請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94925完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃昭淵 | zh_TW |
| dc.contributor.advisor | Chao-Yuan Huang | en |
| dc.contributor.author | 王巽玄 | zh_TW |
| dc.contributor.author | Hsun-Shuan Wang | en |
| dc.date.accessioned | 2024-08-21T16:37:49Z | - |
| dc.date.available | 2024-08-22 | - |
| dc.date.copyright | 2024-08-21 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-06 | - |
| dc.identifier.citation | World Health Organization (WHO). https://www.who.int/news-room/fact- sheets/detail/cancer. Accessed.
Schaeffer EM, Srinivas S, Adra N, et al. Prostate Cancer, Version 4.2023, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2023;21(10):1067-1096. Cancer Registry Annual Report, 2021, Taiwan. https://www.hpa.gov.tw/File/Attach/17639/File_23506.pdf. Accessed. Schaeffer EM, Srinivas S, Adra N, et al. Prostate Cancer, Version 3.2024. J Natl Compr Canc Netw. 2024;22(3):140-150. Montori VM, Ruissen MM, Hargraves IG, Brito JP, Kunneman M. Shared decision-making as a method of care. BMJ Evid Based Med. 2023;28(4):213-217. National Comprehensive Cancer Network (NCCN) guideline. https://www.nccn.org/guidelines/category_1. Accessed. Jackson WC, Suresh K, Tumati V, et al. Intermediate Endpoints After Postprostatectomy Radiotherapy: 5-Year Distant Metastasis to Predict Overall Survival. Eur Urol. 2018;74(4):413-419. Moris L, Cumberbatch MG, Van den Broeck T, et al. Benefits and Risks of Primary Treatments for High-risk Localized and Locally Advanced Prostate Cancer: An International Multidisciplinary Systematic Review. Eur Urol. 2020;77(5):614-627. Devos G, Devlies W, De Meerleer G, et al. Neoadjuvant hormonal therapy before radical prostatectomy in high-risk prostate cancer. Nat Rev Urol. 2021;18(12):739-762. Davey RA, Grossmann M. Androgen Receptor Structure, Function and Biology: From Bench to Bedside. Clin Biochem Rev. 2016;37(1):3-15. Arap W, Pasqualini R, Costello JF. Prostate Cancer Progression and the Epigenome. N Engl J Med. 2020;383(23):2287-2290. Crawford ED, Schellhammer PF, McLeod DG, et al. Androgen Receptor Targeted Treatments of Prostate Cancer: 35 Years of Progress with Antiandrogens. J Urol. 2018;200(5):956-966. Van den Broeck T, van den Bergh RCN, Arfi N, et al. Prognostic Value of Biochemical Recurrence Following Treatment with Curative Intent for Prostate Cancer: A Systematic Review. Eur Urol. 2019;75(6):967-987. Dai C, Heemers H, Sharifi N. Androgen Signaling in Prostate Cancer. Cold Spring Harb Perspect Med. 2017;7(9). Mostaghel EA. Steroid hormone synthetic pathways in prostate cancer. Transl Androl Urol. 2013;2(3):212-227. de Bono JS, Logothetis CJ, Molina A, et al. Abiraterone and increased survival in metastatic prostate cancer. N Engl J Med. 2011;364(21):1995-2005. Ryan CJ, Smith MR, de Bono JS, et al. Abiraterone in metastatic prostate cancer without previous chemotherapy. N Engl J Med. 2013;368(2):138-148. Beer TM, Armstrong AJ, Rathkopf DE, et al. Enzalutamide in metastatic prostate cancer before chemotherapy. N Engl J Med. 2014;371(5):424-433. Scher HI, Fizazi K, Saad F, et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med. 2012;367(13):1187-1197. Schmidt KT, Huitema ADR, Chau CH, Figg WD. Resistance to second-generation androgen receptor antagonists in prostate cancer. Nat Rev Urol. 2021;18(4):209-226. Caffo O, Veccia A, Kinspergher S, Maines F. Abiraterone acetate and its use in the treatment of metastatic prostate cancer: a review. Future Oncol. 2018;14(5):431-442. Azad AA, Volik SV, Wyatt AW, et al. Androgen Receptor Gene Aberrations in Circulating Cell-Free DNA: Biomarkers of Therapeutic Resistance in Castration-Resistant Prostate Cancer. Clin Cancer Res. 2015;21(10):2315-2324. Antonarakis ES, Lu C, Wang H, et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med. 2014;371(11):1028-1038. Zhang T, Karsh LI, Nissenblatt MJ, Canfield SE. Androgen Receptor Splice Variant, AR-V7, as a Biomarker of Resistance to Androgen Axis-Targeted Therapies in Advanced Prostate Cancer. Clin Genitourin Cancer. 2020;18(1):1-10. Ha H, Kwon H, Lim T, Jang J, Park SK, Byun Y. Inhibitors of prostate-specific membrane antigen in the diagnosis and therapy of metastatic prostate cancer - a review of patent literature. Expert Opin Ther Pat. 2021;31(6):525-547. Ferraldeschi R, Nava Rodrigues D, Riisnaes R, et al. PTEN protein loss and clinical outcome from castration-resistant prostate cancer treated with abiraterone acetate. Eur Urol. 2015;67(4):795-802. Isaacsson Velho P, Fu W, Wang H, et al. Wnt-pathway Activating Mutations Are Associated with Resistance to First-line Abiraterone and Enzalutamide in Castration-resistant Prostate Cancer. Eur Urol. 2020;77(1):14-21. Marabelle A, Fakih M, Lopez J, et al. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol. 2020;21(10):1353-1365. Fernandez EV, Reece KM, Ley AM, et al. Dual targeting of the androgen receptor and hypoxia-inducible factor 1alpha pathways synergistically inhibits castration-resistant prostate cancer cells. Mol Pharmacol. 2015;87(6):1006-1012. Miao L, Yang L, Li R, et al. Disrupting Androgen Receptor Signaling Induces Snail-Mediated Epithelial-Mesenchymal Plasticity in Prostate Cancer. Cancer Res. 2017;77(11):3101-3112. Cheng HH, Pritchard CC, Boyd T, Nelson PS, Montgomery B. Biallelic Inactivation of BRCA2 in Platinum-sensitive Metastatic Castration-resistant Prostate Cancer. Eur Urol. 2016;69(6):992-995. Mateo J, Porta N, Bianchini D, et al. Olaparib in patients with metastatic castration-resistant prostate cancer with DNA repair gene aberrations (TOPARP-B): a multicentre, open-label, randomised, phase 2 trial. Lancet Oncol. 2020;21(1):162-174. Conti DV, Darst BF, Moss LC, et al. Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction. Nat Genet. 2021;53(1):65-75. Schumacher FR, Al Olama AA, Berndt SI, et al. Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci. Nat Genet. 2018;50(7):928-936. Chen F, Madduri RK, Rodriguez AA, et al. Evidence of Novel Susceptibility Variants for Prostate Cancer and a Multiancestry Polygenic Risk Score Associated with Aggressive Disease in Men of African Ancestry. Eur Urol. 2023;84(1):13-21. Takata R, Takahashi A, Fujita M, et al. 12 new susceptibility loci for prostate cancer identified by genome-wide association study in Japanese population. Nat Commun. 2019;10(1):4422. Bau DT, Tsai CW, Chang WS, et al. Genetic susceptibility to prostate cancer in Taiwan: A genome-wide association study. Mol Carcinog. 2024;63(4):617-628. Sweeney CJ, Chen YH, Carducci M, et al. Chemohormonal Therapy in Metastatic Hormone-Sensitive Prostate Cancer. N Engl J Med. 2015;373(8):737-746. Mader N, Nguyen Ngoc C, Kirkgoze B, et al. Extended therapy with [(177)Lu]Lu-PSMA-617 in responding patients with high-volume metastatic castration-resistant prostate cancer. Eur J Nucl Med Mol Imaging. 2023;50(6):1811-1821. Tomioka A, Tanaka N, Yoshikawa M, et al. Nadir PSA level and time to nadir PSA are prognostic factors in patients with metastatic prostate cancer. BMC Urol. 2014;14:33. Lee CL, Chang YH, Liu CY, et al. Changes in prostate-specific antigen kinetics during androgen-deprivation therapy as a predictor of response to abiraterone in chemonaive patients with metastatic castration-resistant prostate cancer. Investig Clin Urol. 2022;63(5):546-553. Chen SP, Hsu CL, Wang YF, et al. Genome-wide analyses identify novel risk loci for cluster headache in Han Chinese residing in Taiwan. J Headache Pain. 2022;23(1):147. Lee CJ, Chen TH, Lim AMW, et al. Phenome-wide analysis of Taiwan Biobank reveals novel glycemia-related loci and genetic risks for diabetes. Commun Biol. 2022;5(1):1175. Wei CY, Yang JH, Yeh EC, et al. Genetic profiles of 103,106 individuals in the Taiwan Biobank provide insights into the health and history of Han Chinese. NPJ Genom Med. 2021;6(1):10. Choueiri TK, Xie W, D'Amico AV, et al. Time to prostate-specific antigen nadir independently predicts overall survival in patients who have metastatic hormone-sensitive prostate cancer treated with androgen-deprivation therapy. Cancer. 2009;115(5):981-987. Tseng CS, Yang JH, Huang SW, et al. Survival outcomes and prognostic factors for first-line abiraterone acetate or enzalutamide in patients with metastatic castration-resistant prostate cancer. BMC Cancer. 2023;23(1):568. Teoh JY, Tsu JH, Yuen SK, et al. Prognostic significance of time to prostate-specific antigen (PSA) nadir and its relationship to survival beyond time to PSA nadir for prostate cancer patients with bone metastases after primary androgen deprivation therapy. Ann Surg Oncol. 2015;22(4):1385-1391. Nagata Y, Jojima K, Matsukawa T, Tomisaki I, Fujimoto N. Initial-to-nadir Prostate-specific Antigen Ratio Predicts Response to First-line Enzalutamide in Metastatic Castration-resistant Prostate Cancer. Anticancer Res. 2023;43(10):4573-4581. Nusse R, Clevers H. Wnt/beta-Catenin Signaling, Disease, and Emerging Therapeutic Modalities. Cell. 2017;169(6):985-999. Acebron SP, Niehrs C. beta-Catenin-Independent Roles of Wnt/LRP6 Signaling. Trends Cell Biol. 2016;26(12):956-967. Tenbaum SP, Ordonez-Moran P, Puig I, et al. beta-catenin confers resistance to PI3K and AKT inhibitors and subverts FOXO3a to promote metastasis in colon cancer. Nat Med. 2012;18(6):892-901. Robinson D, Van Allen EM, Wu YM, et al. Integrative clinical genomics of advanced prostate cancer. Cell. 2015;161(5):1215-1228. Murillo-Garzon V, Kypta R. WNT signalling in prostate cancer. Nat Rev Urol. 2017;14(11):683-696. Chen WS, Aggarwal R, Zhang L, et al. Genomic Drivers of Poor Prognosis and Enzalutamide Resistance in Metastatic Castration-resistant Prostate Cancer. Eur Urol. 2019;76(5):562-571. Deep G, Panigrahi GK. Hypoxia-Induced Signaling Promotes Prostate Cancer Progression: Exosomes Role as Messenger of Hypoxic Response in Tumor Microenvironment. Crit Rev Oncog. 2015;20(5-6):419-434. Mohamed OAA, Tesen HS, Hany M, Sherif A, Abdelwahab MM, Elnaggar MH. The role of hypoxia on prostate cancer progression and metastasis. Mol Biol Rep. 2023;50(4):3873-3884. Zhang Q, Pan Y, Ji J, Xu Y, Zhang Q, Qin L. Roles and action mechanisms of WNT4 in cell differentiation and human diseases: a review. Cell Death Discov. 2021;7(1):287. Liang XH, Deng WB, Li M, et al. Egr1 protein acts downstream of estrogen-leukemia inhibitory factor (LIF)-STAT3 pathway and plays a role during implantation through targeting Wnt4. J Biol Chem. 2014;289(34):23534-23545. Kim JH, Jeong IY, Lim Y, Lee YH, Shin SY. Estrogen receptor beta stimulates Egr-1 transcription via MEK1/Erk/Elk-1 cascade in C6 glioma cells. BMB Rep. 2011;44(7):452-457. Li X, Li Z, Wang J, et al. Wnt4 signaling mediates protective effects of melatonin on new bone formation in an inflammatory environment. FASEB J. 2019;33(9):10126-10139. Gozo MC, Aspuria PJ, Cheon DJ, et al. Foxc2 induces Wnt4 and Bmp4 expression during muscle regeneration and osteogenesis. Cell Death Differ. 2013;20(8):1031-1042. Vouyovitch CM, Perry JK, Liu DX, et al. WNT4 mediates the autocrine effects of growth hormone in mammary carcinoma cells. Endocr Relat Cancer. 2016;23(7):571-585. Chen Y, Zhang P, Tang P, et al. Wnt4 overexpression promotes thymoma development through a JNK-mediated planar cell polarity-like pathway. Oncol Lett. 2018;15(1):83-90. Yang D, Li Q, Shang R, et al. WNT4 secreted by tumor tissues promotes tumor progression in colorectal cancer by activation of the Wnt/beta-catenin signalling pathway. J Exp Clin Cancer Res. 2020;39(1):251. Huang Z, Yang M, Li Y, Yang F, Feng Y. Exosomes Derived from Hypoxic Colorectal Cancer Cells Transfer Wnt4 to Normoxic Cells to Elicit a Prometastatic Phenotype. Int J Biol Sci. 2018;14(14):2094-2102. Shackleford MT, Rao DM, Bordeaux EK, et al. Estrogen Regulation of mTOR Signaling and Mitochondrial Function in Invasive Lobular Carcinoma Cell Lines Requires WNT4. Cancers (Basel). 2020;12(10). Wang N, Yan H, Wu D, et al. PRMT5/Wnt4 axis promotes lymph-node metastasis and proliferation of laryngeal carcinoma. Cell Death Dis. 2020;11(10):864. Zhao L, Wang L, Zhang C, et al. E6-induced selective translation of WNT4 and JIP2 promotes the progression of cervical cancer via a noncanonical WNT signaling pathway. Signal Transduct Target Ther. 2019;4:32. Di C, Mladkova N, Lin J, et al. AJAP1 expression modulates glioma cell motility and correlates with tumor growth and survival. Int J Oncol. 2018;52(1):47-54. Xu C, Wang F, Hao L, et al. Expression Patterns of Ezrin and AJAP1 and Clinical Significance in Breast Cancer. Front Oncol. 2022;12:831507. Chen L, Wang Y, Zhang B. Hypermethylation in the promoter region inhibits AJAP1 expression and activates the JAK/STAT pathway to promote prostate cancer cell migration and stem cell sphere formation. Pathol Res Pract. 2023;241:154224. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94925 | - |
| dc.description.abstract | 攝護腺癌是男性第二常見的惡性腫瘤,全球每年新診斷的攝護腺癌患者超過100萬人。攝護腺癌的病生理學主要與雄性激素受體有關,雖然雄性激素剝奪療法對晚期攝護腺癌在初期治療效果顯著,但數年內疾病會進展為去勢抗性攝護腺癌。
在初代雄性激素剝奪療法藥物基礎上,二代荷爾蒙療法已被證實對於接受化療前或化療後的晚期攝護腺癌患者具有療效。然而,二代荷爾蒙療法之療效在不同患者間存在差異,這主要取決於患者對二代荷爾蒙療法之抗藥程度。過去已提出多種不同的二代荷爾蒙療法抗藥性機轉,包括雄性激素受體基因變異、DNA損傷修復機制的變化、信號傳導通路的改變、蛋白激酶PI3K/AKT/mTOR通路的改變、Wnt-β-catenin通路之變異、神經內分泌分化異常等,這些機制的改變都可能導致對二代荷爾蒙療法產生抗藥性,從而影響治療效果。 全基因組關聯研究(genome-wide association study, GWAS)可分析癌症臨床表徵與基因變異之間的相關性,研究疾病預後及治療療效與單核苷酸多型性(single nucleotide polymorphism, SNP)基因位點變異之相關性。 本研究之研究假設為(1)基因變異會造成攝護腺癌二代賀爾蒙療法預後之影響,(2)基因變異會造成二代賀爾蒙藥物抗藥性之差異並對治療結果造成改變,(3)基因變異具有二代賀爾蒙療法療效之預測角色並提供藥物選擇之參考。 本研究之研究目的為(1)闡明基因變異對於攝護腺癌二代賀爾蒙療法療效及癌症預後之影響,(2)研究基因變異對於攝護腺癌二代賀爾蒙療法療效之預測價值,提供個人化醫療之藥物選擇。本研究以全基因組關聯分析(GWAS)進行攝護腺癌二代賀爾蒙療法病患之基因分析,識別攝護腺癌二代賀爾蒙治療預後相關因子於單核苷酸多型性位點之基因變異表現。 共有82位晚期攝護腺癌接受二代賀爾蒙療法於高雄醫學大學附設醫院之病患納入本研究中,包括 Abiraterone 28位及Enzalutamide 54位病患,收集分析病患之攝護腺癌臨床資料及二代賀爾蒙治療之相關資料,以全基因組關聯研究分析攝護腺癌二代賀爾蒙療法預後因子與基因變異之相關性。 全基因組關聯研究分析顯示,以PSA nadir < 2 ng/ml為預後因子(> 2 ng/ml, n = 37; < 2 ng/ml, n = 43),可顯示出五個位於Chromosome 1上WNT4 gene之SNP有較高的關聯強度; 以PSA下降比例 > 50%為預後因子(> 50%, n = 58; < 50%, n = 22),呈現出位於Chromosome 1上AGT CAPN9 gene之SNP有較高的關聯強度。於連續性狀分析中,PSA nadir與基因分析比較,7個位於染色體Chromosome 1、4、13、15、20上之SNP,其基因位置分別位於AJAP1、AL645474.1、AC093607.1、AC017091.1、MTCL1P1、OCA2、RNU6-929P,達統計顯著關聯強度。 此研究結果顯示,基因變異對於攝護腺癌二代賀爾蒙療法造成預後之影響,識別出數個不同的基因位點變異,呈現出二代賀爾蒙治療後預後因子基因表現之差異。此次研究所呈現出的基因變異位點位於WNT4 gene、AJAP1 gene與其他特定的癌症相關訊息傳遞路徑,進一步且更大規模的基因研究以及更深入關於癌症的路徑機轉研究為未來之研究努力目標,為個人化精準醫療提供更有力的資訊。 | zh_TW |
| dc.description.abstract | Prostate cancer is the second common cancer in male, and more than 1 million patients were newly diagnosed each year among the world. The pathophysiologies of the prostate cancer were mainly related to the androgen receptors (ARs). Although androgen deprivation therapies (ADT) were efficacious for the initial treatment of the advanced prostate cancer, the diseases progress into the castration resistant prostate cancer (CRPC) within years.
Upon ADT, novel hormone agents (NHAs) have been proved the survival benefits for the advanced prostate cancer with the pre- or the post-chemotherapy regimen. The therapeutic effect of the NHAs varies among the patients according to the degrees of the NHA resistance. Several mechanisms of the NHA resistance had been proposed, including the genomic alterations of the androgen receptors, DNA damage repair, and several signaling pathway alterations in phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway, Wnt–β-catenin pathway and neuroendocrine differentiation pathways. Genome-wide association study (GWAS) provides the genetic information for the correlation between the characters of the cancers and the genetic variants and examines the single nucleotide polymorphism (SNP) variants related to the prognosis of the diseases and oncological outcome of the therapies. Under the hypothesis that genetic variants might (1) contribute to the progression and the prognosis of the advanced prostate cancer under novel hormone therapy, (2) play the role for the novel hormone agent resistance and alter the therapeutic effects and (3) provide predictive values for the choice of the novel hormone therapies, the purposes of the studies are to (1) elucidate the prognostic value of the genetic variants in the efficacy of novel hormone therapy in the advanced prostate cancer, and (2) provide the predictive values for the prostate cancer patient receiving novel hormone agents with the genome-wide association study (GWAS) for the purpose of the precision medicine. 82 patients with advanced prostate cancer under NHA with Abiraterone (n = 28) and Enzalutamide (n = 54) were enrolled from Kaohsiung Medical University hospital. The patient’s oncological profiles were recorded retrospectively. GWAS were analyzed for the prognostic factors related to the outcome of the NHA response. For the prognostic factor of PSA nadir < 2 ng/ml as good NHA response, ( > 2 ng/ml, n = 37; < 2 ng/ml, n = 43), 5 SNPs at chromosome 1 related to WNT4 gene were found. For the prognostic factor of PSA decline > 50% as good NHA response ( > 50%, n = 58; < 50%, n = 22), 1 SNP at chromosome 1 near AGT CAPN9 gene was found. Regarding GWAS for the PSA nadir quantitative trait, several SNPs at chromosome 1, 4, 13, 15, and 20 near AJAP1, AL645474.1, AC093607.1, AC017091.1, MTCL1P1, OCA2 and RNU6-929P gene were identified. In conclusion, for the advanced prostate cancer patients under NHA with Abiraterone and Enzalutamide, GWAS revealed the correlation of the genetic variants with the oncological outcome of the NHA therapies. Several SNPs were showed the correlation with the therapeutic prognosis of NHA, including the SNPs at WNT4 gene, and AJAP1 gene which were correlated with the signaling pathways related to the cancer. These findings provide the genetic parameters for the precision medicine. Further studies were warranted. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-21T16:37:48Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-21T16:37:49Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii 英文摘要 iv 目次 v 圖次 vi 表次 vii 第一章 研究背景及目的 1 第一節 攝護腺癌簡介 1 第二節 攝護腺癌與雄性激素 2 第三節 攝護腺癌二代賀爾蒙療法 3 第四節 攝護腺癌二代賀爾蒙藥物抗藥性 5 第五節 全基因組關聯分析於攝護腺癌研究 6 第六節 研究假設與研究目的 8 第二章 研究方法 9 第三章 結果 12 第四章 討論 16 第一節 攝護腺癌預後因子之探討 16 第二節 Wnt訊息傳遞路徑 17 第三節 Wnt訊息傳遞路徑與攝護腺癌治療 18 第四節 WNT4 gene與攝護腺癌 20 第五節 AJAP1 gene與攝護腺癌 21 第六節 研究之局限性及未來研究方向 22 第五章 結論 25 參考文獻 38 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 攝護腺癌 | zh_TW |
| dc.subject | 二代賀爾蒙療法 | zh_TW |
| dc.subject | 全基因組關聯研究 | zh_TW |
| dc.subject | GWAS | zh_TW |
| dc.subject | WNT4 | zh_TW |
| dc.subject | AJAP1 | zh_TW |
| dc.subject | genome-wide association study | en |
| dc.subject | prostate cancer | en |
| dc.subject | AJAP1 | en |
| dc.subject | WNT4 | en |
| dc.subject | GWAS | en |
| dc.subject | novel hormone therapy | en |
| dc.title | 攝護腺癌二代賀爾蒙療法療效與基因變異之相關性分析 | zh_TW |
| dc.title | The Correlation Between Genetic Variants and The Outcome of the Novel Hormone Therapy in Advanced Prostate Cancer | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 周祖述;范盛娟 | zh_TW |
| dc.contributor.oralexamcommittee | Tzuu-Shuh Jou;Cathy S.-J. Fann | en |
| dc.subject.keyword | 攝護腺癌,二代賀爾蒙療法,全基因組關聯研究,GWAS,WNT4,AJAP1, | zh_TW |
| dc.subject.keyword | prostate cancer,novel hormone therapy,genome-wide association study,GWAS,WNT4,AJAP1, | en |
| dc.relation.page | 48 | - |
| dc.identifier.doi | 10.6342/NTU202403243 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-08-06 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 臨床醫學研究所 | - |
| 顯示於系所單位: | 臨床醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 2.93 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
