoretti, G., & Levine, B. (2003). Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. The Journal of Clinical Investigation, 112(12), 1809–1820. https://doi.org/10.1172/JCI20039 Ralston, S. H. (2008). Pathogenesis of Paget’s disease of bone. Bone, 43(5), 819–825. https://doi.org/10.1016/j.bone.2008.06.015 Salz, U., Mücke, A., Zimmermann, J., Tay, F. R., & Pashley, D. H. (2006). pKa value and buffering capacity of acidic monomers commonly used in self-etching primers. The Journal of Adhesive Dentistry, 8(3), 143–150. Scherz-Shouval, R., & Elazar, Z. (2011). Regulation of autophagy by ROS: physiology and pathology. Trends in Biochemical Sciences, 36(1), 30–38. https://doi.org/10.1016/j.tibs.2010.07.007 Schweichel, J. U., & Merker, H. J. (1973). The morphology of various types of cell death in prenatal tissues. Teratology, 7(3), 253–266. https://doi.org/10.1002/tera.1420070306 Shimizu, S., Yoshida, T., Tsujioka, M., & Arakawa, S. (2014). Autophagic cell death and cancer. International Journal of Molecular Sciences, 15(2), 3145–3153. https://doi.org/10.3390/ijms15023145 Song, Z., Lin, Z., He, F., Jiang, L., Qin, W., Tian, Y., Wang, R., & Huang, S. (2012). NLRP3 Is Expressed in Human Dental Pulp Cells and Tissues. Journal of Endodontics, 38(12), 1592–1597. https://doi.org/10.1016/j.joen.2012.09.023 Sun, R., Luo, Y., Li, J., Wang, Q., Li, J., Chen, X., Guan, K., & Yu, Z. (2015). Ammonium chloride inhibits autophagy of hepatocellular carcinoma cells through SMAD2 signaling. Tumor Biology, 36(2), 1173–1177. https://doi.org/10.1007/s13277-014-2699-x Sürmelioğlu, D., Hepokur, C., Yavuz, S. A., & Aydın, U. (2020). Evaluation of the cytotoxic and genotoxic effects of different universal adhesive systems. Journal of Conservative Dentistry : JCD, 23(4), 384–389. https://doi.org/10.4103/jcd.jcd_376_20 Tanida, I. (2011). Autophagosome formation and molecular mechanism of autophagy. Antioxidants & Redox Signaling, 14(11), 2201–2214. https://doi.org/10.1089/ars.2010.3482 Teshima, I. (2010). Degradation of 10-methacryloyloxydecyl dihydrogen phosphate. Journal of Dental Research, 89(11), 1281–1286. https://doi.org/10.1177/0022034510379018 Tian, F., Wang, X., Huang, Q., Niu, L., Mitchell, J., Zhang, Z., Prananik, C., Zhang, L., Chen, J., Breshi, L., Pashley, D. H., & Tay, F. R. (2016). Effect of nanolayering of calcium salts of phosphoric acid ester monomers on the durability of resin-dentin bonds. Acta Biomaterialia, 38, 190–200. https://doi.org/10.1016/j.actbio.2016.04.034 Wang, K., Sun, Q., Zhong, X., Zeng, M., Zeng, H., Shi, X., Li, Z., Wang, Y., Zhao, Q., Shao, F., & Ding, J. (2020). Structural Mechanism for GSDMD Targeting by Autoprocessed Caspases in Pyroptosis. Cell, 180(5), 941-955.e20. https://doi.org/10.1016/j.cell.2020.02.002 Wang, Y., Shi, P., Chen, Q., Huang, Z., Zou, D., Zhang, J., Gao, X., & Lin, Z. (2019). Mitochondrial ROS promote macrophage pyroptosis by inducing GSDMD oxidation. Journal of Molecular Cell Biology, 11(12), 1069–1082. https://doi.org/10.1093/jmcb/mjz020 Wawrzynkiewicz, A., Rozpedek-Kaminska, W., Galita, G., Lukomska-Szymanska, M., Lapinska, B., Sokolowski, J., & Majsterek, I. (2020). The Cytotoxicity and Genotoxicity of Three Dental Universal Adhesives—An In Vitro Study. International Journal of Molecular Sciences, 21(11), 3950. https://doi.org/10.3390/ijms21113950 West, A. P., & Shadel, G. S. (2017). Mitochondrial DNA in innate immune responses and inflammatory pathology. Nature Reviews. Immunology, 17(6), 363–375. https://doi.org/10.1038/nri.2017.21 Wu, Z., Li, M., Ren, X., Zhang, R., He, J., Cheng, L., Cheng, R., & Hu, T. (2022). Double-Edged Sword Effect of Pyroptosis: The Role of Caspase-1/-4/-5/-11 in Different Levels of Apical Periodontitis. Biomolecules, 12(11), 1660. https://doi.org/10.3390/biom12111660 Yang, S., Fan, W., Li, Y., Liu, Q., He, H., & Huang, F. (2021). Autophagy in tooth: Physiology, disease and therapeutic implication. Cell Biochemistry and Function, 39(6), 702–712. https://doi.org/10.1002/cbf.3636 Yilmaz, O., Sater, A. A., Yao, L., Koutouzis, T., Pettengill, M., & Ojcius, D. M. (2010). ATP-dependent activation of an inflammasome in primary gingival epithelial cells infected by Porphyromonas gingivalis. Cellular Microbiology, 12(2), 188–198. https://doi.org/10.1111/j.1462-5822.2009.01390.x Yoshida, Y., Nagakane, K., Fukuda, R., Nakayama, Y., Okazaki, M., Shintani, H., Inoue, S., Tagawa, Y., Suzuki, K., De Munck, J., & Van Meerbeek, B. (2004). Comparative study on adhesive performance of functional monomers. Journal of Dental Research, 83(6), 454–458. https://doi.org/10.1177/154405910408300604 Yoshida, Y., Yoshihara, K., Nagaoka, N., Hayakawa, S., Torii, Y., Ogawa, T., Osaka, A., & Meerbeek, B. V. (2012). Self-assembled Nano-layering at the Adhesive Interface. Journal of Dental Research, 91(4), 376–381. https://doi.org/10.1177/0022034512437375 Yoshihara, K., Hayakawa, S., Nagaoka, N., Okihara, T., Yoshida, Y., & Van Meerbeek, B. (2018). Etching Efficacy of Self-Etching Functional Monomers. Journal of Dental Research, 97(9), 1010–1016. https://doi.org/10.1177/0022034518763606 Yoshihara, K., Nagaoka, N., Okihara, T., Kuroboshi, M., Hayakawa, S., Maruo, Y., Nishigawa, G., De Munck, J., Yoshida, Y., & Van Meerbeek, B. (2015). Functional monomer impurity affects adhesive performance. Dental Materials: Official Publication of the Academy of Dental Materials, 31(12), 1493–1501. https://doi.org/10.1016/j.dental.2015.09.019 Zahid, A., Li, B., Kombe, A. J. K., Jin, T., & Tao, J. (2019). Pharmacological Inhibitors of the NLRP3 Inflammasome. Frontiers in Immunology, 10, 2538. https://doi.org/10.3389/fimmu.2019.02538 Zhang, A., Wang, P., Ma, X., Yin, X., Li, J., Wang, H., Jiang, W., Jia, Q., & Ni, L. (2015). Mechanisms that lead to the regulation of NLRP3 inflammasome expression and activation in human dental pulp fibroblasts. Molecular Immunology, 66(2), 253–262. https://doi.org/10.1016/j.molimm.2015.03.009 Zhang, L., & Chen, Z. (2018). Autophagy in the dentin‐pulp complex against inflammation. Oral Diseases, 24(1–2), 11–13. https://doi.org/10.1111/odi.12749 Zhang, Y.-F., Zhou, L., Mao, H.-Q., Yang, F.-H., Chen, Z., & Zhang, L. (2021). Mitochondrial DNA leakage exacerbates odontoblast inflammation through gasdermin D-mediated pyroptosis. Cell Death Discovery, 7(1), 381. https://doi.org/10.1038/s41420-021-00770-z Zheng, T., Zhao, C., Zhao, B., Liu, H., Wang, S., Wang, L., & Liu, P. (2020). Impairment of the autophagy-lysosomal pathway and activation of pyroptosis in macular corneal dystrophy. Cell Death Discovery, 6(1), 85. https://doi.org/10.1038/s41420-020-00320-z | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94958 | - |
dc.description.abstract | 目的:10-(2-甲基丙烯酰氧基)磷酸單癸酯(10-Methacryloyloxydecyl Dihydrogen Phosphate, 10-MDP)是廣泛使用於牙科樹脂黏著劑(resin adhesive)中的功能性單體(functional monomers)。然而,由於鍵結不穩定、聚合不完全以及長期在口腔環境下的材料水解等因素,這些樹脂材料可能會釋放到口腔環境中,並在接觸牙齒後經由牙本質小管滲入牙髓,對牙髓細胞造成傷害。過去的研究已經證實10-MDP具有細胞毒性,會導致細胞氧化壓力上升、誘導發炎反應、DNA損傷,使細胞細胞週期受到干擾和細胞型態發生變化,最終導致細胞死亡。然而,對於10-MDP毒性造成的細胞死亡和其背後的作用機制等相關研究目前尚未完全明瞭。細胞自噬(Autophagy)被認為是細胞應對毒性壓力挑戰時,進行自我保護的適應性調節機制。細胞死亡的機制則有分很多種,其中細胞焦亡(Pyroptosis)是一種受調節的溶解性細胞死亡方式,對發炎反應和疾病進展有顯著影響。本研究旨在探討細胞自噬及細胞焦亡在10-MDP引發的人類牙髓細胞毒性中所扮演的角色,我們希望能進一步了解10-MDP造成毒性的機制,並且對未來在含有10-MDP的牙科黏著劑上的改良可以提供一些幫助。
實驗方法:本實驗使用體外培養的人類牙髓細胞,加入0、10、50、100、250和500 μM的10-MDP培養24小時,以即時定量聚合酶連鎖反應(real-time quantitative PCR)、西方點墨法(western blot) 和免疫化學螢光染色(immunofluorescence)來檢測細胞自噬調控因子(Beclin-1、LC3B、p62、ATG5、ATG12)和細胞焦亡調控因子(NLRP3、Caspase-1、GSDMD)的基因與蛋白質表現之變化。再分別加入Autophagy inhibitor Lys05 (5或10 μM、NH4Cl (10或20 mM)、Pyroptosis inhibitor MCC950 (25和50 μM) 做預處理,以MTT 檢測細胞的存活率。 實驗結果:隨著10-MDP濃度的上升,會使人類牙髓細胞自噬相關性因子Beclin-1、LC3B、ATG5和ATG12的表現上升。在500 μM時,會使人類牙髓細胞焦亡相關性因子NLRP3、Caspase-1和GSDMD有最大的表現。加入自噬抑制劑後,可以觀察到細胞存活率與對照組相比呈現下降,且細胞形態拉長變形、細胞核呈現縮小、空泡狀或碎裂;加入焦亡抑制劑後,細胞存活率與細胞型態則無顯著的差異。 結論:本實驗顯示,10-MDP對人類牙髓細胞可能誘導細胞自噬,導致自噬相關因子Beclin-1、LC3B、ATG5、ATG12的表現增加。加入NH4Cl或Lys05自噬抑制劑後,細胞存活率下降,且細胞型態發生破壞性改變,推測細胞自噬作為一種自我保護機制,可以減少10-MDP造成的毒性影響。隨著細胞焦亡相關因子NLRP3、Caspase-1、GSDMD在高濃度10-MDP暴露下的表達增加,我們推測10-MDP可能會誘導人類牙髓細胞發生細胞焦亡。然而,加入MCC950焦亡抑制劑後,細胞存活率和細胞型態沒有顯著變化,我們推測細胞焦亡可能不是10-MDP誘導人類牙髓細胞死亡的主要原因。其他10-MDP造成細胞死亡的機制形式的機制仍有許多未解之處,還待未來進一步的研究來深入探討。 | zh_TW |
dc.description.abstract | Aims: Dental resin adhesives commonly use 10-MDP (10-Methacryloyloxydecyl Dihydrogen Phosphate) as a functional monomer due to its strong bonding capabilities. However, resin materials often suffer from unstable bonding, incomplete polymerization, and material hydrolysis, leading to monomer leaching into the oral cavity. This leached monomer can infiltrate the pulp through dentinal tubules, potentially causing damage to pulp cells. Previous studies have confirmed that 10-MDP increases oxidative stress, induces inflammatory responses, and causes DNA damage, cell cycle disruption, and cell morphology alterations, ultimately resulting in cytotoxicity and cell death. In this study, we investigate the effects of 10-MDP-induced cytotoxicity and human dental pulp cell death. Two mechanisms are proposed and confirmed: autophagy and pyroptosis. Autophagy is an adaptive regulatory mechanism that cells employ to protect themselves against toxic stress. Pyroptosis, on the other hand, is a regulated form of lytic cell death, significantly impacts inflammatory responses and the progression of various diseases. In the future, we aim to further elucidate the mechanisms underlying 10-MDP toxicity, thereby providing insights for the development of safer dental materials.
Material and methods: Primary human dental pulp cells were cultured in vitro and treated with 0, 10, 50, 100, 250, and 500 μM of 10-MDP for 24 hours. Changes in the expression of autophagy regulatory factors (Beclin-1, LC3B, p62, ATG5, ATG12) and pyroptosis regulatory factors (NLRP3, Caspase-1, GSDMD) at both gene and protein levels were detected using real-time quantitative PCR, western blotting, and immunofluorescence staining. Additionally, cells were pre-treated with autophagy inhibitors Lys05 (5 or 10 μM) and NH4Cl (10 or 20 mM), as well as the pyroptosis inhibitor MCC950 (25 and 50 μM), to examine cell viability using the MTT assay. Results: As the concentration of 10-MDP increases, the expression of autophagy-related factors Beclin-1, LC3B, ATG5, and ATG12 in human dental pulp cells also increases. At 500 μM, the expression of pyroptosis-related factors NLRP3, Caspase-1, and GSDMD reaches its peak in human dental pulp cells. Upon the addition of autophagy or pyroptosis inhibitors, changes in the survival rate and morphology of human dental pulp cells exposed to 10-MDP can be observed. Conclusions: The present in vitro experiment demonstrated that the toxicity of 10-MDP may induce autophagy in human dental pulp cells, leading to the increase of autophagy-related factors Beclin-1, LC3B, ATG5, and ATG12. Following the addition of autophagy inhibitors NH4Cl or Lys05, a decrease in cell survival rate and destructive changes in cell morphology were observed. It is speculated that autophagy, as a self-protection mechanism, can reduce the toxic effects caused by 10-MDP. With the increased expression of pyroptosis-related factors NLRP3, Caspase-1, and GSDMD, we hypothesize that high concentrations of 10-MDP may induce pyroptosis in human dental pulp cells. However, when the pyroptosis inhibitor MCC950 was added, no significant changes in cell viability or morphology were observed. We speculate that pyroptosis may not be the primary cause of 10-MDP-induced cell death in human dental pulp cells. Other mechanisms of cell death induced by 10-MDP remain unclear and warrant further investigation. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-21T16:54:50Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-21T16:54:50Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 目次
誌謝 a 中文摘要 b Abstract d 目次 g 表次 k 圖次 l 第一章 文獻回顧 1 1.1 序言 1 1.2 10-(2-甲基丙烯酰氧基)磷酸單癸酯(10-Methacryloyloxydecyl Dihydrogen Phosphate,10-MDP) 2 1.2.1 10-(2-甲基丙烯酰氧基)磷酸單癸酯介紹 2 1.2.2 10-MDP之細胞毒性 3 1.3 細胞死亡(Cell death) 5 1.4 細胞自噬(Autophagy) 6 1.5 對細胞自噬(Autophagy)之影響 9 1.5.1 Beclin-1 9 1.5.2 LC3B 10 1.5.3 p62 11 1.5.4 ATG5、ATG12 11 1.6 細胞焦亡(Pyroptosis) 12 1.7 對細胞焦亡(Pyroptosis)之影響 14 1.7.1 NLRP3 14 1.7.2 Caspase-1 15 1.7.3 GSDMD 15 第二章 實驗目的與假說 17 第三章 材料與方法 18 3.1 材料準備 18 3.1.1 樣本試劑 18 3.1.2 儀器設備 19 3.2 人類牙髓細胞(human dental pulp cells, hDPCs)的培養 20 3.3 細胞存活率分析: MTT assay 20 3.4 即時定量聚合酶連鎖反應(Real-time quantitative PCR) 21 3.4.1 核糖核酸的萃取(RNA extraction) 21 3.4.2 RNA定量(RNA quantification) 23 3.4.3 反轉錄(Reverse transcription) 23 3.4.4 即時定量聚合酶連鎖反應(Real-time Quantitative PCR) 24 3.5 西方墨點法(Western blot) 25 3.5.1 蛋白質萃取(protein extraction) 25 3.5.2 蛋白質定量(protein quantification) 25 3.5.3 十二烷基硫酸鈉聚丙烯醯胺凝膠電泳(sodium dodecyl sulfate polyacrylamide gel electrophoresis, SDS-PAGE) 26 3.5.4 轉漬(Transfer gel) 27 3.5.5 阻斷及抗體雜合(Blocking and antibody hybridization) 27 3.5.6 化學冷光影像擷取(Chemiluminescence photography) 28 3.6 免疫螢光分析法(Immunofluorescence assay) 29 3.6.1 細胞培養 29 3.6.2 免疫螢光染色(Immunofluorscence staining) 29 3.7 統計分析 30 第四章 實驗結果 31 4.1 10-MDP 濃度對於細胞自噬(Autophagy)之影響 31 4.1.1 對於Beclin-1基因及蛋白質表現之影響 31 4.1.2 對於LC3B基因及蛋白質表現之影響 31 4.1.3 對於p62基因及蛋白質表現之影響 32 4.1.4 對於ATG5基因及蛋白質表現之影響 32 4.1.5 對於ATG12基因及蛋白質表現之影響 32 4.2 加入Lys05後10-MDP濃度對於人類牙髓細胞的存活率之影響:MTT assay 33 4.3 加入Lys05後10-MDP濃度對於人類牙髓細胞的型態之影響 34 4.4 加入NH4Cl後10-MDP濃度對於人類牙髓細胞的存活率之影響:MTT assay 35 4.5 加入NH4Cl後10-MDP濃度對於人類牙髓細胞的型態之影響 36 4.6 10-MDP 濃度對於細胞焦亡(Pyroptosis)之影響 37 4.6.1 對於NLRP3基因及蛋白質表現之影響 37 4.6.2 對於Caspase-1基因及蛋白質表現之影響 37 4.6.3 對於GSDMD基因及蛋白質表現之影響 37 4.7 加入MCC950後10-MDP濃度對於人類牙髓細胞的存活率之影響:MTT assay 38 4.8 加入MCC950後10-MDP濃度對於人類牙髓細胞的型態之影響 39 第五章 討論 40 第六章 結論 48 參考文獻 49 附錄 62 表格 63 附圖 69 | - |
dc.language.iso | zh_TW | - |
dc.title | 10-MDP對人類牙髓細胞之影響:細胞自噬與細胞焦亡之角色探討 | zh_TW |
dc.title | Investigation of 10-MDP-induced Effect in Human Dental Pulp Cells: Roles of Autophagy and Pyroptosis | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.coadvisor | 鄭景暉 | zh_TW |
dc.contributor.coadvisor | Jiiang-Huei Jeng | en |
dc.contributor.oralexamcommittee | 張美姬;馮聖偉 | zh_TW |
dc.contributor.oralexamcommittee | Mei-Chi Chang;Sheng-Wei Feng | en |
dc.subject.keyword | 10-(2-甲基丙烯酰氧基)磷酸單癸酯,人類牙髓細胞,細胞毒性,細胞自噬,細胞焦亡, | zh_TW |
dc.subject.keyword | 10-MDP,Human dental pulp cells,Cell toxicity,Autophagy,Pyroptosis, | en |
dc.relation.page | 105 | - |
dc.identifier.doi | 10.6342/NTU202402294 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2024-07-29 | - |
dc.contributor.author-college | 醫學院 | - |
dc.contributor.author-dept | 臨床牙醫學研究所 | - |
顯示於系所單位: | 臨床牙醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 238.88 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。