請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94941完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 方啓泰 | zh_TW |
| dc.contributor.advisor | Chi-Tai Fang | en |
| dc.contributor.author | 翟心聆 | zh_TW |
| dc.contributor.author | Hsin-Ling Chai | en |
| dc.date.accessioned | 2024-08-21T16:47:44Z | - |
| dc.date.available | 2024-08-22 | - |
| dc.date.copyright | 2024-08-21 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-08 | - |
| dc.identifier.citation | Bundgaard H, Bundgaard JS, Raaschou-Pedersen DET, et al. Effectiveness of Adding a Mask Recommendation to Other Public Health Measures to Prevent SARS-CoV-2 Infection in Danish Mask Wearers : A Randomized Controlled Trial. Ann Intern Med 2021; 174(3): 335-43.
Abaluck J, Kwong LH, Styczynski A, et al. Impact of community masking on COVID-19: A cluster-randomized trial in Bangladesh. Science 2022; 375(6577): eabi9069. Zhang X, Barr B, Green M, et al. Impact of community asymptomatic rapid antigen testing on covid-19 related hospital admissions: synthetic control study. Bmj 2022; 379: e071374. Islam H, Islam A, Brook A, Rudrappa M. Evaluating the effectiveness of countywide mask mandates at reducing SARS-CoV-2 infection in the United States. J Osteopath Med 2022; 122(4): 211-5. Huang J, Fisher BT, Tam V, et al. The Effectiveness Of Government Masking Mandates On COVID-19 County-Level Case Incidence Across The United States, 2020. Health Aff (Millwood) 2022; 41(3): 445-53. Chu DK, Akl EA, Duda S, Solo K, Yaacoub S, Schünemann HJ. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis. Lancet 2020; 395(10242): 1973-87. Jefferson T, Dooley L, Ferroni E, et al. Physical interventions to interrupt or reduce the spread of respiratory viruses. Cochrane Database Syst Rev 2023; 1(1): Cd006207. Kim YJ, Koo PH. Effectiveness of Testing and Contact-Tracing to Counter COVID-19 Pandemic: Designed Experiments of Agent-Based Simulation. Healthcare (Basel) 2021; 9(6). Kim MH, Lee J, Oh HJ, Bayarsaikhan T, Gim TT. A modeling study of the effect of social distancing policies on the early spread of coronavirus disease 2019: a case of South Korea. Ann Reg Sci 2022: 1-18. Zhang K, Vilches TN, Tariq M, Galvani AP, Moghadas SM. The impact of mask-wearing and shelter-in-place on COVID-19 outbreaks in the United States. Int J Infect Dis 2020; 101: 334-41. See I, Paul P, Slayton RB, et al. Modeling Effectiveness of Testing Strategies to Prevent Coronavirus Disease 2019 (COVID-19) in Nursing Homes-United States, 2020. Clin Infect Dis 2021; 73(3): e792-e8. Chen YH, Fang CT, Huang YL. Effect of Non-lockdown Social Distancing and Testing-Contact Tracing During a COVID-19 Outbreak in Daegu, South Korea, February to April 2020: A Modeling Study. Int J Infect Dis 2021; 110: 213-21. Gabler J, Raabe T, Röhrl K, Gaudecker HV. The effectiveness of testing, vaccinations and contact restrictions for containing the CoViD-19 pandemic. Sci Rep 2022; 12(1): 8048. Taiwan National Infectious Disease Statistics System. https://nidss.cdc.gov.tw/en/nndss/disease?id=19CVS. Chen YH, Fang CT. Combined interventions to suppress R0 and border quarantine to contain COVID-19 in Taiwan. J Formos Med Assoc 2021; 120(2): 903-5. Lin YC, Wen TH, Shih WL, Vermund SH, Fang CT. Impact of vaccination and high-risk group awareness on the mpox epidemic in the United States, 2022-2023: a modelling study. EClinicalMedicine 2024; 68: 102407. Buitrago-Garcia D, Ipekci AM, Heron L, et al. Occurrence and transmission potential of asymptomatic and presymptomatic SARS-CoV-2 infections: Update of a living systematic review and meta-analysis. PLoS Med 2022; 19(5): e1003987. Liu WD, Wang JT, Shih MC, et al. Effect of early dexamethasone on outcomes of COVID-19: A quasi-experimental study using propensity score matching. J Microbiol Immunol Infect 2024. Niu KY, Cheng YC, Chan CW, Chaou CH, Yen CC, Fang CT. SARS-CoV-2 rapid antigen testing positive rate in community testing stations as an indicator for COVID-19 epidemic trend, Taipei, Taiwan, May to August 2021. J Formos Med Assoc 2024; 123(6): 716-9. COVID-19 Vaccine Information and Estimations for Taiwan. 2021. https://www.aweb.tpin.idv.tw/COVID-19/vaccine2021.php (accessed August 2 2024). COVID-19 Global Pandemic Map. https://covid-19.nchc.org.tw/2023_vaccination.php (accessed August 2 2024). Yu G. Variance stabilizing transformations of Poisson, binomial and negative binomial distributions. Statistics & Probability Letters 2009; 79(14): 1621-9. 李政益、許建邦、李佳琳、郭宏偉. 我國新型冠狀病毒(SARS-CoV-2)血清流行病學調查與長期趨勢分析研究. 疫情報導 2023; 39(17). 郭曉飛, 甯應斌, 殷莉, et al. 性地圖景:兩岸三地性/別氣候: 中央大學性/別研究室; 2011.9. 臺北市萬華區阿公店茶藝室長期實際營業項目與登記不符,監察委員林國明申請自動調查. 監察委員新聞稿. 110.05. 內政部統計處. 內政統計通報 112年第34週. 2021. Ortiz-Ospina E. Loneliness and Social Connections. 2020. https://ourworldindata.org/social-connections-and-loneliness. Galmiche S, Cortier T, Charmet T, et al. SARS-CoV-2 incubation period across variants of concern, individual factors, and circumstances of infection in France: a case series analysis from the ComCor study. Lancet Microbe 2023; 4(6): e409-e17. He X, Lau EHY, Wu P, et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat Med 2020; 26(5): 672-5. Tsai SC, Chang WW, Lee WS. Analysis of an outbreak of COVID-19(alpha-variant) with rapid progression to mortality in Taipei, Taiwan. J Infect 2022; 84(1): e33-e4. Ward T, Glaser A, Overton CE, Carpenter B, Gent N, Seale AC. Replacement dynamics and the pathogenesis of the Alpha, Delta and Omicron variants of SARS-CoV-2. Epidemiol Infect 2022; 151: e32. Wallinga J, Teunis P, Kretzschmar M. Using data on social contacts to estimate age-specific transmission parameters for respiratory-spread infectious agents. Am J Epidemiol 2006; 164(10): 936-44. Voysey M, Clemens SAC, Madhi SA, et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet 2021; 397(10269): 99-111. AstraZeneca Vaxzevria (COVID-19 Vaccine AstraZeneca) Package Insert [Ho Chi Minh City, Vietnam] [https://wwwastrazenecacom/content/dam/azcovid/pdf/malta/en-epil-AZD1222pdf]. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94941 | - |
| dc.description.abstract | 背景:2021年5月大臺北地區爆發與茶室相關SARS-CoV-2 Alpha變異株社區疫情。政府迅速實施三級疫情警戒以落實口罩配戴並避免非必要社交接觸,同時提供以症狀為基礎的社區採檢服務,但並未封城(限制人民移動)。疫情迅速受控並在8月底歸零,但防疫措施成效迄今仍未有評估。本研究旨在分析三級警戒及社區採檢在控制此波大臺北地區SARS-CoV-2疫情的角色。
方法:本研究建構具高低風險群結構並考慮口罩配戴、採檢隔離及疫苗接種效果的SARS-CoV-2動態傳播模型,擬合大臺北地區2021年5月4日至8月31日間確診病例數流行曲線。以未實施三級警戒及社區採檢之虛擬反事實情境為基準估計這兩項措施對於確診人數與感染人數的預防百分比。並針對與人接觸時高風險群口罩配戴率、高風險群接觸者追蹤率、低風險族群接觸者追蹤率、與同質混合傳播係數等四項參數進行敏感度分析。 結果:模型擬合結果顯示:高風險群佔大臺北地區人口約0·4% (約42,000人)。SARS-CoV-2 Alpha變異株基本再生數 (R0) 在高風險群為6·26,在低風險群則為0·23。估計79·1%確診病例為高風險群。單獨實施疫情警戒可預防29·1% (25·0%-33·6%) 確診人數及34·8% (30·6%-39·1%) 感染人數,單獨實施社區採檢會預防2·4% (1·1%-3·5%) 確診人數及 14·2% (13·6%-14·4%) 感染人數。兩者共同實施則有協同效應,防止46·2% (42·6%-50·5%) 確診人數及56·5% (53·0%-60·1%) 感染人數。敏感度分析顯示在參數不確定性範圍內,兩項防疫措施均有協同作用。 闡釋:同時實施三級警戒和社區採檢兩項防疫措施有效控制2021年大臺北地區SARS-CoV-2 Alpha變異株疫情,且兩者間具有協同作用。 | zh_TW |
| dc.description.abstract | Background: In May 2021, Taiwan faced its first community outbreak of the SARS-CoV-2 Alpha variant, linked to teahouses in Taipei metropolitan area. In response, the government swiftly implemented non-lockdown epidemic alert (enforcing surgical mask wearing without movement restriction) and symptom-based community testing service. By the end of August, the epidemic was effectively controlled. However, the effect of these measures has not yet been evaluated. This modelling study aims to estimate the impact of non-lockdown epidemic alert and symptom-based community testing on the SARS-CoV-2 epidemic in Taipei metropolitan area.
Methods: We constructed a deterministic, risk-structured SARS-CoV-2 compartmental model, considering the effect of mask wearing, testing-contact tracing-quarantine and vaccination program, and fitted it to the daily new diagnosed cases from May 4, 2021 to August 31, 2021. The percentage of cases prevented by non-lockdown epidemic alert and symptom-based community testing was evaluated by calculating the percentage reduction in cumulative cases compared to counterfactual scenario without these measures. Sensitivity analysis with four parameters: the proportion of individuals adhering to masking among high-risk individuals, the initial proportion of contact tracing among high-risk and low-risk individuals, and the assortative mixing of the transmission coefficient. Findings: Model fitting revealed that high-risk individuals constitute 0·4% (approximately 42,000) of the population in the Taipei metropolitan area, with a basic reproductive number (R0) of 6·26 and 0·23 for high-risk and low-risk individuals, respectively. It is estimated that 79·1% of diagnosed cases originated from the high-risk group. The non-lockdown epidemic alert alone could prevent 29·1% (25·0%-33·6%) of diagnosed cases and 34·8% (30·6%-39·1%) of infected cases, while symptom-based community testing alone could prevent 2·4% (1·1%-3·5%) of diagnosed cases and prevent 14·2% (13·6%-14·4%) of infected cases. The combination of both interventions provided a synergistic effect, preventing 46·2% (42·6%-50·5%) of diagnosed cases and 56·5% (53·0%-60·1%) of infected cases. Sensitivity analysis demonstrated that the synergistic effect remains robust under the uncertainty of parameters. Interpretation: Simultaneously implementing the epidemic alert and community testing effectively and successfully controlled the SARS-CoV-2 epidemic in Taipei metropolitan area in 2021, demonstrating a synergistic effect. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-21T16:47:43Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-21T16:47:44Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 摘要 i
Abstract ii Research in Context 1 Evidence Before This Study 1 Added Value of this Study 2 Implications of All the Available Evidence 2 Introduction 3 Methods 5 Study Design 5 Ethics 5 Study Region 5 Structure of SARS-CoV-2 Mathematical Model During Outbreak in Taipei Metropolitan Area (May to August 2021) 6 Non-lockdown Epidemic Alert 7 Symptom-Based Community Testing 8 Main Outcome 9 Statistical Analysis 9 Sensitivity Analysis 10 Results 11 Discussion 15 References 34 | - |
| dc.language.iso | en | - |
| dc.subject | 傳染病數理模型 | zh_TW |
| dc.subject | 茶室相關疫情 | zh_TW |
| dc.subject | SARS-CoV-2 | zh_TW |
| dc.subject | 非封城 | zh_TW |
| dc.subject | 疫情警戒 | zh_TW |
| dc.subject | COVID-19 | zh_TW |
| dc.subject | 社區採檢 | zh_TW |
| dc.subject | Teahouses-related outbreak | en |
| dc.subject | Mathematical modelling | en |
| dc.subject | Community testing | en |
| dc.subject | Epidemic alert | en |
| dc.subject | Non-lockdown | en |
| dc.subject | COVID-19 | en |
| dc.subject | SARS-CoV-2 | en |
| dc.title | 2021年5月至8月大臺北地區新冠疫情期間三級警戒 與社區採檢成效:數理模式分析 | zh_TW |
| dc.title | Effect of Epidemic Alert and Community Testing During a COVID-19 Outbreak in Taipei Metropolitan Area, Taiwan, May to August 2021: A Modelling Study | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 李文宗;溫在弘;黃崇源 | zh_TW |
| dc.contributor.oralexamcommittee | Wen-Chung Lee;Tzai-Hung Wen;Chung-Yuan Huang | en |
| dc.subject.keyword | SARS-CoV-2,COVID-19,茶室相關疫情,非封城,疫情警戒,社區採檢,傳染病數理模型, | zh_TW |
| dc.subject.keyword | SARS-CoV-2,COVID-19,Teahouses-related outbreak,Non-lockdown,Epidemic alert,Community testing,Mathematical modelling, | en |
| dc.relation.page | 45 | - |
| dc.identifier.doi | 10.6342/NTU202403899 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-08-08 | - |
| dc.contributor.author-college | 公共衛生學院 | - |
| dc.contributor.author-dept | 流行病學與預防醫學研究所 | - |
| 顯示於系所單位: | 流行病學與預防醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 1.7 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
