Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 臨床醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94953
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳允升zh_TW
dc.contributor.advisorVin-Cent Wuen
dc.contributor.author薛俊盈zh_TW
dc.contributor.authorChun Yin Seeen
dc.date.accessioned2024-08-21T16:51:39Z-
dc.date.available2024-08-22-
dc.date.copyright2024-08-21-
dc.date.issued2024-
dc.date.submitted2024-07-30-
dc.identifier.citation1. Turcu, A.F., J. Yang, and A. Vaidya, Primary aldosteronism - a multidimensional syndrome. Nat Rev Endocrinol, 2022. 18(11): p. 665-682.
2. Vaidya, A., et al., The Expanding Spectrum of Primary Aldosteronism: Implications for Diagnosis, Pathogenesis, and Treatment. Endocr Rev, 2018. 39(6): p. 1057-1088.
3. Zennaro, M.C., S. Boulkroun, and F.L. Fernandes-Rosa, Pathogenesis and treatment of primary aldosteronism. Nat Rev Endocrinol, 2020. 16(10): p. 578-589.
4. Scholl, U.I., Genetics of Primary Aldosteronism. Hypertension, 2022. 79(5): p. 887-897.
5. Funder, J.W., Mineralocorticoid receptors: distribution and activation. Heart Fail Rev, 2005. 10(1): p. 15-22.
6. Kuo, C.C., et al., Relative kidney hyperfiltration in primary aldosteronism: a meta-analysis. J Renin Angiotensin Aldosterone Syst, 2011. 12(2): p. 113-22.
7. Chagnac, A., et al., Consequences of Glomerular Hyperfiltration: The Role of Physical Forces in the Pathogenesis of Chronic Kidney Disease in Diabetes and Obesity. Nephron, 2019. 143(1): p. 38-42.
8. Agrawal, S., J.C. He, and P.L. Tharaux, Nuclear receptors in podocyte biology and glomerular disease. Nat Rev Nephrol, 2021. 17(3): p. 185-204.
9. Edeling, M., et al., Developmental signalling pathways in renal fibrosis: the roles of Notch, Wnt and Hedgehog. Nat Rev Nephrol, 2016. 12(7): p. 426-39.
10. Moon, R.T., et al., WNT and beta-catenin signalling: diseases and therapies. Nat Rev Genet, 2004. 5(9): p. 691-701.
11. Tan, R.J., et al., Wnt/beta-catenin signaling and kidney fibrosis. Kidney Int Suppl (2011), 2014. 4(1): p. 84-90.
12. Schunk, S.J., et al., WNT-β-catenin signalling - a versatile player in kidney injury and repair. Nature Reviews Nephrology, 2021. 17(3): p. 172-184.
13. Fang, X., et al., Dickkopf-3: Current Knowledge in Kidney Diseases. Front Physiol, 2020. 11: p. 533344.
14. Schunk, S.J., et al., Dickkopf 3-a novel biomarker of the 'kidney injury continuum'. Nephrol Dial Transplant, 2021. 36(5): p. 761-767.
15. Federico, G., et al., Tubular Dickkopf-3 promotes the development of renal atrophy and fibrosis. Jci Insight, 2016. 1(1).
16. Lake, B.B., et al., An atlas of healthy and injured cell states and niches in the human kidney. Nature, 2023. 619(7970): p. 585-594.
17. Zou, C., C. Wang, and L. Lu, Advances in the study of subclinical AKI biomarkers. Front Physiol, 2022. 13: p. 960059.
18. Ostermann, M., E. Karsten, and N. Lumlertgul, Biomarker-Based Management of AKI: Fact or Fantasy? Nephron, 2022. 146(3): p. 295-301.
19. See, C.Y., et al., Improvement of composite kidney outcomes by AKI care bundles: a systematic review and meta-analysis. Crit Care, 2023. 27(1): p. 390.
20. Schunk, S.J., et al., Association between urinary dickkopf-3, acute kidney injury, and subsequent loss of kidney function in patients undergoing cardiac surgery: an observational cohort study. Lancet, 2019. 394(10197): p. 488-496.
21. Dziamalek-Macioszczyk, P., et al., Patterns of Dickkopf-3 Serum and Urine Levels at Different Stages of Chronic Kidney Disease. J Clin Med, 2023. 12(14).
22. Zewinger, S., et al., Dickkopf-3 (DKK3) in Urine Identifies Patients with Short-Term Risk of eGFR Loss. Journal of the American Society of Nephrology, 2018. 29(11): p. 2722-2733.
23. Hu, J., et al., Prediction of urinary dickkopf-3 for AKI, sepsis-associated AKI, and PICU mortality in children. Pediatr Res, 2023. 93(6): p. 1651-1658.
24. Busceti, C.L., et al., Role of Dickkopf-3 in Blood Pressure Regulation in Mice and Hypertensive Rats. Circulation Research, 2023. 132(11): p. 1489-1504.
25. Zhang, Y., et al., Dickkopf-3 attenuates pressure overload-induced cardiac remodelling. Cardiovascular Research, 2014. 102(1): p. 35-45.
26. Schäfer, A.K.C., et al., Urinary Dickkopf-3 (DKK3) Is Associated with Greater eGFR Loss in Patients with Resistant Hypertension. Journal of Clinical Medicine, 2023. 12(3).
27. Peschard, V.G., et al., Association of Urinary Dickkopf-3 Levels with Cardiovascular Events and Kidney Disease Progression in Systolic Blood Pressure Intervention Trial. Kidney360, 2024. 5(5): p. 690-697.
28. Wu, V.C., et al., Case detection and diagnosis of primary aldosteronism - The consensus of Taiwan Society of Aldosteronism. J Formos Med Assoc, 2017. 116(12): p. 993-1005.
29. Wu, V.C., et al., The prevalence of CTNNB1 mutations in primary aldosteronism and consequences for clinical outcomes. Sci Rep, 2017. 7: p. 39121.
30. Sheu, J.Y., et al., Estimated glomerular filtration rate-dip after medical target therapy associated with increased mortality and cardiovascular events in patients with primary aldosteronism. J Hypertens, 2023. 41(9): p. 1401-1410.
31. Steichen, O., et al., Outcomes of drug-based and surgical treatments for primary aldosteronism. Adv Chronic Kidney Dis, 2015. 22(3): p. 196-203.
32. Levin, A., et al., International consensus definitions of clinical trial outcomes for kidney failure: 2020. Kidney Int, 2020. 98(4): p. 849-859.
33. Kobayashi, H., et al., Association Between Acute Fall in Estimated Glomerular Filtration Rate After Treatment for Primary Aldosteronism and Long-Term Decline in Renal Function. Hypertension, 2019. 74(3): p. 630-638.
34. Tonneijck, L., et al., Glomerular Hyperfiltration in Diabetes: Mechanisms, Clinical Significance, and Treatment. Journal of the American Society of Nephrology, 2017. 28(4): p. 1023-1039.
35. Carrero, J.J., et al., Discordances Between Creatinine- and Cystatin C-Based Estimated GFR and Adverse Clinical Outcomes in Routine Clinical Practice. American Journal of Kidney Diseases, 2023. 82(5): p. 534-542.
36. Fricker, M., et al., Impact of thyroid dysfunction on serum cystatin C. Kidney International, 2003. 63(5): p. 1944-1947.
37. Huang, S.H., et al., Hyperfiltration affects accuracy of creatinine eGFR measurement. Clin J Am Soc Nephrol, 2011. 6(2): p. 274-80.
38. Inker, L.A., et al., New Creatinine- and Cystatin C-Based Equations to Estimate GFR without Race. N Engl J Med, 2021. 385(19): p. 1737-1749.
39. Stanski, N.L., et al., A risk-stratified assessment of biomarker-based acute kidney injury phenotypes in children. Pediatr Res, 2023. 93(5): p. 1354-1360.
40. Roscigno, G., et al., Urinary Dickkopf-3 and Contrast-Associated Kidney Damage. Journal of the American College of Cardiology, 2021. 77(21): p. 2667-2676.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94953-
dc.description.abstract原發性高醛固酮症是最常見的次發性高血壓原因之一。病患體內的醛固酮因基因遺傳或不明原因體細胞突變而自主性地過度分泌,持續活化鹽皮質激素受體,造成水分滯留、氧化壓力增加、以及器官發炎和纖維化反應的惡化。高醛固酮對腎臟的早期傷害因血液容積和腎臟血流灌注的增加續所造成的高腎絲球過濾率不容易被察覺。
Wnt/β-catenin訊息傳遞路徑是上皮細胞間質化還有腎臟纖維化的過程中非常重要的路徑。Dickkopf (DKK) 蛋白質是腎小管上皮細胞承受壓力時的Wnt/β-catenin訊息傳遞路徑的調控因子,其中DKK3能促進Wnt/β-catenin的訊息傳遞。我們查詢腎臟精準醫學計畫(KPMP) 研究發現慢性腎臟病患的組織中DKK3會增加,且過去許多研究也表示急慢性腎臟病患的尿液中DKK3的增加跟病患日後的腎功能惡化有關。
高醛固酮對於腎臟持續的傷害會造成不可逆的後果,因此我們希望能在更早期的時候偵測到腎臟的傷害。我們比較原發性高醛固酮症和高血壓患者的尿液中的DKK3數值,並且觀察DKK3數值是否跟病患的長期預後有明顯的相關。同時,我們也執行動物研究來釐清DKK3在原發性高醛固酮症與腎功能惡化之間扮演的角色。
這篇研究共有163位高血壓病患參與,原發性高醛固酮症(primary aldosteronism, PA)的病患佔73.6%(n=120,年紀的中位數:53.8歲,男性:48.3%)而原發性高血壓(essential hypertension, EH)的患者佔了26.4%(n=43,年紀的中位數:51.9歲,男性:46.5%)。PA病患比EH病患使用更多的高血壓藥物(2.1±1.2 vs. 1.1±1.0,p<0.05)。儘管PA和EH病患的尿液中的DKK3並沒有明顯差別(2006 pg/ml [IQR: 909-5200 pg/ml] vs. 4255 pg/ml [IQR: 2494-5468 pg/ml],p=0.64),我們發現治療和追蹤一年後的腎功能變的比較差的PA病患的尿液中有比較高的DKK3(3253 pg/ml [IQR: 1764-8715 pg/ml] vs. 1712 pg/ml [IQR: 845-3770 pg/ml],p=0.04)。
動物研究共使用了十隻小鼠。所有的小鼠都在實驗的一開始接受單邊腎臟切除(unilateral nephrectomy)和植入皮下注射幫浦(subcutaneous osmotic minipump),並且每天飲用生理食鹽水。其中五隻小鼠會每天被注射醛固酮(aldosterone,600 μg/kg/day),另外五隻只接受不含醛固酮的酒精溶劑(5% EtOH)。轉錄組定序實驗顯示體內醛固酮增加的小鼠的腎臟會有更多的的DKK3基因表現 [log2(fold change) = 1.67,p<0.01]。腎臟組織的染色(包含一般化學和免疫組織化學染色法)顯示體內醛固酮增加的小鼠會有更多的DKK3(36.4±5.1% vs 16.4±4.4%,p<0.05),以及上皮間質轉化(纖維黏連蛋白fibronectin:14.4±2.6% vs 4.0±0.6%,p<0.05)和腎臟纖維化(膠原蛋白collagen:17.6±3.0% vs 2.6±0.5%,p<0.05)的蛋白表現。PA病患的腎臟組織也比EH病患有更嚴重的腎臟纖維化(膠原蛋白H-score:132±2.1 vs 148±2.3,p=0.005)以及更明顯的DKK3表現(DKK3 H-score:138±0.8 vs 158±0.3,p=0.04)。
我們發現尿液DKK3是亞臨床腎傷害指標,跟腎臟預後不佳的PA病患之間的關聯性。透過動物實驗和轉錄組定序實驗,我們檢測到醛固酮關係DKK3的表現以及跟後續腎臟惡化相關的蛋白的表現。
zh_TW
dc.description.abstractBackground:
Primary aldosteronism (PA) is the leading cause of secondary hypertension, characterized by autonomous aldosterone secretion and persistent activation of aldosterone synthase. This activation leads to volume expansion, oxidative stress, and increased inflammatory and fibrotic responses. However, renal impairment is often overlooked in the early stages of PA due to glomerular hyperfiltration. The Wnt/β-catenin signaling pathway plays a crucial role in epithelial-mesenchymal transition and the progression of kidney fibrosis. Dickkopf 3 (DKK3) protein modulates Wnt/β-catenin signaling under renal tubular cell stress. The role of DKK3 in aldosterone-induced kidney injury, however, remains inconclusive.
Hypothesis:
We hypothesized that PA patients will have higher urinary levels of DKK3 compared to those with essential hypertension and similar renal function. Elevated urinary DKK3 levels were expected to correlate with adverse kidney events in PA patients. Furthermore, we aimed to elucidate the mechanism underlying DKK3 production and its role in mediating subclinical kidney damage in PA patients.
Methods:
In this cross-sectional study, data from patients with confirmed PA (n = 120) and essential hypertension (EH, n = 43) were analysed. Demographic data and relevant clinical parameters were collected and compared between PA and EH patients, as well as among PA patients with different levels of urinary DKK3. Hypertensive mice were generated by giving drinking water with sodium chloride, and kidney stress was induced by unilateral nephrectomy on the first day of experiment. Subcutaneous osmotic minipump was implanted to administer either aldosterone or vehicle (5% ethanol) to create animals with aldosteronism. Histology and immunohistochemistry staining were performed to visualize the presence of kidney fibrosis, epithelial mesenchymal transition as well as DKK3. Transcriptome analysis was also carried out to figure out the difference in gene expression between aldosterone-infused mice and controls.
Results:
PA patients (n=120, median age: 53.8 years, male: 48.3%) required a higher number of antihypertensive medications compared to those diagnosed with EH (n=43, median age: 51.9 years, male: 46.5%) (2.1±1.2 vs. 1.1±1.0, p<0.05). DKK3 were found to be similar between PA patients and EH patients (2006 pg/ml [IQR: 909-5200 pg/ml] vs. 4255 pg/ml [IQR: 2494-5468 pg/ml], p=0.64). However, within the PA group, urinary DKK3 levels were significantly elevated among patients with more than 20% of estimated glomerular filtration rate (eGFR) dip at one year after targeted treatment compared to those with less eGFR decline (3253 pg/ml [IQR: 1764-8715 pg/ml] vs. 1712 pg/ml [IQR: 845-3770 pg/ml], p=0.04). In the animal study, histology and immunohistochemistry of the kidney tissues revealed remarkable increment of the areas with epithelial-mesenchymal transition (fibronectin: 14.4±2.6% vs 4.0±0.6%, p<0.05), interstitial fibrosis (collagen: 17.6±3.0% vs 2.6±0.5%, p<0.05) and DKK3 (36.4±5.1% vs 16.4±4.4%, p<0.05) staining in the aldosterone-infused mice. Transcriptome analysis showed DKK3 gene expression increased after aldosterone treatment [log2(fold change) = 1.67, p < 0.01]. In addition, kidney tissues of the PA patients also had more severe interstitial fibrosis [collagen H-score: 132±2.1 vs 148±2.3, p=0.005] and DKK3 [H-score: 138±0.8 vs 158±0.3, p=0.04)] expression compared to patients with essential hypertension.
Conclusion and Future Perspectives:
Our study found comparable urinary DKK3 levels between PA and EH, but baseline urinary DKK3 was associated with post-treatment kidney function decline, suggesting it as a potential subclinical biomarker for monitoring PA-related kidney outcomes. Animal study and transcriptome analysis showed elevation of kidney specific DKK3 expression in concomitant with the kidney fibrosis and epithelial mesenchymal transition.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-21T16:51:39Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-21T16:51:39Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsACCEPTANCE CERTIFICATE…………………ii
ACKNOWLEDGEMENT…………………iii
ABSTRACT (MANDARIN)…………………iv
ABSTRACT (ENGLISH)…………………vii
TABLE OF CONTENTS…………………x
ABBREVIATIONS…………………xiii
LIST OF FIGURES…………………xiv
LIST OF TABLES…………………xv
CHAPTERS
1 INTRODUCTION…………………1
1.1 Background…………………1
1.1.1 Kidney Injury in Primary Aldosteronism…………………1
1.1.2 Wnt/β catenin Signaling in the Kidney Injury and Repair…………………2
1.1.3 Dickkopf-3 (DKK3) Proteins…………………3
1.1.4 Expression of DKK3 Proteins in the Kidney…………………4
1.1.5 The Concept of Subclinical Kidney Injury and Kidney Biomarkers…………………5
1.1.6 Urinary DKK3 Levels in Patients with Chronic Kidney Disease…………………5
1.1.7 Significance of DKK3 in Hypertension…………………7
1.2 Rationale and Hypothesis of the Research…………………7
1.3 Significance of the Research…………………7
2 METHODOLOGY…………………9
2.1 Clinical Study…………………9
2.1.1 Study Design and Population…………………9
2.1.2 Laboratory Measurement…………………10
2.1.3 Prespecified Kidney Outcomes…………………11
2.1.4 Statistical Analysis…………………11
2.2 Animal Study…………………12
2.2.1 Generation of Hypertensive Mice Model…………………12
2.2.2 Tissue Histology and Immunohistochemistry…………………12
2.2.3 Computer-Based Morphometric Study and Histochemical Scoring Assessment Analysis…………………13
2.2.4 Transcriptome Study from Kidney after Aldosterone Infusion…………………13
2.3 Analysis of Kidney Tissues from Patients with Primary Aldosteronism and Essential Hypertension…………………14
3 RESULTS…………………15
3.1 Clinical Study…………………15
3.1.1 Baseline Characteristic of the Study Participants…………………15
3.1.2 Association of Urinary DKK3 with Kidney Outcomes in Patients with Primary Aldosteronism…………………15
3.2 Animal Study…………………17
3.2.1 Expression of DKK3 Aldosterone-Infused Mice…………………17
3.2.2 Elevation of DKK3 Production, Epithelial-Mesenchymal Transition (EMT) and Kidney Fibrosis in Aldosterone-Infused Mice…………………17
3.3 Increased DKK3 and Collagen Staining in the Kidney Tissues from Patients with Primary Aldosteronism…………………18
4 DISCUSSION…………………19
5 LIMITATIONS AND FUTURE WORKS…………………22
5.1 Clinical Study…………………22
5.2 Animal Study…………………23
5.3 Cell Culture…………………23
6 CONCLUSION…………………24
FIGURES …………………25
TABLES…………………38
REFERENCES…………………46
-
dc.language.isoen-
dc.subject原發性⾼醛固酮症zh_TW
dc.subject腎臟預後zh_TW
dc.subject尿液DKK3zh_TW
dc.subjectRenal outcomesen
dc.subjectPrimary aldosteronismen
dc.subjectUrinary DKK3en
dc.titleDKK3於原發性⾼醛固酮症的表現和其可能之應⽤zh_TW
dc.titleExpression and Potential Clinical Role of DKK3 in Primary Aldosteronismen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee周祖述;林彥宏;楊光華zh_TW
dc.contributor.oralexamcommitteeTzuu-Shuh Jou;Yen-Hung Lin;Guang-Huar Youngen
dc.subject.keyword原發性⾼醛固酮症,尿液DKK3,腎臟預後,zh_TW
dc.subject.keywordPrimary aldosteronism,Urinary DKK3,Renal outcomes,en
dc.relation.page50-
dc.identifier.doi10.6342/NTU202402695-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-07-31-
dc.contributor.author-college醫學院-
dc.contributor.author-dept臨床醫學研究所-
顯示於系所單位:臨床醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
6.08 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved