請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94928完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張博鈞 | zh_TW |
| dc.contributor.advisor | Po-Chun Chang | en |
| dc.contributor.author | 尤俐文 | zh_TW |
| dc.contributor.author | Li-Wen Yu | en |
| dc.date.accessioned | 2024-08-21T16:41:26Z | - |
| dc.date.available | 2024-08-22 | - |
| dc.date.copyright | 2024-08-21 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-06 | - |
| dc.identifier.citation | [1] Binon PP. Implants and components: entering the new millennium. Int. J. Oral Maxillofac. Implants. 2000;15:76–94.
[2] Gaviria L, Salcido JP, Guda T, Ong JL. Current trends in dental implants. J Korean Assoc Oral Maxillofac Surg. 2014;40:50–60. [3] Lindh T, Gunne J, Tillberg A, Molin M. A meta-analysis of implants in partial edentulism. Clin Oral Implant Res. 1998;9:80–90. [4] Albrektsson T, Wennerberg A. The impact of oral implants-past and future, 1966–2042. J Can Dent Assoc. 2005;71:327. [5] Tan WL, Wong TL, Wong MC, Lang NP. A systematic review of post- extractional alveolar hard and soft tissue dimensional changes in humans. Clin Oral Implants Res. 2012;23:1-21. [6] Trombelli L, Farina R, Marzola A, Bozzi L, Liljenberg B, Lindhe J. Modeling and remodeling of human extraction sockets. J Clin Periodontol 2008;35:630–639. [7] Amler MH, Johnson PL, Salman I. Histological and histochemical investigation of human alveolar socket healing in undisturbed extraction wounds. J Am Dent Assoc 1960;61:32-44 [8] Amler MH. The time sequence of tissue regeneration in human extraction wounds. Oral Surg Oral Med Oral Pathol, 27:309-318, 1969. [9] Pietrokovski J. The bony residual ridge in man. J Prosthet Dent, 34:456-462, 1975. [10] Schropp L, Wenzel A, Kostopoulos L, Karring T. Bone healing and soft tissue contour changes following single-tooth extraction: a clinical and radiographic 12-month prospective study. Int J Periodontics Restorative Dent, 23:313-323, 2003. [11] Arau ́jo MG, Lindhe J. Dimensional ridge alterations following tooth extraction. An experimental study in the dog. J Clin Periodontol 2005; 32: 212–218. [12] Van der Weijden F, Dell’Acqua F, Slot DE. Alveolar bone dimensional changes of post-extraction sockets in humans: a systematic review. J Clin Periodontol 2009; 36: 1048–1058. [13] Pietrokovski J, Massler M. Alveolar ridge resorption following tooth extraction. J Prosthet Dent 1967: 17: 21–27. [14] Pietrokovski J, Starinsky R, Arensburg B, Kaffe I. Morphologic characteristics of bony edentulous jaws. J Prosthodont 2007: 16: 141–147. [15] Bergman B, Carlsson GE. Clinical long-term study of complete denture wearers. J Prosthet Dent 1985: 53: 56–61. [16] Devlin, H. and M.W. Ferguson, Alveolar ridge resorption and mandibular atrophy. A review of the role of local and systemic factors. Br Dent J 1991; 170:101-104 [17] Seibert J. Reconstruction of deformed, partially edentulous ridges, using full thickness onlay grafts, Part I. Technique and wound healing. Comp Cont Educ Dent 1983;4:437-53. [18] Seibert JS. Reconstruction of deformed, partially edentulous ridges, using full thickness onlay grafts. Part II. Prosthetic/periodontal interrelationships. Compend Contin Educ Dent. 1983 Nov;4(6):549– 62. [19] Lekholm U, Zarb G. Patient selection and preparation. In: Brånemark P-I (ed). Tissue-Integrated Prostheses: Osseointegration in Clinical Dentistry. Chicago: Quintessence, 1985:199–209. [20] Misch CE, Judy KW. Classification of partially edentulous arches for implant dentistry. Int J Oral Implantol. 1987;4:7–13. [21] Wang HL, Al-Shammari K. HVC ridge deficiency classification: a therapeutically oriented classification. Int J Periodontics Restor Dent 2002;22:335-43. [22] Terheyden H. Knochenaugmentationen in der Implantologie. Dtsch Zahnärztl Z. 2010;65:320-330. [23] Lekholm U, Adell R, Lindhe J, et al. Marginal tissue reactions at osseointegrated titanium fixtures.(II) A cross-sectional retrospective study. Int J Oral and Maxillofac Surg. 1986;15: 53–61. [24] Wang HL, Boyapati L. "PASS" principles for predictable bone regeneration. Implant Dent. 2006 Mar;15(1):8-17. [25] Liu J, Kerns DG. Mechanisms of guided bone regeneration: a review. The Open Dentistry Journal. 2014;16:56-65. [26] Tolstunov L, Hamrick JFE, Broumand V, Shilo D, Rachmiel A. Bone augmentation techniques for horizontal and vertical alveolar ridge deficiency in oral implantology. Oral and Maxillofacial Surgery Clinics. 2019;31(2):163-191. [27] Pikos, Michael A., Miron, Richard J. Bone Augmentation in Implant Dentistry: A Step-by-Step Guide to Predictable Alveolar Ridge and Sinus Grafting. Quintessence; 2019. 272 [28] Aghaloo TL, Moy PK. Which hard tissue augmentation techniques are the most successful in furnishing bony support for implant placement? The International Journal of Oral & Maxillofacial Implants. 2007;22(Suppl):49-70 [29] Gultekin BA, Cansız E, Yalçın S. Ridge Augmentation Techniques in Preprosthetic Implant. Surgery. 2016 [30] Misch CE, Dietsh F. Bone-grafting materials in implant dentistry. Implant Dent. 1993;2:158–67. [31] McKenna GJ, Gjengedal H, Harkin J, Holland N, Moore C, Srinivasan M. Effect of autogenous bone graft site on dental implant survival and donor site complications: A systematic review and meta-analysis. J Evid Based Dent Pract. 2022 Sep;22(3):101731. [32] Urist MR. Bone: formation by autoinduction. Science. 1965;150:893–9. [33] Mellonig JT, Bowers GM, Bailey RC. Comparison of bone graft materials.Part I. New bone formation with autografts and allografts determined by Strontium-85. J Periodontol. 1981;52:291–6. [34] Mellonig JT, Bowers GM, Cotton WR. Comparison of bone graft materials.Part II. New bone formation with autografts and allografts: a histological evaluation. J Periodontol. 1981;52:297–302. [35] Aytekin, M., & Arısan, V. (2020). Alveolar Ridge Augmentation Techniques in Implant Dentistry. [36] Gultekin BA, Siyli GZA. Hard Tissue Regeneration Treatment Protocols in Contemporary Oral Surgery. Tissue Regeneration. 2018;141 [37] Wessing B, Lettner S, Zechner W. Guided Bone Regeneration with Collagen Membranes and Particulate Graft Materials: A Systematic Review and Meta-Analysis. The International Journal of Oral & Maxillofacial Implants. 2018;33(1):87-100. [38] Fukuba S, Okada M, Nohara K, Iwata T. Alloplastic Bone Substitutes for Periodontal and Bone Regeneration in Dentistry: Current Status and Prospects. Materials (Basel). 2021 Feb 26;14(5):1096. [39] Gher ME, Quintero G, Assad D, et al. Bone grafting and guided bone regeneration for immediate dental implants in humans. J Periodontol. 1994;65:881–91. [40] Guo, Y., Chen, J., Hao, X., et al. A novel process for preparing expanded Polytetrafluoroethylene(ePTFE) micro-porous membrane through ePTFE/ePTFE co-stretching technique. J Mater Sci 42, 2081–2085 (2007). [41] Buser D, Bragger U, Lang NP, Nyman S. Regeneration and enlargement of jaw bone using guided tissue regeneration. Clin Oral Implants Res 1990; 1: 22-32. [42] Lang NP, Hämmerle CH, Bragger U, Lehmann B, Nyman SR. Guided tissue regeneration in jawbone defects prior to implant placement. Clin Oral Implants Res 1994; 5: 7-92. [43] Barber HD, Lignelli J, Smith BM, et al. Using a dense PTFE membrane without primary closure to achieve bone and tissue regeneration.Journal of oral and maxillofacial surgery : J Am Assoc Oral Maxillofac Sur. 2007;65:748–52. [44] Hoffmann O, Bartee BK, Beaumont C, et al. Alveolar bone preservation in extraction sockets using non-resorbable dPTFE membranes: a retrospective non-randomized study. J Periodontol. 2008;79:1355–69. [45] Laurito D, Cugnetto R, Lollobrigida M, Guerra F, Vestri A, Gianno F, Bosco S, Lamazza L, De Biase A. Socket Preservation with d-PTFE Membrane: Histologic Analysis of the Newly Formed Matrix at Membrane Removal. Int J Periodontics Restorative Dent. 2016 Nov/Dec;36(6):877-883. [46] Ronda M, Rebaudi A, Torelli L, Stacchi C. Expanded vs. dense polytetrafluoroethylene membranes in vertical ridge augmentation around dental implants: a prospective randomized controlled clinical trial. Clin Oral Implants Res. 2014 Jul;25(7):859-66. [47] Simion M, Trisi P, Maglione M, piattelli A. A Preliminary Report on a Method for Studying the Permeability of Expanded Polytetrafluoroethylene Membrane to Bacteria In Vitro: A Scanning Electron Microscopic and Histological Study. J Periodontol. 1994 Aug;65(8):755-61. [48] Machtei EE. The effect of membrane exposure on the outcome of regenerative procedures in humans: a meta-analysis. J Periodontol. 2001 Apr;72(4):512-6. [49] Crump TB, Rivera-Hidalgo F, Harrison JW , et al. Influence of three membrane types on healing of bone defects. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1996;82:365–74. [50] Sumi Y, Miyaishi O, Tohnai I, et al. Alveolar ridge augmentation with titanium mesh and autogenous bone. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2000;89:268–70. [51] Jovanovic SA, Nevins M. Bone formation utilizing titanium-reinforced barrier membranes. Int J Periodont Restorat Dent. 1995;15:56–69. [52] Steflik DE, Corpe RS, Young TR, et al. In vivo evaluation of the biocompatibility of implanted biomaterials morphology of the implant-tissue interactions. Implant Dent. 1998;7:338–50. [53] Hutmacher D, Hurzeler MB, Schliephake H. A review of material properties of biodegradable and bioresorbable polymers and devices for GTR and GBR applications. Int J Oral Maxillofac Implants. 1996;11:667–78. [54] Piattelli A, Scarano A, Coraggio F, et al. Early tissue reactions to polylactic acid resorbable membranes: a histological and histochemical study in rabbit. Biomaterials. 1998;19:889–96. [55] von Arx T, Broggini N, Jensen SS, et al. Membrane durability and tissue response of different bioresorbable barrier membranes: a histologic study in the rabbit calvarium. Int J Oral Maxillofac Implants. 2005;20:843–53. [56] Bunyaratavej P, Wang HL. Collagen membranes: a review. J Periodontol. 2001;72:215–29. [57] Rothamel D, Schwarz F, Sager M, et al. Biodegradation of differently cross-linked collagen membranes an experimental study in the rat. Clin Oral Implants Res. 2005;16:369–78. [58] Zitzmann NU, Naef R, Scharer P. Resorbable versus nonresorbable membranes in combination with Bio-Oss for guided bone regeneration. Int J Oral Maxillofac Implants. 1997;12:844–52. [59] Buser D, Dula K, Belser U, et al. Localized ridge augmentation using guided bone regeneration.1. Surgical procedure in the maxilla. . Int J Periodont Restorat Dent. 1993;13:29–45. [60] Kohavi D. Simultaneous and staged approaches for guided bone regeneration. Compend Contin Educ Dent. 2000 Jun;21(6):495-8, 500, 502 passim; quiz 508. [61] Fu JH, Wang HL. Horizontal bone augmentation: the decision tree. Int J Periodontics Restorative Dent. 2011 Jul-Aug;31(4):429-36. [62] Plonka AB, Urban IA, Wang HL. Decision Tree for Vertical Ridge Augmentation. Int J Periodontics Restorative Dent. 2018 Mar/Apr;38(2):269-275. [63] Buser D, Dula K, Hirt HP, et al. Lateral ridge augmentation using autografts and barrier membranes a clinical study with 40 partially edentulous patients Journal of oral and maxillofacial surgery. J Am Assoc Oral Maxillofac Sur discussion 32-3. 1996;54:420–32. [64] Simion M, Jovanovic SA, Trisi P, et al. Vertical ridge augmentation around dental implants using a membrane technique and autogenous bone or allografts in humans. Int J Periodont Restorat Dent. 1998;18:8–23. [65] Sumi Y, Miyaishi O, Tohnai I, et al. Alveolar ridge augmentation with titanium mesh and autogenous bone. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2000;89:268–70. [66] El-Askary AS, Pipco DJ. Autogenous and allogenous bone grafting techniques to maximize esthetics: a clinical report. J Prosthetic Dent. 2000;83:153–7. [67] Arai Y, Tammisalo E, Iwai K, Hashimoto K, Shinoda K. Development of a compact computed tomographic apparatus for dental use. Dentomaxillofac Radiol 1999; 28: 245–248. [68] Mozzo P, Procacci C, Tacconi A, Martini P T, Andreis I A. A new volumetric CT machine for dental imaging based on the cone-beam technique: preliminary results. Eur Radiol 1999; 8: 1558–1564. [69] A. Dawood, S. Patel, J. Brown. Cone beam CT in dental practice. Br Dent J. 2009 Jul 11;207(1):23-8. [70] H. Correa LR, Spin-Neto R, Stavropoulos A, Schropp L, da Silveira HED, Wenzel A. Planning of dental implant size with digital panoramic radiographs, CBCT-generated panoramic images, and CBCT cross-sectional images. Clin Oral Implant Res. 2014;25:690–5. [71] I. Worthington P, Rubenstein J, Hatcher DC. The role of cone-beam computed tomography in the planning and placement of implants. J Am Dent Assoc. 2010;141:19S-24S. [72] J. Gaêta-Araujo H, Oliveira-Santos N, Mancini AXM, Oliveira ML, Oliveira- Santos C. Retrospective assessment of dental implant-related perforations of relevant anatomical structures and inadequate spacing between implants/teeth using cone-beam computed tomography. Clin Oral Investig. 2020;24:1–8. [73] K. Sießegger M, Schneider BT, Mischkowski RA, Lazar F, Krug B, Klesper B, et al. Use of an image-guided navigation system in dental implant surgery in anatomically complex operation sites. J Cranio-Maxillofac Surg. 2001;29:276–81. [74] L. Ekestubbe A, Gröndahl K, Gröndahl H. The use of tomography for dental implant planning. Dentomaxillofac Radiol. 1997;26:206–13. [75] M. Zakirov A, Ezhov M, Gusarev M, Alexandrovsky V, Shumilov E. Dental pathology detection in 3D cone-beam CT. ArXiv, abs/1810.10309. 2018. [76] Schubert O, Schweiger J, Stimmelmayr M, Nold E, Güth JF. Digital implant planning and guided implant surgery - workflow and reliability. Br Dent J. 2019 Jan 25;226(2):101-108. [77] Ting-Shu S, Jian S. Intraoral Digital Impression Technique: A Review. J Prosthodont. 2015;24(4):313–321. [78] Zimmermann M, Mehl A, Mörmann WH, Reich S. Intraoral scanning systems - a current overview. Int J Comput Dent. 2015;18(2):101–129. [79] Yuzbasioglu E., Kurt H., Turunc R., Bilir H. Comparison of digital and conventional impression techniques: evaluation of patients’ perception, treatment comfort, effectiveness and clinical outcomes. BMC Oral Health. 2014;14:p. 10. [80] Christensen G. J. Impressions are changing: deciding on conventional, digital or digital plus in-office milling. The Journal of the American Dental Association. 2009;140(10):1301–1304. [81] Mangano, F., Gandolfi, A., Luongo, G., et al. Intraoral scanners in dentistry: a review of the current literature. BMC Oral Health 17, 149 (2017). [82] Salomão G.V.D.S., Chun E.P., Panegaci R.D.S., Santos F.T. Analysis of Digital Workflow in Implantology. Case Rep. Dent. 2021:1–7. [83] Azari A., Nikzad S. Flapless implant surgery: review of the literature and report of 2 cases with computer-guided surgical approach. Journal of Oral and Maxillofacial Surgery. 2008;66(5):1015–1021. [84] da Silva Salomão GV, Chun EP, Panegaci RDS, Santos FT. Analysis of Digital Workflow in Implantology. Case Rep Dent. 2021 Feb 15;2021:6655908. [85] Tatakis D. N., Chien H. H., Parashis A. O. Guided implant surgery risks and their prevention. Periodontology 2000. 2019;81(1):194–208. [86] Kihara H., Hatakeyama W., Komine F., et al. Accuracy and practicality of intraoral scanner in dentistry: a literature review. Journal of Prosthodontic Research. 2020;64(2):109–113. [87] Greenberg AM. Digital technologies for dental implant treatment planning and guided surgery. Oral Maxillofac Surg Clin North Am. 2015;27(2):319-340. [88] Pinto-Coelho L. How Artificial Intelligence Is Shaping Medical Imaging Technology: A Survey of Innovations and Applications. Bioengineering (Basel). 2023 Dec 18;10(12):1435. [89] Russell, Stuart J., and Peter Norvig. Artificial intelligence: a modern approach. Pearson, 2016. [90] Burges, Christopher JC. A tutorial on support vector machines for pattern recognition. Data mining and knowledge discovery, 1998, 2.2: 121-167. [91] LeCun, Yann; Bengio, Yoshua; Hinton, Geoffrey. Deep learning. nature, 2015, 521.7553: 436-444. [92] Kim J-E, Nam N-E, Shim J-S, Jung Y-H, Cho B-H, Hwang JJ. Transfer learning via deep neural networks for implant fixture system classification using periapical radiographs. J Clin Med. 2020;9(4):1117. [93] LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proceedings of the IEEE. 1998 Nov;86(11):2278-324. [94] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. ‘ImageNet Classification with Deep Convolutional Neural Networks’. In Advances in Neural Information Processing Systems, edited by F. Pereira, C. J. Burges, L. Bottou, and K. Q. Weinberger, Vol. 25. Curran Associates, Inc., 2012. [95] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556. 2014 Sep 4. [96] Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. Going deeper with convolutions. InProceedings of the IEEE conference on computer vision and pattern recognition 2015 (pp. 1-9). [97] He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. InProceedings of the IEEE conference on computer vision and pattern recognition 2016 (pp. 770-778). [98] Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017 Feb 2;542(7639):115-118. [99] Gulshan V, Peng L, Coram M, et al. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA. 2016;316(22):2402–2410. [100] Mazurowski MA, Buda M, Saha A, Bashir MR. Deep learning in radiology: An overview of the concepts and a survey of the state of the art with focus on MRI. J Magn Reson Imaging. 2019 Apr;49(4):939-954. [101] Lee JH, Kim DH, Jeong SN, et al. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. J Dent 2018;77:106–111. [102] Lee JH, Kim DH, Jeong SN, et al. Diagnosis and prediction of periodontally compromised teeth using a deep learning-based convolutional neural network algorithm. J Periodontal Implant Sci 2018;48(2):114–123. [103] Casalegno F, Newton T, Daher R, et al. Caries detection with near-infrared transillumination using deep learning. J Dent Res 2019;98:1227–1233. [104] Kise Y, Ikeda H, Fujii T, et al. Preliminary study on the application of deep learning system to diagnosis of Sjögren’s syndrome on CT images. Dentomaxillofac Radiol 2019;48(6):20190019. [105] Zhang W, Li J, Li Z, et al. Predicting postoperative facial swelling following impacted mandibular third molars extraction by using artificial neural networks evaluation. Sci Rep 2018;8(1):12281. [106] Choi HI, Jung SK, Baek SH, et al. Artificial intelligent model with neural network machine learning for the diagnosis of orthognathic surgery. J Craniofac Surg 2019;30(7):1986–1989. [107] Patcas R, Timofte R, Volokitin A, et al. Facial attractiveness of cleft patients: a direct comparison between artificial-intelligence-based scoring and conventional rater groups. Eur J Orthod 2019;41(4):428– 433. [108] Tuzoff DV, Tuzova LN, Bornstein MM, Krasnov AS, Kharchenko MA, Nikolenko SI, et al. Tooth detection and numbering in panoramic radiographs using convolutional neural networks. Dentomaxillofac Radiol. 2019;48:20180051. [109] Muramatsu C, Kutsuna S, Takahashi R, et al. Tooth numbering in cone-beam CT using a relation network for automatic filing of dentition charts. Medical Imaging 2020: Imaging Infor- matics for Healthcare, Research, and Applications: International Society for Optics and Photonics; 2020. p. 113180L. [110] Orhan K, Bayrakdar I, Ezhov M, Kravtsov A, Özyürek T. Evaluation of artificial intelligence for detecting periapical pathosis on cone-beam computed tomography scans. Int Endod J. 2020;53:680–9. [111] Kwak GH, Kwak E-J, Song JM, et al. Automatic mandibular canal detection using a deep convolutional neural network. Sci Rep. 2020;10:1–8. [112] Kurt Bayrakdar S, Orhan K, Bayrakdar IS, et al. A deep learning approach for dental implant planning in cone-beam computed tomography images. BMC Med Imaging. 2021;21(1):1-9. [113] Sukegawa S, Yoshii K, Hara T, et al. Is attention branch network effective in classifying dental implants from panoramic radiograph images by deep learning? PLoS One. 2022 Jul 27;17(7):e0269016. [114] Huang N, Liu P, Yan Y, et al. Predicting the risk of dental implant loss using deep learning. J Clin Periodontol. 2022;49(9):872-883. [115] Shadid R, Sadaqa N. A comparison between screw- and cement- retained implant prostheses. A literature review. J Oral Implantol. 2012;38(3):298-307. [116] Singh, N. T., Kaur, C., Chaudhary, A., & Goyal, S. Preprocessing of Medical Images using Deep Learning: A Comprehensive Review. In: 2023 Second International Conference on Augmented Intelligence and Sustainable Systems (ICAISS). IEEE, 2023. p. 521-527. [117] Mishro PK, Agrawal S, Panda R, Abraham A. A Survey on State-of-the-Art Denoising Techniques for Brain Magnetic Resonance Images. IEEE Rev Biomed Eng. 2022;15:184-199. [118] Benic GI, Hammerle CH. Horizontal bone augmentation by means of guided bone regeneration. Periodontology 2000. 2014;66(1):13-40. [119] Jung RE, Herzog M, Wolleb K, et al. A randomized controlled clinical trial comparing small buccal dehis- cence defects around dental implants treated with guided bone regeneration or left for spontaneous healing. Clin Oral Implants Res. 2017;28(3):348-354. [120] Von Arx T, Walkamm B, Hardt N. Localized ridge augmentation using a micro titanium mesh: a report on 27 implants followed from 1 to 3 vears after functional loading. Clin Oral Implants Res. 1998;9(2): 123-130. [121] Le BT, Borzabadi-Farahani A. Simultaneous implant placement and bone grafting with particulate mineralized allograft in sites with buccal wall defects, a three-year follow-up and review of literature. J Craniomaxillofac Surg. 2014;42(5):552-559. [122] Onishi Y, Teramoto A, Tsujimoto M, et al. Automated Pulmonary Nodule Classification in Computed Tomography Images Using a Deep Convolutional Neural Network Trained by Generative Adversarial Networks. Biomed Res Int. 2019 Jan 2;2019:6051939. [123] D. Tran, H. Wang, L. Torresani, et al. A Closer Look at Spatiotemporal Convolutions for Action Recognition. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018, pp. 6450-6459 [124] Wang X, Xu, Z., Tong, Y., et al. Detection and classification of mandibular fracture on CT scan using deep convolutional neural network. Clinical Oral Investigations, 2022, 26.6: 4593-4601. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94928 | - |
| dc.description.abstract | 研究目標
本研究目標為建立一個透過錐狀射束電腦斷層掃描cone-beam computerized tomography (CBCT) 影像自動判讀植牙骨缺損型態分類的深度學習模型,以提供植牙治療計畫建議。 研究方法 使用177名患者(83名男性和 94名女性,年齡 56.49 ± 12.76 歲)的 630 個下顎CBCT影像切片,虛擬植入植體(直徑 4-5 毫米,長度 10 毫米),切片皆根據虛擬植體的長軸定向並透過人工標記。齒槽嵴缺損型態分成五類,採用ResNet-50卷積神經網路模型進行訓練。 研究結果 該模型在未經預處理影像切片的準確度為98.91 ± 1.45%,優於經預處理影像的準確度92.85 ± 2.60%。以各缺損型態分類的模型性能而言,未經預處理的影像切片之準確率和 F1 分數分別為 99.05%–99.84% 和 97.30%–99.66%,經預處理的切片之準確度和 F1 分數分別為 96.03%–98.89% 和 87.92%–96.71%。 結論 透過深度學習判讀CBCT影像,無需經過預處理即可高準確率識別出植牙骨缺損型態分類。 | zh_TW |
| dc.description.abstract | Objectives
The aim of this study was to establish a deep learning model for the automatic identification of the ridge deficiency around dental implants based on an image slice from cone-beam computerized tomography (CBCT) in order to provide recommendations for dental implant treatment plan. Materials and Methods A total of 630 CBCT image slices of the mandible from respective implants in 117 patients (83 males and 94 females, age 56.49 ± 12.76 years) were used as the datasets in this study. Virtual implant fixtures (4-5 mm diameter, 10mm length) were placed in the implant treatment planning software. In each implant, one slice crossing the central long-axis implant was chosen and the classifications of edentulous ridges were labeled. Alveolar ridge defect types were divided into five classifications. A convolutional neural network with ResNet-50 architecture was employed for deep learning. Results The model achieved an accuracy of 98.91 ± 1.45% on the unpreprocessed image slices and was found to be superior to the accuracy of 92.85 ± 2.60% observed on the preprocessed slices. In terms of model performance for each defect type classification, the accuracy and F1 scores for unpreprocessed image slices were 99.05%–99.84% and 97.30%–99.66%, respectively, and 96.03%–98.89% and 87.92%–96.71%, respectively, for preprocessed slices. Conclusion By identifying CBCT images through deep learning, the ridge deficiency around dental implants could be correctly classified with high accuracy without preprocessing. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-21T16:41:25Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-21T16:41:26Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
誌謝 II 摘要 III ABSTRACT IV 目次 V 圖次 VII 表次 VIII 第1章 緒論 1 1.1 拔牙後齒槽嵴型態的變化 2 1.2 缺牙齒槽嵴之臨床分類 4 1.3 齒槽嵴臨床重建準則 6 1.4 數位化植牙工作流程之現況 10 1.5 人工智慧在植牙治療之角色 11 第2章 研究目標 15 2.1 研究假說 15 2.2 研究目標 15 第3章 研究方法 16 3.1 倫理及影像資料搜集 16 3.2 虛擬植體植入 17 3.3 植牙齒槽嵴缺損分類與標記 18 3.4 信度分析(Assessments for the Reliability) 19 3.5 深度學習的卷積神經網絡(Convolutional neural network for DL) 20 3.6 熱區圖視覺化 (Heatmap visualization) 21 3.7 數據呈現和模型性能(Data presentation and model performance) 22 第4章 研究結果 23 4.1 資料搜集與標記 23 4.2 模型預測性能 24 4.3 模型分類可視覺化( Visualization of model classification ) 25 4.4 資料數量與模型準確性之關係 26 第5章 討論與建議 27 5.1 討論 27 5.2 未來研究方向 29 第6章 結論 31 參考文獻 32 附錄 圖與表 46 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 影像辨識 | zh_TW |
| dc.subject | 深度學習 | zh_TW |
| dc.subject | 錐狀射束電腦斷層掃描 | zh_TW |
| dc.subject | 齒槽嵴缺損 | zh_TW |
| dc.subject | 人工植牙 | zh_TW |
| dc.subject | deep learning | en |
| dc.subject | ridge deficency | en |
| dc.subject | image recognition | en |
| dc.subject | CBCT | en |
| dc.subject | dental implant | en |
| dc.title | 人工智慧應用於錐狀射束電腦斷層掃描進行牙科植體治療規劃之研究 | zh_TW |
| dc.title | The Application of Artificial Intelligence for Dental Implant Treatment Planning via Cone Beam Computed Tomography | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 王振穎;張維仁 | zh_TW |
| dc.contributor.oralexamcommittee | Chen-Ying Wang;Wei-Jen Chang | en |
| dc.subject.keyword | 齒槽嵴缺損,深度學習,人工植牙,錐狀射束電腦斷層掃描,影像辨識, | zh_TW |
| dc.subject.keyword | ridge deficency,deep learning,dental implant,CBCT,image recognition, | en |
| dc.relation.page | 57 | - |
| dc.identifier.doi | 10.6342/NTU202403694 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-07 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 臨床牙醫學研究所 | - |
| 顯示於系所單位: | 臨床牙醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 6.79 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
